Logo Passei Direto

Herramientas de estudio

Material
¡Estudia con miles de materiales!

Vista previa del material en texto

PAUTA – PRUEBA 2 DE ORGANIZACIÓN INTERNA DE LA EMPRESA – PROF. JUAN NAGEL – 20-5-15
Lea cuidadosamente cada una de las siguientes preguntas, y responda cada una en hojas separadas. Utilice lápiz pasta, y demuestre todos sus resultados. Recuerde que su puntaje será determinado por el desarrollo, y no necesariamente por su respuesta. Sea clara, concisa, y profesional en su redacción. El puntaje asignado a cada pregunta corresponde al tiempo máximo que estimo debe pasar en esa pregunta. En total hay 75 puntos.
1. (15 puntos) Usted es el gerente general de una empresa pesquera. Usted se enfrenta a un problema de riesgo moral: quiere que sus pescadores hagan su mejor esfuerzo, pero ellos son adversos al riesgo que eso conlleva.
Suponga que las ventas de su compañía son función de las horas promedio que trabajan sus empleados, y siguen la siguiente función: Ventas = $120 e + A, donde “e” es el número de horas promedio que trabajan los pescadores a la semana, y A es una variable aleatoria con media 0 y varianza igual a 9.000.
Suponga que para la persona, el costo del esfuerzo es 0 si e es menor a 35, y es igual a 
1/3 ( e – 35 )2 si e es mayor a 35.
Suponga también que la aversión al riesgo de los pescadores es igual a 2, y que fuera de la empresa el pescador puede ganar $1.200 semanales.
Con estos antecedentes, diga si conviene a la empresa ofrecer al pescador comisión del 0%, del 5%, o del 15%. Recuerde que la fórmula de utilidad del pescador es 
Hay que establecer primero cuál sería la decisión óptima para el empleado.
El empleado escoge el “e” que maximice la función de utilidad. La comisión es igual a α(120e), y el costo del esfuerzo es igual a 1/3 ( e – 35 )2. Por lo tanto, la derivada igualada a cero nos dice que
120 α – 2/3 ( e – 35 ) = 0
120 α = 2/3 ( e – 35 )
180 α = e – 35
e = 35 + 180 α
Si la comisión es cero, el esfuerzo óptimo es de 35 horas. Si la comisión es de cinco por ciento, la comisión óptima es de 44 horas, y si la comisión es de 15%, el e será de 62.
Podemos ahora rellenar la tabla
	Comision
	Esfuerzo
	Costo esf
	Riesgo
	Comision esp
	Salario fijo
	Ventas esperadas
	Beneficio esp
	0
	35
	0
	0
	0
	1200
	4200
	3000
	5
	44
	27
	22,5
	264
	985,5
	5280
	4030,50
	15
	62
	243
	202,5
	1116
	529,5
	7440
	5794,5
Por lo tanto conviene ofrecer comisión del 15% de las tres que se han planteado.
Poner crédito dependiendo de qué tan lejos llegan.
2. (20 puntos) Leímos sobre el caso del avión Airbus A380. 
a. (5 puntos) Comente cuáles son los problemas actuales del A380, y en qué se relacionan con el problema principal-agente.
El problema con el A380 es que no están vendiéndose como se pensaba que podían haberse vendido. Esto ha hecho que la empresa tenga que tomar una decisión – si descontinuar o no el producto, luego de que se lanzase hace diez años.
El potencial problema de principal agente surge porque hay muchos agentes cuyo trabajo depende de que el A380 exista como proyecto – gerentes de compras, de ventas, fabricantes, etc. Quizás los agentes estén más preocupados de preservar su trabajo dándole al accionista esperanzas de que el producto pueda ser viable, a estar preocupados por la salud financiera de la compañía Airbus. De ser así, el problema principal agente podría resultar sumamente caro para la empresa.
b. (10 puntos) Imagínese que Airbus tiene un problema principal-agente en la fabricación de este avión: necesita que los agentes se esfuercen más en vender los aviones. Imagínese que hay dos niveles de esfuerzo que puede realizar cada agente: esfuerzo bajo, y esfuerzo alto. Si el agente hace un esfuerzo bajo, la probabilidad de lograr la venta es 0,02. Si se esfuerzan, la probabilidad de lograr la venta es 0,025. Suponga que el costo personal para el vendedor de realizar el esfuerzo alto implica educarse, cosa que cuesta $10.000. Bajo este escenario, ¿qué tan alta tiene que ser la comisión para que el empleado decida esforzarse en hacer las ventas? Si el beneficio para Airbus de la venta de cada avión es de $30.000.000, diga si a la empresa le conviene o no pagar la comisión que usted calculó para lograr que el esfuerzo sea alto. Si la respuesta es “no,” diga cuánto tendría que ser la ganancia por avión para que a la empresa le convenga dar la comisión que incentive el esfuerzo alto.
La utilidad esperada sin hacer el esfuerzo es 0,02 C
La utilidad esperada haciendo el esfuerzo es 0,025 C – 10.000
Por lo tanto, para que la persona haga el esfuerzo, tiene que ser que 
0,025C – 10.000 > 0,02 C
0,005 C > 10.000
C > 10.000 / 0,005 
C > $200.000
Para ver si conviene, habría que calcular cuánto beneficio extra nos entrega el esfuerzo alto.
El beneficio por venta es 30.000.000, pero ese no es el monto que hay que considerar. Hay que tomar en cuenta el aumento en el beneficio esperado del cambio del “esfuerzo” del agente. En este caso, sería 30.000.000 * 0,005 = 150.000. Por lo tanto, la comisión es más cara que el aumento en el beneficio para la empresa, por lo que NO conviene que la persona realice el esfuerzo.
Para que a la empresa le convenga dar al comisión mínima, tendría que darse que G * 0,005 sea mayor a 200.000. Es decir, la ganancia por avión tendría que superar los $40.000.000.
Poner cuatro puntos por el cálculo de la comisión óptima, y seis puntos por la discusión de si le conviene o no a la empresa.
c. (5 puntos) Suponga que usted descubre que muchos de los gerentes de Airbus tienen acciones en instituciones financieras europeas. ¿Cómo cree que esto puede estar relacionado con el problema principal-agente en este caso? ¿Cómo solucionaría el problema? Sugiera dos medidas.
Si uno descubriese eso querría decir que podría haber intereses cruzados – las instituciones financieras podrían estar interesadas en que los aviones se sigan vendiendo, porque ayudan a las aerolíneas a financiar la compra de los mismos. En este caso estaríamos en presencia de un clásico problema principal agente.
Dos soluciones para esto podrían ser la supervisión / monitoreo y los salarios de eficiencia. Por ejemplo, se podría pedir a los empleados que se sometan a auditorías para verificar que no son accionistas de instituciones financieras. También se podría combinar con algún tipo de salario de eficiencia, so pena de perder el salario e incurrir en una multa si la empresa determina que el gerente mintió acerca de sus vínculos financieros. Sin embargo, ambos podrían ser demasiado costosos de implementar.
(Cualquier solución al problema principal agente podría ser válida aquí)
3. (15 puntos) Considere el siguiente texto de Ronald Coase (La Naturaleza de la Empresa, 1937)
“… ¿Por qué no lleva a cabo toda la producción una sola empresa grande? Pareciera haber ciertas explicaciones posibles.
Primero, en la medida en que una empresa se hace más grande, hay rendimientos decrecientes de la función del empresario, esto es, los costos de organizar una transacción adicional dentro de la empresa pueden subir. Obviamente se debe llegar a un punto en el que los costos de organizar una transacción extra dentro de la empresa sean iguales a los costos implícitos en las transacciones en el mercado abierto o en los costos de organización de otro empresario. En segundo lugar, es posible que a medida que aumentan las transacciones organizadas el empresario fracase al colocar los factores de producción en los usos donde sean más productivos, esto es, no logra hacer el mejor uso de los factores de producción. De nueva cuenta, se debe alcanzar un punto en el que la pérdida mediante el desperdicio de recursos sea igual a los costos de mercadeo de las de la transacción de intercambio en el mercado abierto o a la pérdida si la transacción fuese organizada por otro empresario. Finalmente, puede subir el precio de oferta de uno o más factores de producción debido a que “otras ventajas” de pequeñas empresas resultan mayores que las de una empresa grande. Desde luego, el punto real donde cesa la expansión de la empresa debería determinarse por una combinación de los factores mencionados. Las dos primeras razones muyprobablemente corresponden a la frase del economista de “rendimientos decrecientes para la administración.” “
Utilizando los conceptos vistos en clase, interprete las tres este texto explicaciones enumeradas en el texto con sus propias palabras. 
Primero, rendimientos decrecientes en la función del empresario tiene que ver con eso que llamamos “racionalidad limitada.” Cuando una organización crece, la capacidad de los gerentes de organizar la empresa y de supervisar sus labores va disminuyendo por la sencilla razón de que los seres humanos tenemos racionalidad limitada. Eso hace que llegue un punto en el que organizar una transacción adicional dentro de la empresa se hace más costoso que hacerlo por fuera, y ayuda a explicar los límites de las empresas.
La segunda tiene que ver con la eficiencia en el uso de los recursos. Cuando las operaciones se hacen más complejas, se hace más difícil decidir qué insumos colocar en qué partes, y se hace más difícil decidir la forma más eficiente de utilizarlos. Eso hace que existan pérdidas – los inventarios quizás no son manejados de forma eficiente, o quizás se compran insumos más caros de lo que corresponde. En ese caso, quizás el manejo de los insumos por parte del mercado sería más eficiente, por lo que convendría a veces utilizar el mercado.
La tercera tiene que ver con los precios de los factores. Por ejemplo, una empresa grande podría terminar pagando mucho por la electricidad, por ejemplo, en virtud de ser muy grande. También podría pagar más impuestos. En ese sentido, el ser más chico y utilizar el mercado podría ser ventajoso. Sin embargo, también se podría argumentar que las empresas grandes obtienen mejores precios por los insumos – Walmart recibe mejores precios por los productos que vende que una tienda chica. En ese caso habría que ver cuál de las dos fuerzas (empresa grande hace que los precios de los insumos sean más altos vs. Empresa grande hace que los precios de los insumos sean más bajos) es la que prevalece.
Dar crédito parcial dependiendo de qué tan completa está la respuesta.
4. (15 puntos, cinco cada una) Un taller mecánico tiene un problema: no sabe qué tan rápido están trabajando sus empleados en arreglar los autos que están siendo arreglados. El dueño decide llegar a un trato con sus empleados: subirles el sueldo un 50% por encima del salario de mercado siempre que él pueda verificar que está haciendo un esfuerzo adecuado. Suponga que hacer el esfuerzo le cuesta horas extra a los empleados que equivalen a $100.000 al mes. Asuma también que el salario de mercado de los mecánicos es de $600.000. Asuma también que usted puede realizar inspecciones varias veces al día, y que cada inspección aumenta la probabilidad de atrapar a un empleado no haciendo su trabajo en 0,25. Asuma que si no hay inspecciones, la probabilidad de descubrir a alguien haciendo un esfuerzo pobre es cero. 
a) Ante este escenario, ¿cuántas inspecciones mínimo al día debe realizar para que la compensación sea considerada un salario de eficiencia? (Pista: Haga sus cálculos en base a los salarios diarios)
La fórmula de los salarios de eficiencia es
P ( w* - w ) > C
Es decir, la probabilidad de ser descubierto no haciendo el esfuerzo, multiplicada por la pérdida en salarios que habría, debe ser mayor al costo de realizar el esfuerzo.
En este caso, el salario de eficiencia propuesto es de $900.000, 50% por encima de los 600.000 que paga el mercado. El costo del esfuerzo es 100.000. Por lo tanto, “P” tiene que ser mayor a 
100.000 / 300.000 = 1/3.
Como cada inspección aumenta la probabilidad en 0,25, tendrían que hacerse al menos DOS inspecciones al día para que este sea un salario de eficiencia.
Corregir todo o nada.
b) Suponga que por temas de costo y de tiempo, usted sólo puede realizar una inspección al día. En ese caso, ¿a cuánto tendría que ascender el salario de eficiencia para que sea considerado un salario de eficiencia verdadero?
En este caso, P quedaría fijo en 0,25. Por lo tanto,
0,25 ( W* - 600.000 ) > 100.000
W* > 600.000 + 100.000 / 0,25 
W* > 1.000.000
Por lo tanto, el salario de eficiencia debe ser MAYOR a 1.000.000 mensuales. Si dicen que tiene que ser igual, deben decir explícitamente que están asumiendo que cuando los dos lados de la inecuación son iguales, la persona igual realiza el esfuerzo.
Corregir todo o nada. (la parte del mayor o igual no tiene que ser todo o nada, pero si no especifican ese tema, quitar un punto)
c) Si asumimos que el taller tiene beneficios (sin contar la mano de obra) de $15 millones al mes, que usted tiene tres empleados, y que si logra convencerles de que hagan su mejor esfuerzo, el beneficio subiría a 22 millones al mes, cuánto tendría que costar máximo cada inspección para que valga la pena aplicar el salario de eficiencia que halló en b)? (Asuma 20 días hábiles al mes)
La empresa tiene dos opciones. 
Una, pagar 600.000 mensuales sin inspecciones. En ese caso, los mecánicos no harían un gran esfuerzo, y los beneficios serían 
15.000.000 – 600.000 * 3 = 13.200.000
La otra opción es pagar el salario de eficiencia. En ese caso, los beneficios serían
22.000.000 – 1.000.000 * 3 – Costo Inspecciones * 20 * 3
19.000.000 – Costo inspecciones * 60 
Para que el salario de eficiencia valga la pena, tendría que ser que 19.000.000 – Costo inspecciones * 60 > 13.200.000
Costo inspecciones < $96.666,67
Corregir con crédito parcial.
5. (10 puntos, cinco cada una) Usted es el único empleador del pueblo de Guasipati. Los trabajadores de Guasipati están sindicalizados, y son los únicos oferentes de mano de obra del pueblo. Suponga que el valor producto marginal de los trabajadores viene dado por la función S = 200 – Q, donde Q es la cantidad de horas de empleo diario y S es el salario por hora. Suponga que la oferta de trabajo viene dada por la función S = 20 + 1,5 Q. 
a. Bajo estas condiciones, indique cuál será el área de negociación.
Este es el gráfico de ambas funciones
El gasto marginal es la curva S = 20 + 3 Q, porque tiene el doble de la pendiente.
El Ingreso marginal es S = 200 – 2 Q
Por lo tanto, el área de negociación viene dada por esta área:
El equilibrio que busca la empresa es VPM = Gasto marginal
200 – Q = S
20 + 3 Q = S
200 – Q = 20 + 3 Q
180 = 4 Q
Q = 60, 
EL salario correspondería a Q=60 en la oferta de trabajo, es decir, 20 + 1,5 * 60 = 110.
El equilibrio que busca el sindicato es IMgl = Oferta de trabajo (C Mgl)
200 – 2 Q = 20 + 1,5 Q
180 = 3,5 Q
Q = 51,43
El sindicato va a querer que el salario que se pague sea el VPM de esa cantidad, el cual sería
S = 200 – Q = 200 – 51.43 = 148,57
Por tanto, el salario que busca el sindicato es 148,57, y el salario que busca la empresa es 110. La cantidad que busca la empresa es 60, y la cantidad que busca el sindicato es 51,43.
La zona de negociación puede entenderse como el área del rectángulo (en teoría es el área del trapecio, pero podemos usar el rectángulo para aproximar – poner crédito total si usan el rectángulo)
(60-51.43)*(148.57-110)= 330,54
 
b. Usted tiene otra planta en el pueblo de Tumeremo. En ese pueblo, el valor producto marginal es el mismo, pero la oferta de trabajo viene dada por la función S = 30 + 0,5 Q. ¿Dónde cree los costos de transacción serán mayores, en Guasipati o en Tumeremo? Razone su respuesta.
Habría que calcular las dos áreas de negociación y ver cuál es la mayor.
En este caso la empresa iguala el VPM con el gasto marginal, 30+Q
200 – Q = 30 + Q
170 = 2 Q
Q = 85
El salario que quiere la empresa sería entonces el salario correspondiente a esa cantidad en la oferta de trabajo
S = 30 + 0.5 Q = 72,5
En cambio, el sindicato querrá igualar su costo marginal (oferta) con el ingreso marginal
30 + 0.5 Q = 200 – 2 Q
2.5 Q = 170
Q = 68
El salario que van a querer cobrar es el VPM de esa cantidad, que sería
200 – 68 = 132
Por lo tanto, el salario de negociación va a estar entre 132 y 170, y la cantidad a ser negociada estaría entre 72.5 y 85.
El área de negociación en este caso (de nuevo, utilizando el rectángulo) sería 
( 85 – 72,5 ) * ( 170 – 132 ) =475
Esta área de negociación será mucho más grande, por lo que los costos de transacción en Tumeremo serán mayores.