Vista previa del material en texto
1
INSTITUTO DE ECONOMIA
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
Guía de Ejercicios
Macroeconomía Internacional EAE 240B
Profesor: Sebastián Claro
1. Suponga una economía muy simple de dos periodos. La función de preferencias
del consumidor representativo es 𝑈 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 , donde 𝑐 y 𝑐 son los niveles
de consumo en ambos periodos, y 𝛽 < 1 es un factor de descuento. Los habitantes de
este país pueden endeudarse a una tasa de interés 𝑟 en el mercado internacional, y se
cumple que 𝛽(1 + 𝑟) = 1. La producción en ambos periodos es 𝑦 e 𝑦 , y el stock de
activos externos netos al comienzo del periodo cero es 𝑏 . La condición de
transversalidad significa que el stock de activos externos netos a fines del segundo
periodo es 𝑏 = 0.
a) Plantee el problema de optimización del agente representativo, derive la restricción
presupuestaria inter-temporal y obtenga las condiciones de primer orden. ¿Cuál es el
nivel del consumo de equilibrio en ambos periodos, y cuál es el nivel de equilibrio de
𝑏 ?, ¿Bajo qué condiciones esta economía acumulará activos o deuda durante el
primer periodo?
b) Compute sus resultados en a) para el caso donde 𝑏 = 0 y que 𝑦 = 𝑦 = 𝑦.
c) Suponga ahora que inesperadamente el producto en el primer periodo crece de tal
manera que 𝑦 = 𝑦 > 𝑦. Compare sus resultados son los obtenidos en b). ¿Cómo se
compara el consumo en ambos periodos, la balanza comercial y la cuenta corriente?
Discuta.
d) Suponga ahora que el shock inesperado es permanente, esto es, 𝑦 = 𝑦 = 𝑦 > 𝑦.
Compare sus resultados con los obtenidos en b). Discuta.
e) Finalmente, suponga que antes de comenzar el primer periodo se conoce de manera
anticipada que el producto aumentará en el segundo periodo. Esto es, que 𝑦 = 𝑦
pero que 𝑦 = 𝑦 > 𝑦. Compare su respuesta con la obtenida en b) y en c). Discuta la
intuición. En particular, refiérase a qué sucede con el consumo en entre el primer y el
segundo periodo al aumentar el nivel de actividad.
2
2. El modelo básico inter-temporal de cuenta corriente plantea que las economías
tratan de suavizar su perfil de consumo en el tiempo. Suponga una economía que recibe
todos los períodos un nivel de producto exógeno {𝑦 , 𝑦 , … , 𝑦 , … }. La tasa de interés
internacional es 𝑟 y la función de utilidad del consumidor representativo es
∑ 𝛽 ∙ 𝑈(𝑐 ) donde 𝛽 es el factor de descuento inter-temporal.
a) Plantee el problema de maximización de esta economía, derive las condiciones de
primer orden y discuta la relevancia del supuesto 𝛽 ∙ (1 + 𝑟) = 1 donde 𝑟 es la tasa
real de interés que dan los bonos denominados en términos del bien de consumo al
que puede acceder este individuo.
b) Discuta intuitivamente el efecto sobre el consumo y la cuenta corriente de un
aumento transitorio en el producto. Por ejemplo, un aumento en {𝑦 , 𝑦 , 𝑦 }. ¿Es la
cuenta corriente pro cíclica o contra cíclica?
c) Suponga ahora que la producción no es exógena sino que está dada por la siguiente
función de producción: 𝑦 = 𝐴 ∙ 𝑓(𝑘 ) donde 𝐴 es un parámetro tecnológico
exógeno y 𝑘 es el stock de capital per cápita a comienzos del período, que varía de
acuerdo a la siguiente función: 𝑘 = (1 − 𝛿) ∙ 𝑘 + 𝑖 , donde 𝑖 es la inversión del
período t y 𝛿 es la tasa de depreciación del capital. ¿Cuál es el nivel de inversión
óptima de esta economía? ¿Cómo varía su respuesta si la tasa de depreciación del
capital fuese cero?
d) Discuta intuitivamente el efecto sobre la cuenta corriente, el consumo y la inversión
de un aumento transitorio en 𝐴 (aumento en {𝐴 , 𝐴 , 𝐴 }). ¿Cómo se compara su
respuesta con la de b?
e) Discuta el efecto sobre la cuenta corriente, el consumo y la inversión de una caída
transitoria en la tasa de interés internacional 𝑟.
3
3. Suponga una economía muy simple de dos periodos. La función de preferencias
del consumidor representativo es 𝑈 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 , donde 𝑐 y 𝑐 son los niveles
de consumo en ambos periodos, y 𝛽 < 1 es un factor de descuento. La función de
producción es 𝑦 = 𝑓(𝑘 ) donde 𝑘 es el stock de capital a comienzos del periodo 𝑖 =
1,2. La función de producción satisface las siguientes propiedades: 𝑓 (𝑘) > 0 y 𝑓 (𝑘) <
0. Así, esta economía comienza el primer periodo con un stock de capital igual a 𝑘 , y en
el primer periodo debe decidir cuánto invertir, cuánto consumir y cuánta deuda externa
(activos externos) acumular. La tasa de depreciación del capital es igual a 𝛿, por lo que
la inversión en el periodo 1 es tal que 𝑘 = 𝑘 ∙ (1 − 𝛿) + 𝑖 . Finalmente, suponga que
esta economía tiene acceso al mercado de capital internacional a una tasa 𝑟 .
a) Escriba el problema de optimización de esta economía, y deriva las condiciones de
primer orden.
b) Suponga que 𝛽 ∙ (1 + 𝑟 ) = 1 y que el stock inicial de capital 𝑘 es tal que 𝑓 (𝑘 ) =
1 + 𝑟 . Derive una expresión de equilibrio para el consumo en ambos periodos, la
inversión y la cuenta corriente. Explique brevemente.
c) ¿Cómo varía su respuesta en la pregunta b) si el stock de capital inicial de esta
economía es muy bajo? Si no puede derivar formalmente sus respuestas, discuta la
intuición.
d) Evalúe el impacto sobre el consumo, la inversión, y la cuenta corriente de un
aumento inesperado en el costo de financiamiento 𝑟 hasta 𝑟 , tal que 𝛽 ∙ (1 + 𝑟 ) >
1. Suponga en este caso que el stock de capital inicial en esta economía es idéntico al
considerado en la pregunta b). Discuta comparando su respuesta con la dada en la
pregunta b).
4
4. Suponga una economía de dos períodos cuyo habitante representativo tiene la
siguiente función de utilidad: 𝑈 = 𝑢(𝑐 ) + 𝛽𝑢(𝑐 ), donde 𝛽 < 1, y 𝑐 es el consumo en
el periodo 𝑖 = 1,2 de un bien importado que no produce. Esta economía está dotada de
un bien 𝑦 que sólo exporta. La dotación es idéntica en cada periodo (𝑦 = 𝑦 = 𝑦). Los
términos de intercambio, definidos como el precio relativo del bien exportado respecto
del bien importado es 𝑝 . Adicionalmente, la economía tiene acceso al mercado
internacional de capitales, donde 𝛽(1 + 𝑟) = 1.
a) Suponga que la restricción de flujo de esta economía es 𝑏 = 𝑝 𝑦 − 𝑐 , donde 𝑏 es
el stock de activos externos netos a fines del primer periodo, expresados en términos
del bien de consumo. De esta manera, 𝑐 = (1 + 𝑟)𝑏 + 𝑝 𝑦. Plantee el problema de
optimización y derive la trayectoria óptima del consumo, balanza comercial y
endeudamiento externo si 𝑝 = 𝑝 = 𝑝.
b) ¿Cómo se comparan sus resultados en a) con los derivados de una situación donde el
precio relativo del bien exportable es mayor en el periodo 1 (𝑝 > 𝑝 = 𝑝 )? Discuta
detalladamente la intuición.
c) Suponga ahora que los bonos que se transan en el mercado financiero internacional
están expresados en términos del bien exportable y no del bien importable. De esta
manera, las restricciones de flujo son 𝑏 = 𝑦 − 𝑐 𝑝⁄ y 𝑐 = 𝑝 𝑦 + (1 + 𝑟)𝑏 𝑝 .
Plantee el problema de optimización y derive la trayectoria óptima del consumo,
balanza comercial y endeudamiento externo si 𝑝 = 𝑝 = 𝑝. ¿Cómo se compara con
su respuesta en a)?
d) ¿Cómo se comparan sus resultados en c) con los derivados de una situación donde el
precio relativo del bien exportable es mayor en el periodo 1 (𝑝 > 𝑝 = 𝑝 )? Discuta
detalladamente la intuición. Suponga que 𝑢(𝑐) = 𝑐 1 − 𝜎⁄ donde 1 𝜎⁄ > 0 es la
elasticidad de sustitución en consumo.
e) Discuta intuitivamente sus resultados. ¿Por qué un shock positivo y transitorio de
término de intercambio tiene un impacto diferente sobre el consumo y el
endeudamiento externo dependiendo de la denominación de la deuda? Piense bien.
5
5. Suponga una economía de dos periodos. La función de preferencias del
consumidor representativo es 𝑈 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 , donde 𝑐 y 𝑐 son los niveles de
consumo en ambos periodos,con 𝛽 < 1. El nivel de producción en el primer periodo es
exógeno e igual a 𝑦 , mientras de la producción en el periodo 2 es igual a 𝑦 = 𝐴 ∙
𝑓(𝑘 ) donde 𝐴 es una medida de productividad y 𝑘 es el stock de capital a comienzos
del periodo 2, que se obtiene de invertir parte del producto en el periodo 1 (𝑘 = 𝑖 ,
donde 𝑖 es la inversión en el periodo 1). La función de producción satisface las
siguientes propiedades: 𝑓 (𝑘) > 0 y 𝑓 (𝑘) < 0. Así, esta economía decide en el
periodo 1 cuánto invertir, cuánto consumir y cuánta deuda externa (activos externos)
acumular. La tasa de depreciación del capital es igual a 1, con lo que el capital 𝑘 se
deprecia íntegramente en el periodo 2, y la economía termina sin capital a fines del
periodo 2. Finalmente, esta economía tiene acceso al mercado financiero internacional
a una tasa 𝑟, y el stock inicial de activos externos netos es cero.
a) Plantee el problema de optimización de este consumidor representativo. Sea claro
en su derivación de la restricción presupuestaria inter temporal.
b) Derive las condiciones de optimalidad tanto para la trayectoria del consumo como
del stock óptimo de capital en el segundo periodo.
c) Derive una expresión para la cuenta corriente de equilibrio en el periodo 1 en
función de 𝛽, 𝑦 , 𝐴 , 𝑟 y 𝑘∗, siendo 𝑘∗ el stock óptimo de capital en el periodo 2.
d) Derive analíticamente el impacto sobre la cuenta corriente del primer periodo de
un aumento en (1 + 𝑟). Discuta detalladamente la intuición.
e) Derive analíticamente el impacto sobre la cuenta corriente del primer periodo de
un aumento en 𝐴 . Discuta detalladamente la intuición.
f) Suponga ahora que no es posible comprometer el pago de la deuda en el periodo 2,
y que en caso de no pago, se pierde un porcentaje ∅ del producto el segundo
periodo. Derive una expresión que refleje las condiciones bajo las cuáles el país
pagará sus compromisos en el periodo 2. ¿Qué significa esta falta de compromiso
sobre el nivel de deuda externa de equilibrio?
g) Discuta cómo se ve afectada la restricción de financiamiento y el nivel de deuda
luego de un aumento en 𝐴 . En otras palabras, ¿cómo responde el mercado
financiero internacional y el país doméstico a una perspectiva de mayor
productividad y actividad económica en el futuro? ¿Cómo depende su respuesta de
∅? Discuta la intuición.
6
6. Suponga una economía de dos períodos cuyo habitante representativo tiene la
siguiente función de utilidad: 𝑈 = 𝑢(𝑐 ) + 𝛽𝑢(𝑐 ), donde 𝛽 < 1, y 𝑐 es el consumo en
el periodo 𝑖 = 1,2 de un bien importado que no produce. La función de utilidad es
𝑢(𝑐) = 𝑐 1 − 𝜎⁄ , donde 𝜎 > 0 y 1 𝜎⁄ es la elasticidad de sustitución intertemporal.
Esta economía está dotada de un bien que sólo exporta, y esta dotación en cada periodo
es 𝑦 𝑒 𝑦 . Los términos de intercambio, definidos como el precio relativo del bien
exportado respecto del bien importado es 𝑝 , para 𝑖 = 1,2. Adicionalmente, la economía
tiene acceso al mercado internacional de capitales, donde 𝛽(1 + 𝑟) = 1.
a) Suponga que los bonos transados en el mercado financiero internacional están
expresados en términos del bien exportable. De esta manera, las restricciones de
flujo en ambos periodos son b = 𝑦 − c p⁄ y 𝑐 = 𝑝 𝑦 + (1 + 𝑟)𝑏 𝑝 . Plantee
el problema de optimización del consumidor y derive las condiciones de primer
orden. ¿Qué rol cumple la trayectoria de los términos de intercambio?
b) Suponga por simpleza que los términos de intercambio son constantes en el
tiempo. Derive una expresión para el consumo en el primer periodo. ¿Qué rol
cumple el nivel de los términos de intercambio en este caso?
c) Si p = p = p y el producto exógeno es constante e igual a 𝑦 = 𝑦 = 𝑦. ¿Cuál es
el valor del consumo y de la cuenta corriente en el primer periodo?
d) Analice ahora el caso en que se produce un aumento en el ingreso futuro derivado
de un aumento en la producción en el periodo 2, donde 𝑦 = 𝑘 ∙ 𝑦 = 𝑘 ∙ 𝑦, con
𝑘 > 1. Sigue siendo el caso que p = p = p. Derive el nivel de consumo y cuenta
corriente en el primer periodo. ¿Cómo se compara con su respuesta en c)?
e) Suponga ahora que el mismo aumento en el ingreso del periodo 2 se produce por
un aumento futuro en los términos de intercambio y no por un aumento en la
producción futura. Esto es, 𝑝 = 𝑘 ∙ 𝑝 = 𝑘 ∙ 𝑝 e 𝑦 = 𝑦 = 𝑦. Derive el impacto
sobre el consumo y la cuenta corriente en el primer periodo. Suponga que 𝜎 = 1.
¿Cómo se compara con su respuesta en d)? Sea claro en su intuición.
f) Resuelva nuevamente el ejercicio en e) suponiendo que 𝜎 → ∞, esto es, que la
elasticidad de sustitución intertemporal es cero. ¿Qué sucederá con el consumo en
el primer periodo como respuesta a la mejora futura de términos de intercambio?
Compare el resultado con sus respuestas en c) y d). Discuta.
7
7. Considere una economía abierta de 2 períodos habitada por un agente
representativo cuya función de utilidad es 𝑈 = 𝑢(𝐶 ) + 𝛽𝑢(𝐶 ) donde 𝐶 es el consumo
en el período 𝑖 = 1,2 y 𝑢(𝐶) = ln (𝐶). El producto el primer período es cero, y el
segundo período es 𝑦 . Suponga que este individuo tiene acceso al mercado de capital
internacional a una tasa 𝑟 tal que 𝛽(1 + 𝑟) = 1. La economía no cuenta con activos
externos netos al comienzo del primer periodo.
a) Plantee el problema de optimización de este agente, resuelva las condiciones de
primer orden, y obtenga un valor para el consumo y el nivel de deuda del primer
período.
b) Suponga ahora que existe incertidumbre sobre el nivel del producto el segundo
período. Con probabilidad 50%, el producto será 𝑦 = 2𝑦 (2𝛼 + 1)⁄ y con
probabilidad 50% el producto será 𝑦 = 4𝛼𝑦 (2𝛼 + 1)⁄ , con 𝛼 > 1 2⁄ . El valor
esperado del producto el segundo período es 𝐸(𝑦 ) = 𝑦 . Considere que en el caso
de default, éste será parcial. Esto es, el país sólo podrá consumir un porcentaje 𝛼 del
producto y además deberá pagar la mitad de lo adeudado (intereses y capital).
Tomando en cuenta que la tasa de interés externa relevante será igual a 𝑟 ≥ 𝑟,
derive la condición bajo la cual existirá default, como función de 𝑟 , 𝛼 y 𝐶 .
c) Haga la siguiente conjetura. El default ocurrirá si el producto en el segundo período
es bajo, esto es, si 𝑦 = 𝑦 . En cambio, si el producto es alto - 𝑦 – no existirá
default. Obtenga expresiones para los niveles de consumo en el segundo periodo
(𝐶 ) en ambos estados de la naturaleza, y compárelos. ¿Qué valor tiene 𝑟 ?, ¿Cómo
se compara con 𝑟?
d) Las condiciones de primer orden del problema del consumidor son las siguientes. El
perfil óptimo de consumo está dado por la siguiente relación: 𝑢 (𝐶 ) = 𝛽 ∙ (1 + 𝑟 ) ∙
𝐸{𝑢′(𝐶 )} y la restricción presupuestaria intertemporal es
𝑦 (1 + 𝑟 ) = 𝐶 + 𝐶 (1 + 𝑟 )⁄⁄ que debe verificarse en cada estado de la
naturaleza. Calcule el nivel óptimo de consumo el primer período y compárelo con su
resultado en a). ¿Cómo afecta la incertidumbre al nivel de consumo?
e) Compruebe las condiciones para las cuáles su conjetura en c) es correcta. ¿Cuál es la
intuición?
8
8. Considere una economía de dos períodos habitada por muchas personas
idénticas cuya función de utilidad es 𝑊 = log (𝑐 ) + 𝛽 ∙ log (𝑐 ), donde 𝑐 es el
consumo en el periodo 𝑖, y 𝛽 es el factor de descuento. La tasa de interés mundial libre
de riesgo es 𝑟, y se cumple que 𝛽(1 + 𝑟) = 1. El producto en el primer periodo es cero
(𝑦 = 0), mientras que el segundo periodo es igual a 𝑦 . Luego, el nivel de consumo el
primer periodo es igual a 𝑐 = 𝑑 , donde 𝑑 es el nivel de deuda a fines del primer
periodo. Los habitantes de este país tienen acceso al mercado financiero internacional a
una tasa 𝑟 que depende del nivel de endeudamiento que tomen en el primer periodo.
En particular, 𝑟 = 𝑟 + 𝛼 ∙ 𝑑 , con 𝛼 > 0.
a) Plantee el problema de optimización del individuo representativoen esta economía,
y resuélvalo. Calcule el consumo relativo en cada periodo, y muestre que cada
individuo no querrá suavizar consumo. IMPORTANTE: Considere que cada individuo
toma 𝑟 como dado.
b) Plantee y resuelva el problema de optimización de un planificador central, que
maximiza el bienestar de los individuos pero toma en cuenta el impacto de la
decisión de consumo el primer periodo sobre el costo de financiamiento. Calcule el
consumo relativo en cada periodo, y discuta si el planificador central quisiera suavizar
el consumo en el tiempo. ¿Por qué?
c) ¿Discuta de qué manera sus respuestas en a) y en b) difieren en cuanto al consumo
relativo en cada periodo? ¿Cuál es la intuición de este fenómeno y qué lo está
causando?
9
9. En los últimos meses el costo de la deuda soberana en muchos países de Europa
ha aumentado sustancialmente. Por ejemplo, el costo de financiamiento del gobierno
griego – que era cerca de 100 puntos base mayor que el de gobierno alemán en agosto
del 2009 – se multiplicó por 10 en un año. Esto es, el spread pagado por el gobierno
griego por un bono a diez años emitido en euros es hoy 10 puntos porcentuales superior
a la tasa de interés de un bono equivalente emitido por Alemania, mientras que hace un
año el spread era solo 1%. En el caso de Portugal, el spread soberano aumentó de 100pb
a 400pb en el mismo período.
Suponga un modelo de dos períodos donde la decisión de default de un gobierno resulta
de la comparación que haga respecto del beneficio de pagar. Si al final del primer
período el gobierno tenía una deuda de 𝑑 , entonces el consumo en el segundo período
en el caso de cumplir con el pago de la deuda será de 𝑐 = 𝑦 − (1 + 𝑟 ) ∙ 𝑑 , donde 𝑐
es el consumo en el segundo período si pago, 𝑦 es el producto en el segundo período, y
𝑟 es la tasa de interés efectivamente cobrada. Alternativamente, si el gobierno decide
no pagar su deuda y hacer default, su consumo será 𝑐 = 𝑦 ∙ (1 − 𝜙) donde 𝜙 es el
costo en términos de producto de repudiar la deuda. Luego, el gobierno hará default si
𝑐 > 𝑐 .
a) ¿Cuál es el nivel de deuda que gatilla el default? Alternativamente, ¿cuál es el nivel
de producto en el segundo período que hace que el país repudie su deuda?
b) Suponga que los inversionistas internacionales son neutrales al riesgo. Esto significa
que están dispuestos a prestarle a un país en la medida que el retorno esperado sea
igual a la tasa libre de riesgo 𝑟∗. Escriba la tasa de interés 𝑟 como una función
simple de la tasa libre de riesgo 𝑟∗ y la probabilidad de default 𝜋. Discuta la
intuición. Si el gobierno alemán se endeuda a 10 años al 2% en euros. ¿Cuánto más
grande es hoy la probabilidad de default en Grecia que en Portugal? Aproxime sus
resultados.
c) Suponga que el producto en el segundo período es una variable aleatoria. En
particular, 𝑦 se distribuye de manera uniforme entre [0, 𝑦], con lo que 𝐸(𝑦 ) =
𝑦 2⁄ y 𝑝𝑟𝑜𝑏(𝑦 < 𝑎) = 𝑎 𝑦⁄ . Derive una expresión analítica para 𝑟 . Si el costo en
producto del repudio 𝜙 es igual en ambos países, ¿le hace sentido que las
estimaciones de consenso para el año 2010 calculan que el nivel de deuda total del
gobierno griego será cerca de un 140% del PIB, mientras que en Portugal alcanzará
un 80% del PIB?
10
10. Uno de los temas más controvertidos en los últimos años ha sido el aumento en
las tasas de interés de los bonos de gobierno de algunos países de la periferia en
Europa, y la probabilidad que alguno de ellos repudie su deuda. En los modelos vistos en
clase, el evento de default responde a condiciones macroeconómicas – como una caída
en el producto – que encarecen en exceso el pago de la deuda e incentivan a un país a
repudiar sus compromisos. En la actualidad muchas autoridades en Europa han insistido
en que, más allá de las dificultades que experimentan algunos países, existe una
expectativa infundada sobre la situación de algunas economías que podría estar
sembrando las semillas de un futuro default. Este ejercicio, basado en Calvo 1988
(Servicing Public debt: The Role of Expectations, American Economic Review), nos lleva a
entender mejor este fenómeno.
Suponga una economía de dos periodos, donde conviven consumidores y el gobierno.
En el primer periodo el gobierno pide prestado a los consumidores un monto 𝑏 y se
compromete a pagar 𝑅 ∙ 𝑏 el segundo periodo. En todo caso, el gobierno se reserva el
derecho de repudiar un porcentaje 𝜃 de la deuda, con lo que la restricción
presupuestaria del gobierno en el segundo periodo es
𝑥 = 𝑔 + (1 − 𝜃) ∙ 𝑅 ∙ 𝑏 + 𝛼 ∙ 𝜃 ∙ 𝑏 ∙ 𝑅
Donde 𝑥 representa los impuestos recaudados (que los pagan los consumidores), 𝑔 es el
nivel de gasto público (que vamos a suponer exógeno), el término (1 − 𝜃) ∙ 𝑅 ∙ 𝑏
representa el pago efectivo de la deuda (capital e intereses), y 𝛼 ∙ 𝜃 ∙ 𝑏 ∙ 𝑅 es un castigo
(costo en unidades de producto que se pierden) por la parte de la deuda que se repudia.
Considere que 0 ≤ 𝜃 ≤ 1 y que 0 ≤ 𝛼 < 1.
Debido a que 𝑏 y 𝑅 se determinan el primer periodo, para cuadrar sus cuentas el
gobierno debe decidir por la siguiente combinación entre repudio e impuestos: 𝜃 = (𝑏 ∙
𝑅 + 𝑔 − 𝑥)/((1 − 𝛼) ∙ 𝑏 ∙ 𝑅 ).
Por su parte, los consumidores enfrentan el segundo periodo la siguiente restricción
presupuestaria: 𝑐 = 𝑦 − 𝑧(𝑥) + 𝑘 ∙ 𝑅 + (1 − 𝜃) ∙ 𝑏 ∙ 𝑅 − 𝑥, donde 𝑐 es el consumo, 𝑦
es el producto, 𝑧(𝑥) es un costo social derivado la existencia de impuestos que
distorsionan (𝑧 > 0 𝑦 𝑧 > 0), 𝑘 ∙ 𝑅 es el pago recibido por la tenencia de un activo
libre de riesgo (capital) que paga la tasa libre de riesgo 𝑅, (1 − 𝜃) ∙ 𝑏 ∙ 𝑅 es el pago
recibido por los bonos de gobierno, y 𝑥 es el pago de impuestos.
a) Suponga que el gobierno es benevolente, y elige su nivel de impuestos 𝑥 que
maximiza el consumo de las personas, tomando 𝑅 como dado. Plantee el problema
de maximización del gobierno, derive las condiciones de primer orden y establezca el
nivel óptimo de impuestos 𝑥∗. ¿De qué depende? ¿Cuáles son los costos y beneficios
de cobrar impuestos?
b) Los impuestos cobrados deben satisfacer restricciones adicionales debido a que 𝜃 ≤
1 (el gobierno no puede repudiar más que el 100% de la deuda), y 𝜃 ≥ 0 (el gobierno
no pagará más de lo que debe). Derive las condiciones que estas restricciones
establecen sobre el tamaño de los impuestos. En particular, derive las funciones
11
entre 𝑥 y 𝑅 en ambos casos. Grafique y discuta cómo depende el comportamiento
óptimo del gobierno en el segundo periodo de la tasa de interés de su deuda en el
primer periodo 𝑅 .
c) En la medida que los consumidores sean capaces de anticipar este comportamiento,
la tasa de interés cobrada el primer periodo será función de la probabilidad de
repudio: (1 − 𝜃) ∙ 𝑅 = 𝑅. Esta condición restringe aún más el actuar del gobierno
en el segundo periodo. Reemplace esta ecuación en la restricción presupuestaria del
gobierno y obtenga una relación entre 𝑥 y 𝑅 que la satisfaga. Grafique.
d) Suponga que 𝑥∗ > 𝑔 + 𝑏 ∙ 𝑅. Muestre que existen dos equilibrios posibles. En uno,
los individuos no esperan default, la tasa de interés cobrada es baja (𝑅 = 𝑅) y en
equilibrio no hay repudio a la deuda. En el otro caso, los individuos anticipan un
repudio, cobran una tasa de interés mayor (𝑅 > 𝑅), y en equilibrio se produce un
repudio parcial de la deuda. Discuta la intuición. Refiérase también al impacto que
podría tener un alto costo de repudiar la deuda (alto 𝛼).
e) A la luz del modelo y de las discusiones en clases, discuta distintas opciones que las
autoridades europeas tienen para enfrentar una situación como ésta.
f) Los antecedentes de la crisis financiera del 2008/2009 dan cuenta de la acumulación
de desequilibrios previos a la crisis que no se reflejaron adecuadamente en las tasas
de interés de diferentes instrumentos financieros. Explique algunasrazones por las
cuales las tasas de interés de diversos instrumentos financieros podrían no reflejar
una alta probabilidad de default.
12
11. Durante el periodo previo a la crisis financiera del 2008-2009 la economía
norteamericana acumulo un nivel de endeudamiento muy alto. Este tema fue muy
discutido en esferas académicas y de política económica. Dentro de las justificaciones
para este fenómeno se mencionaba las altas expectativas de crecimiento en
productividad, o la caída en la incertidumbre macroeconómica. Este ejercicio desarrolla
un modelo que permitirá entender mejor estos vínculos.
Considere una economía abierta de 2 períodos habitada por un agente representativo
cuya función de utilidad es 𝑈 = 𝑢(𝐶 ) + 𝛽 ∙ 𝐸{𝑢(𝐶 )} donde 𝐶 es el consumo en el
período 𝑖 = 1,2 y 𝑢(𝐶) = ln (𝐶). El término 𝐸 representa el operador de expectativas,
en el entendido que en este modelo hay incertidumbre sobre lo que pasará el segundo
periodo.
El producto el primer período es 𝑦 . La producción en el segundo periodo es una
variable aleatoria, dada por:
𝑦 =
𝑦 = 𝐴 ∙ 𝑘 𝑐𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑 1/2
𝑦 = 𝐴 ∙ 𝑘 𝑐𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑 1/2
donde 𝐴 > 𝐴 , 𝐴 > 1 + 𝑟, 𝑦 𝐴 < 1 + 𝑟. Los individuos de este país tienen acceso al
mercado internacional de bonos a tasa fija 𝑟 (tal que 𝛽(1 + 𝑟) = 1), ya sea para
endeudarse o acumular activos financieros, y también pueden decidir acumular capital
𝑘 para poder producir el segundo periodo. Por simplicidad, asumimos que el stock de
activos externos netos a comienzos del periodo 1 es cero. Luego, la restricción de flujos
en el primer periodo está dada por 𝑏 = 𝑦 − 𝐶 − 𝑘 . En el segundo periodo, la
restricción de flujos dependerá del estado de la naturaleza:
𝐶 = (1 + 𝑟)𝑏 + 𝑦
𝐶 = (1 + 𝑟)𝑏 + 𝑦
a) Describa el problema de maximización inter-temporal de este individuo. Recuerde
considerar que el individuo maximiza la utilidad esperada. Derive las condiciones de
primer orden respecto de las cinco variables a decidir: 𝐶 , 𝐶 , 𝐶 , 𝑏 𝑦 𝑘 .
b) Combinando las condiciones de primer orden para 𝑏 𝑦 𝑘 , obtenga la siguiente
expresión para la razón óptima de consumo en ambos estados de la naturaleza en el
periodo 2: 𝐶 𝐶⁄ = (𝛽𝐴 − 1) (1 − 𝛽𝐴 )⁄ .
c) Utilizando el resultado anterior y las restricciones de flujo, derive una expresión para
el grado de apalancamiento de los hogares en su decisión de inversión. Considere
que el individuo puede financiar la acumulación de capital con ahorro propio y/o con
deuda. Por eso, una medida de apalancamiento es 𝜃 = 1 + 𝑏 𝑘⁄ . Si me endeudo
para financiar la inversión, 𝜃 es bajo. En cambio, si invierto poco y acumulo el activo
libre de riesgo, 𝜃 es alto. Suponga que 𝛽 ∙ 𝐴 = 2 y que 𝛽 ∙ 𝐴 = 1/2.
d) ¿Cómo cambia su respuesta en c) si la economía se hace más productiva en t=2? Por
ejemplo, suponga que 𝛽 ∙ 𝐴 = 9/4 y que 𝛽 ∙ 𝐴 = 3/4. Discuta la intuición.
e) ¿Cómo cambia su respuesta en c) si la economía se hace más riesgosa en t=2? Por
ejemplo, suponga que 𝛽 ∙ 𝐴 = 9/4 y que 𝛽 ∙ 𝐴 = 1/4. Discuta la intuición.
f) ¿Qué espera que suceda con el consumo en el primer periodo 𝐶 en d) y en e)
respecto de lo implícito en c)? No se le pide que obtenga valores, sino que se refiera
a la dirección de los efectos.
13
12. Considere una economía de dos períodos habitada por un agente representativo
cuya función de utilidad es 𝑊 = 𝑐 + 𝛽 ∙ 𝑐 , donde 𝑐 es el consumo en el periodo 𝑡 =
1,2, y 𝛽 < 1 es el factor de descuento. Note que la utilidad depende directamente del
nivel de consumo en cada periodo, y no de una función 𝑈(𝑐). El producto en el primer
periodo es cero (𝑦 = 0), mientras que el segundo periodo es igual a 𝑦 . Luego, el nivel
de consumo el primer periodo es igual a 𝑐 = 𝑑 , donde 𝑑 es el nivel de deuda a fines
del primer periodo. Los habitantes de este país tienen acceso al mercado financiero
internacional a una tasa 𝑟 que depende del nivel de endeudamiento que tomen. En
particular, 𝑟 = 𝑟 + 𝛼 ∙ 𝑑 , con 𝛼 > 0.
a) Plantee el problema de optimización de un planificador central que maximiza el
bienestar de los individuos y reconoce el impacto de la deuda sobre la tasa de interés
cobrada. Derive las condiciones de optimalidad, y una expresión para el nivel óptimo
de consumo en el primer periodo como función de 𝛼, 𝛽 𝑦 𝑟. ¿Qué restricción debe
cumplirse sobre 𝛽(1 + 𝑟) para que exista endeudamiento en el primer periodo?,
¿por qué? Discuta la intuición, y refiérase en particular al resultado que 𝑑 en
equilibrio no depende de 𝑦 .
b) Plantee ahora el problema de optimización del consumidor representativo, que no
incorpora el efecto de sus decisiones en 𝑟 . En otras palabras, toma 𝑟 como dado.
Discuta los posible equilibrios, suponiendo que 𝛽(1 + 𝑟) < 1. ¿Cuál será el nivel de
consumo que los individuos elegirán en el primer periodo?, ¿cómo se compara con su
respuesta en a)?. Discuta. Suponga en su respuesta que 𝑦 > (1 − 𝛽(1 + 𝑟)) 𝛼𝛽⁄ .
c) La diferencia que surge entre sus respuestas en a) y b) ha dado origen a una discusión
sobre implementar un impuesto a los flujos de capital, conocido comúnmente como
“Tobin tax”, en honor al economista James Tobin que propuso esta idea en los 1970s.
¿Qué externalidad presenta este problema que podría justificar esa política?
14
13. Suponga una economía dos periodos 𝑡 = 0 y 𝑡 = 1. El consumidor
representativo tiene la siguiente función de preferencias: 𝑈 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 , donde
𝑐 y 𝑐 son los niveles de consumo en ambos periodos, y 𝛽 < 1 es un factor de
descuento temporal. El bien de consumo, que se importa, es diferente al bien producido
domésticamente, que sólo se exporta. La producción en ambos períodos es 𝑦 e 𝑦
respectivamente. A su vez, los términos de intercambio en cada período, esto es, el
precio relativo del bien exportable respecto del bien importable es 𝑝 e 𝑝
respectivamente. Finalmente, el país no tiene activos externos netos a comienzos del
primer periodo, y puede acceder al mercado internacional de capitales a una tasa de 𝑟,
denominada en términos del bien importable.
a) Derive la restricción presupuestaria inter-temporal de esta economía, y plantee
el problema de optimización. Resuelva para las condiciones de optimalidad. En
particular, obtenga expresiones de equilibrio para el consumo en el primer periodo 𝑐 y
para el stock de activos externos netos a fines del primer periodo 𝑏 .
b) En base a su respuesta en el inciso anterior, discuta el efecto sobre el stock de
activos externos netos mantenidos a fines del primer periodo como porcentaje del
ingreso del segundo periodo (𝑏 /𝑝 𝑦 ) de: (i) un aumento permanente en los términos
de intercambio y (ii) de un aumento transitorio en los términos de intercambio. Discuta
la intuición.
c) Suponga ahora que 𝑦 = 0, y que la tasa de interés a la que puede acceder este
país en el mercado internacional es creciente en su nivel de deuda, de tal manera que
𝑑 𝑝 𝑦⁄ = 𝑘 ∙ 𝑟/(2 + 𝑟); con 𝑘 > 0 y 𝑑 = −𝑏 . ¿Obtenga una expresión para el nivel
de equilibrio de la tasa de interés y el nivel de deuda externa como función del
parámetro 𝑘? ¿Qué valor toman si 𝑘 = 1? Explique y Grafique. (Ayuda: Asuma que el
hecho de enfrentar esta oferta de fondos creciente no modifica la demanda por crédito
en esta economía.)
d) Suponga que los países emergentes difieren en el valor de 𝑘. ¿Cómo piensa
usted que debiera variar ese parámetro entre países con diferente historial de pago?
¿Qué significa esto respecto de la cantidad de deuda a que accederán y las tasas de
interés a las que se pueden endeudar? Considere que dos países 𝐴 y 𝐵 se endeudan en
equilibrio a tasas 𝑟 = 20% y 𝑟 = 10%. ¿Qué podemos concluir del valor de 𝑘 en cada
país?, ¿Y de la probabilidad de default total implícita en estas tasas?
15
14.Uno de los puzles más discutidos en Macroeconomía Internacional es el
denominado puzle de Feldstein y Horioka, quienes mostraron que las tasas de ahorro e
inversión en los países correlacionan más de lo sugerido por un modelo simple de
cuenta corriente en economía abierta. Esto es, los déficits/superávits de cuenta
corriente son menores a los que uno esperaría dada las fluctuaciones del producto.
Muchas explicaciones se han dado para ello. Este ejercicio lo llevará a desarrollar una de
esas explicaciones, basada en la existencia de costos en el transporte de bienes entre
países.
Suponga una economía de dos periodos habitada por un individuo representativo cuya
función de utilidad está dada por 𝑊 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 , donde 𝛽 < 1 es el factor de
descuento y 𝑐 es el consumo en cada periodo. El producto en cada periodo es 𝑦 , para
𝑡 = 1,2. El precio internacional del único bien en el mundo está fijado en dólares en el
mercado internacional y es igual a 𝑝∗. Existe un costo de transporte 𝜏 > 1 pagado por el
país pequeño, de tal manera que para consumir una unidad importada se deben
comprar 𝜏 unidades del bien en el mercado internacional. De ellas, 𝜏 − 1 se derriten en
el camino y solo 1 llega a su destino. Así, el costo total en dólares es 𝜏 ∙ 𝑝∗.
Alternativamente, si exporto una unidad del bien mi ingreso neto de costos de
transporte es 𝑝∗ 𝜏⁄ .
De esta manera, el precio doméstico del bien dependerá de la dirección del comercio.
En particular
𝑝
= 𝑝∗ ∙ 𝜏 𝑠𝑖 𝑒𝑙 𝑝𝑎í𝑠 𝑖𝑚𝑝𝑜𝑟𝑡𝑎 𝑒𝑙 𝑏𝑖𝑒𝑛 (𝑐 > 𝑦 )
∈ {𝑝∗ 𝜏⁄ , 𝑝∗ ∙ 𝜏} 𝑠𝑖 𝑛𝑜 ℎ𝑎𝑦 𝑐𝑜𝑚𝑒𝑟𝑐𝑖𝑜 (𝑐 = 𝑦 )
= 𝑝∗ 𝜏⁄ 𝑠𝑖 𝑒𝑙 𝑝𝑎í𝑠 𝑒𝑥𝑝𝑜𝑟𝑡𝑎 𝑒𝑙 𝑏𝑖𝑒𝑛 (𝑐 < 𝑦 )
La economía tiene acceso al mercado financiero internacional a una tasa de interés fija
en dólares igual a 𝑟∗. Siguiendo con el ejemplo anterior, para consumir una unidad
importada debo endeudarme por 𝑝∗ ∙ 𝜏 dólares, por lo que al final del periodo se deberá
pagar 𝑝∗ ∙ 𝜏 ∙ (1 + 𝑟∗) dólares, lo que significará sacrificar 𝜏 ∙ (1 + 𝑟∗) unidades de
consumo.
a) Plantee las restricciones de flujo que enfrenta esta economía, y derive una expresión
para la restricción presupuestaria inter-temporal.
b) ¿Cuál es la tasa de interés real relevante para esta economía? Discuta la intuición.
c) Plantee el problema de maximización en esta economía suponiendo que 𝑦 = 0 y
que 𝑦 > 0, y resuelva para el déficit comercial del primer periodo. Suponga que 𝛽 ∙
(1 + 𝑟∗) = 1 ¿Cómo se compara su resultado con el de un problema idéntico pero
sin costos de transporte?, ¿Por qué?
d) Muestre que si 𝜏 > 𝑦 𝑦 > 𝜏⁄ , esta economía no tendrá comercio internacional.
En otras palabras, que para fluctuaciones acotadas del producto, la balanza comercial
óptima está equilibrada. ¿Por qué se da eso?
16
15. Considere una economía habitada por muchísimos individuos pequeños que
viven por dos períodos y tienen la siguiente función de Utilidad: 𝑊 = 𝑙𝑜𝑔𝑐 + 𝛽 ∙ 𝑙𝑜𝑔𝑐 ,
donde 𝛽 < 1 es el factor de descuento y 𝑐 es el consumo en cada periodo.
Las restricciones de flujo en cada período son 𝑐 = 𝑑 (esto es, en el primer
período no hay producción por lo que todo el consumo se refleja en el nivel de deuda
externa 𝑑 al final del período), y 𝑐 = 𝑦 − (1 + 𝑟 )𝑑 donde 𝑦 es el producto en el
período 2 y 𝑟 es la tasa de interés que efectivamente se endeudó el país.
Esta economía enfrenta un costo de financiamiento en el mercado externo que
depende crecientemente del nivel de deuda adquirido. Esto es: 𝑟 = 𝑟 + 𝑓(𝑑 ), con
𝑓(0) = 0 y 𝑓 (𝑑 ) > 0. Sabemos que 𝛽(1 + 𝑟) = 1.
a) Resuelva el problema de un planificador central benevolente que incorpora en su
decisión de consumo el efecto que la deuda adquirida pueda tener en el costo de
financiamiento.
b) Resuelva el problema de los consumidores que no incorporan en su decisión de
consumo el efecto sobre el costo financiero. Esto es equivalente a pensar que existen
muchísimos consumidores y que cada uno es suficientemente pequeño como para
tomar como dado el costo de financiamiento externo. Discuta la intuición y compare
con su resultado en a).
c) Considere una versión particular del modelo donde 𝑊 = 𝑐 + 𝛽𝑐 y 𝑓(𝑑 ) = 𝛼 ∙ 𝑑 .
Asuma en este caso que 𝛽(1 + 𝑟) < 1. Derive el nivel de deuda de equilibrio para el
planificador central en esta economía y en la solución descentralizada, así como los
respectivos niveles de la tasa de interés cobrados al país (𝑟 ). Discuta sus resultados.
17
16. Suponga una economía de dos períodos cuyo habitante representativo tiene la
siguiente función de utilidad: 𝑈 = 𝑙𝑛(𝑐 ) + 𝛽𝐸{𝑙𝑛(𝑐 )}, donde 𝛽 < 1, y 𝑐 es el
consumo en el periodo 𝑖 = 1,2 de un bien importado que no produce. Esta economía
está dotada de un bien 𝑦 que sólo exporta. La dotación del primer periodo es 𝑦 = 0 y la
del segundo periodo es 𝑦 . Los términos de intercambio 𝑝 , definidos como el precio
relativo del bien exportable respecto del bien importable son iguales a 1 (𝑝 = 1) en el
primer periodo, pero en el segundo periodo 𝑝 es una variable aleatoria.
f) Suponga que la economía tiene acceso al mercado internacional de bonos expresado
en términos del bien importable a una tasa de interés 𝑟 , donde los acreedores son
neutrales al riesgo y la tasa libre de riesgo es 𝑟. Obtenga la restricción de flujos de
cada periodo (o restricción presupuestaria de cada periodo) asumiendo que el stock
inicial de activos externos netos es igual a cero. Suponga que no existe compromiso
en el segundo periodo para pagar la deuda contraída en el primer periodo, y que en
caso de default el deudor no pagará los intereses ni el capital adeudado. Derive una
expresión que refleje la condición bajo la cual habrá default. ¿Qué rol juegan los
términos de intercambio en su resultado?
g) Derive una relación para la tasa de interés de 𝑟 como función del déficit de la cuenta
corriente en el primer periodo. Asuma que 𝑝 se distribuye uniforme en el intervalo
[1/2;3/2]. (Ayuda: Recuerde que si 𝑥~𝑈[𝑎; 𝑏], entonces Pr(𝑥 < 𝑧) = (𝑧 − 𝑎)/(𝑏 −
𝑎).)
h) Suponga ahora que el mercado de capitales transa activos denominados en el bien
exportable, y no en el bien importable. Así, la tasa de interés a la cuál puede
endeudarse este país es 𝑟 y está denominada en términos del bien exportable,
donde los acreedores son neutrales al riesgo y la tasa libre de riesgo es 𝑟. Responda
nuevamente a) y b). ¿Qué rol cumplen los términos de intercambio en la probabilidad
de default?, ¿Por qué?
i) En base a su respuesta en e), plantee el problema del consumidor representativo y
derive una expresión para el valor óptimo de 𝑐 como función de 𝑟 . Suponga que
(1 + 𝛽) ∙ ∅ > 1. ¿Qué significa esto para el nivel de equilibrio de la tasa de interés?,
¿Por qué podría ser conveniente para un país subir el nivel de castigo asociado al
default de su deuda?
18
17. Considere una economía de dos períodos, donde la función de utilidad del
agente representativo está dada por 𝑙𝑛𝐶 + 𝛽𝑙𝑛𝐶 , donde 𝐶 = 𝑐 𝑐 (𝑖 = 1,2) es un
agregado del bien transable y del bien no transable. La participación de cada bien en el
gasto es 𝛼 y 1 − 𝛼 respectivamente. La producción de los bienes es exógena, y está
dada por 𝑦 , 𝑦 , 𝑦 , 𝑒 𝑌 . Por último, este país tiene acceso al mercado financiero
internacional, cuyo instrumento de deuda/ahorro está denominado en términos del
bien transable y cuya tasa de interés es 𝑟 .
a) Escriba el problema de maximización del individuo representativo y derive las
condiciones de primer orden. Discuta la intuición.
b) Considere que 𝑦 = 𝑦 = 𝑦 y que 𝑦 = 𝑦 = 𝑦 , derive los niveles de equilibro
para el consumo del bien transable, del no transable, del tipo de cambio real, sus
trayectorias, y de la balanza comercial. Recuerde imponer la condición de equilibrio en
el mercado del bien no transable en cadaperíodo. Considere en esta pregunta y en las
siguientes que 𝛽(1 + 𝑟) = 1.
c) Considere ahora que se anuncia de manera anticipada un shock positivo en la
producción del bien no transable en el segundo período. Esto es, 𝑦 = 𝑦 mientras
que 𝑦 = 𝑦 (1 + 𝑔) > 𝑦 . La producción del bien transable sigue siendo 𝑦 en
ambos períodos. Derive los nuevos valores de equilibrio en las variables relevantes.
Discuta la intuición.
d) Considere ahora que se anuncia de manera anticipada un shock positivo en la
producción del bien transable en el segundo período. Esto es, 𝑦 = 𝑦 mientras que
𝑦 = 𝑦 (1 + 𝑔) > 𝑦 . La producción del no bien transable sigue siendo 𝑦 en ambos
períodos. Derive los nuevos valores de equilibrio en las variables relevantes. Discuta la
intuición.
e) Comente sobre las diferencias en sus respuestas en c) y d).
19
18. La función de utilidad del consumidor representativo en un país es
∫ 𝑙𝑛𝐶 ∙ 𝑒 𝑑𝑡 donde 𝐶 = 𝑐 ∙ 𝑛 es un compuesto de un transable 𝑐 y un bien no
transable 𝑛 y 𝛽 es la tasa de preferencia inter-temporal. La producción de ambos
bienes en cada período es exógena y constante en el tiempo, y es igual a 𝑦 para el bien
transable y 𝑥 para el bien no transable. Luego, la restricción presupuestaria inter-
temporal que enfrenta este individuo es ∫ (𝑦 + 𝑞 ∙ 𝑥)𝑒 𝑑𝑡 = ∫ (𝑐 + 𝑞 ∙
𝑛 )𝑒 𝑑𝑡 donde 𝑞 es el precio relativo del bien no transable expresado en términos
del bien transable, esto es, el inverso del tipo de cambio real y r es la tasas de interés
externa. (Suponemos que el stock de activos externos netos inicial es cero.)
a) Derive una expresión para la evolución del consumo agregado 𝐶 como función de 𝛽,
𝑟 y la evolución esperada del tipo de cambio real. ¿Cuál es la intuición? (Recuerde
que dadas las preferencias, un porcentaje 𝛼 del gasto se hace en el bien transable y
un porcentaje 1 − 𝛼 se hace en el bien no transable. Use en su derivación la siguiente
fórmula: 𝜕 ∫ 𝑓(𝑥 )𝑒 𝑑𝑡/𝜕𝑥 = 𝑓′(𝑥 )𝑒 .)
b) Derive una expresión para la evolución del consumo del bien transable 𝑐 como
función de 𝛽, 𝑟 y la evolución esperada del tipo de cambio real. ¿Cuál es la intuición?
¿En qué difiere su respuesta de (a)? ¿Por qué?
c) ¿Qué espera que suceda entonces con la evolución del gasto agregado, gasto en el
bien transable y no transable y el tipo de cambio real si un reforma aumenta de
manera permanente la tasa de crecimiento de la producción del bien no transable a
𝑥̇ 𝑥 = 𝛾 > 0⁄ ?
20
19. La crisis actual en Europa estuvo precedida de un periodo de intensa integración
económica a partir de fines de los 1990s. En los últimos años, los países de la periferia
experimentaron altos déficit en la cuenta corriente y acumulación de deuda externa.
Este ejercicio pretende entender distintas dimensiones de la trayectoria de algunas
economías de europea en los últimos años. Aunque cada pregunta aislada toca un
aspecto parcial del problema, y el modelo propuesto es limitado, en su conjunto la
pregunta permite hacerse una idea de diferentes dimensiones de la crisis. La pregunta
exige un desarrollo algebraico que no es complejo. Pero en caso que usted no pueda
completarlo, se tomarán en cuenta respuestas que desarrollen la intuición del
problema.
Considere una economía abierta con dos periodos. La función de utilidad del agente
representativo es 𝑈 = 𝑙𝑛𝐶 + 𝛽𝑙𝑛𝐶 , donde 𝐶 = 𝐶 ∙ 𝐶 . Esto significa que la
utilidad en cada periodo depende del consumo del bien transable 𝐶 y del bien no
transable 𝐶 . En cada periodo, una proporción 𝛼 = 1/2 del gasto se hace en el bien
transable, por lo que 𝑝 ∙ 𝐶 = 𝐶 , donde 𝑝 = 𝑝 /𝑝 es el precio relativo del bien
no transable expresado en términos del bien transable.
Este país tiene acceso al mercado financiero internacional a una tasa de interés 𝑟, donde
el endeudamiento (o ahorro) está expresado en términos del bien transable. De esta
manera, el problema de optimización intertemporal está dado por:
max
1
2
𝑙𝑛𝐶 +
1
2
𝑙𝑛𝐶 + 𝛽 ∙
1
2
𝑙𝑛𝐶 +
1
2
𝑙𝑛𝐶
sujeto a la siguiente restricción
(𝐶 + 𝑝 ∙ 𝐶 ) +
(𝐶 + 𝑝 ∙ 𝐶 )
1 + 𝑟
= (𝑦 + 𝑝 ∙ 𝑦 ) +
(𝑦 + 𝑝 ∙ 𝑦 )
1 + 𝑟
donde 𝑦 e 𝑦 se refieren a la producción en el periodo 𝑡 del bien transable y no
transable respectivamente.
a) Derive las condiciones de primer orden y discuta los determinantes de la trayectoria
del consumo del bien transable y no transable.
La producción se determina de acuerdo a las siguientes funciones: 𝑦 = 𝑎 ∙ 𝐿 e
𝑦 = 𝐿 . La condición de equilibrio en el mercado laboral asegura que 𝐿 + 𝐿 = 𝐿,
donde 𝐿 es el nivel total de empleo. A su vez, el equilibrio en el mercado del bien no
transable implica que, en cada periodo, 𝐶 = 𝑦 = 𝐿 .
b) Suponga que se produce el bien transable en ambos periodos. ¿Cuál es el salario en
esta economía?, ¿Cuál es el tipo de cambio real? ¿Cuál es el ingreso total en cada
periodo (𝑦 + 𝑝 ∙ 𝑦 )?
c) Suponga además que 𝛽(1 + 𝑟) = 1 y que 𝑎 es constante e igual a 𝑎 es ambos
periodos. Calcule el nivel y trayectoria del consumo de transables y no transables, la
21
balanza comercial el primer periodo, y el tamaño del sector transable y no transable
en cada periodo.
d) ¿Cómo cambia su respuesta en b) si esta economía tuviera un nivel mayor de
productividad en el sector transable? Esto es, si 𝑎 fuese mayor en ambos periodos.
En otras palabras, ¿cuál hubiese sido el efecto sobre las principales variables
macroeconómicas mencionadas en las preguntas b) y c) si la integración en Europa
hubiese significado un aumento instantáneo y permanente de la productividad del
sector transable en un país de la periferia?
e) Suponga ahora que se anticipa un aumento en 𝑎 pero sólo en el segundo periodo.
Esto es, respecto de su nivel en la pregunta a), 𝑎 = 𝑎 pero 𝑎 > 𝑎 . ¿Cómo
cambia su respuesta en b)? En otras palabras, ¿qué se hubiese observado en una
economía de la periferia de Europa a partir del 2000 si se hubiese esperado un
aumento futuro en la productividad en los transables?
f) Suponga ahora que la integración en Europa generó una caída en la tasa de interés
tal que 𝛽(1 + 𝑟) < 1. Resuelva y discuta detalladamente el efecto sobre las
principales variables macro del menor costo de financiamiento.
g) Suponga ahora que, a partir de su respuesta en c), una ley impone un nivel de salario
nominal en el primer periodo superior al coherente con la producción del bien
transable. En un contexto de tipo de cambio fijo (esto es, suponiendo que 𝑝 = 𝐸 ∙
𝑝∗ se mantiene constante), calcule el efecto sobre las principales variable macro de
esta política. ¿Por qué no es posible un equilibrio con pleno empleo en el primer
periodo?, ¿Qué rol cumple la depreciación del tipo de cambio real en el segundo
periodo?
h) Discuta intuitivamente porque una política de tipo de cambio flexible podría evitar el
desempleo en la pregunta g). En este caso, ¿Qué relevancia tendría la política de
inflar el salario nominal?
22
20. Considere que el nivel de precio doméstico en una economía está dado por P =
(p )α ∙ (p ) α, donde p es el precio del bien no transable y p es el precio del bien
transable. A su vez, el nivel de precio externo es P∗ = (p∗ )β ∙ (p∗) β. Se cumple que
0 < 𝛼 < 1, y 0 < 𝛽 < 1. El tipo de cambio real se define como RER = E ∙ P∗/P.
a) Muestre que si se cumple la ley de un solo precio para los bienes transables (𝑝 = 𝐸 ∙
𝑝∗) y 𝑝∗ /𝑝∗ es constante, las fluctuaciones en el tipo de cambio real pueden
expresarse fundamentalmente como fluctuaciones en 𝑝 /𝑝 .
b) Si el país extranjero es un país desarrollado, ¿qué sentido tiene el supuesto que
𝑝∗ /𝑝∗ es constante?
c) Algunos países en desarrollo tienden a mostrar persistentes apreciaciones en su tipo
de cambio real. ¿Qué podría explicar esto? Balassa-Samuelson es una manerade
explicar porque la Paridad del Poder de Compra no se cumple empíricamente.
Discuta.
23
21. Suponga una economía cuya demanda por saldos nominales está dada por la
siguiente función: 𝑀 = 𝑘 ⋅ 𝑃 ⋅ 𝑦 ⋅ 𝑒 , donde 𝑘 es una constante, 𝑃 es el nivel de
precios, 𝑦 es el producto real, 𝛽 es la semi-elasticidad de la demanda por dinero y
finalmente 𝑖 es la tasa de interés. En equilibrio, la tasa de interés es igual a 𝑖 = 𝑖∗ + 𝜀 +
𝜌, donde 𝜀 es la tasa esperada de depreciación y 𝜌 refleja el riesgo país.
a) Suponga que la inflación externa es cero, la tasa de interés real es cero y el producto
no crece. Además, el Banco Central tiene una política de tipo de cambio fijo (𝜀 = 0) y
una política de emisión de dinero a tasa de 5% por año. ¿Cuál es la tasa de inflación?,
¿Cuál es la tasa de interés doméstica en esta economía?
b) Las reservas internacionales hoy alcanzan a un 10% del PIB y los saldos monetarios
alcanzan un 20% del PIB. Asimismo, la semi-elasticidad de la demanda por dinero 𝛽
es igual a 0.05, lo que significa que un aumento en la tasa de interés de 1 punto
porcentual produce una caída de 5% en la demanda por dinero. ¿Cómo será la
trayectoria futura de las reservas internacionales, del tipo de cambio y de los saldos
reales de dinero?
c) Suponga que, al cabo de un año, de manera inesperada se produce un aumento en el
riesgo país 𝜌 de 5%. ¿Qué impacto espera sobre el equilibrio en el mercado
monetario?
24
22. Partiendo que una situación de equilibrio de largo plazo donde el Banco Central
tiene una política de tipo de cambio flexible y emite dinero a una tasa 𝜇 = 0:
a) Discuta el efecto de fijar el tipo de cambio en un nivel superior al vigente en el
momento 𝑡 = 0 asumiendo que la cuenta de capitales está cerrada. Refiérase a los
impactos de corto y largo plazo sobre las variables relevantes.
b) Compare sus resultados con el caso donde la cuenta de capitales es abierta.
c) ¿Cómo cambiaría su análisis si la tasa de emisión monetaria es 𝜇 > 0 antes, durante
y después del cambio en el régimen cambiario?
25
23. Suponga una economía cuya demanda por saldos monetarios nominales 𝐿 puede
caracterizarse con la siguiente función: 𝑙𝑜𝑔𝐿 = 𝑎 − 𝑖, donde 𝑎 > 0, e 𝑖 es la tasa de
interés nominal. Suponga que esta economía mantiene un tipo de cambio fijo, y que la
tasa de emisión monetaria es 5%.
a) Calcule el nivel de reservas internacionales en dólares que gatilla la crisis de balanza
de pagos. ¿Qué sucederá con la tasa de interés y el tipo de cambio nominal en ese
momento?
b) Suponga que algunos meses antes, cuando las reservas equivalen a un 7% de los
saldos monetarios, se produce un aumento inesperado del riesgo país de 3%. Discuta
el efecto sobre las reservas internacionales y sobre el momento óptimo de la corrida.
c) Describa la trayectoria del tipo de cambio nominal en su respuesta en b) bajo el
supuesto que los precios son flexibles. ¿Qué sucedería si los precios fueran rígidos?
26
24. Suponga una economía cuya demanda por saldos monetarios reales 𝐿 puede
caracterizarse con la siguiente función: 𝑙𝑜𝑔𝐿 = 𝑎 − 𝑖 + 𝑙𝑜𝑔𝑌, donde 𝑎 > 0, 𝑖 es la tasa
de interés nominal, e 𝑌 es el nivel de producto real. Suponga que el gobierno tiene un
déficit fiscal permanente que obliga al Banco Central a expandir la cantidad de dinero al
4% anual. Considere que no hay inflación internacional en dólares. Además, la economía
crece al 4% anual. Asuma precios flexibles.
a) Asuma que el tipo de cambio es flexible y en un momento 𝑡 = 0 cae la tasa de
crecimiento del producto al 0%, sin afectar el nivel de producto en ese momento.
¿Cuánto cambian 𝑖 y 𝐸 en el momento del shock? Grafique la trayectoria de 𝑀, 𝑃, 𝐸, 𝑖
(donde 𝐸 es el tipo de cambio nominal) antes y después del shock.
b) Ahora suponga que con tasa de crecimiento del producto igual a 0%, en un
momento posterior 𝑡 = 1 el gobierno decide fijar el tipo de cambio al valor 𝐸 = 𝐸 (i.e.,
el mismo valor que tenía con tipo de cambio flexible al momento de cambiar su política
cambiaria). En el instante anterior al anuncio, el saldo de reservas internacionales (𝑅) y
el stock de saldos monetarios nominales (𝑀) equivalen al 10% y al 50% del PIB nominal,
respectivamente. ¿Cuánto cambian 𝑀, 𝑃, 𝑅 cuando se fija el tipo de cambio? Grafique la
trayectoria de 𝑀, 𝑃, 𝐸, 𝑖, 𝑅. Explique y justifique.
c) Calcule el nivel de reservas internacionales, como porcentaje de los saldos
monetarios, en el momento de la crisis de balanza de pagos. ¿Qué sucederá con
𝑀, 𝑃, 𝐸, 𝑖, 𝑅 en ese momento? ¿Cómo será la trayectoria posterior de estas variables?
Grafique las trayectorias, explique y justifique. Asuma que el Banco Central mantiene el
tipo de cambio fijo hasta agotar las reservas internacionales.
d) Suponga que algunos meses antes de ocurrir la crisis, cuando las reservas
equivalen a un 6% de los saldos monetarios, se produce un aumento inesperado del
riesgo país de 3%. Discuta el efecto sobre las reservas internacionales y sobre el
momento óptimo de la corrida. Describa la trayectoria del tipo de cambio nominal en su
respuesta, bajo el supuesto que los precios son flexibles. ¿Qué sucedería si los precios
fueran rígidos?
27
25. Considere una empresa que cuyo balance a fines del primer año tiene un activo
de 𝐴 , un pasivo por 𝐷 y un patrimonio residual de 𝑊 , donde 𝑊 = 𝐴 − 𝐷 .
Cualquier variación acotada en 𝐴 es íntegramente absorbida por 𝑊 . La función de
producción para el segundo periodo es 𝑌 = 𝐴 ∙ 𝑋 (con 𝛼 < 1), donde 𝐴 es un
parámetro de productividad y 𝑋 es un insumo. Para contratar el insumo la empresa
recurre a 𝑊 y a deuda 𝐿 que puede contratar a un costo financiero de 𝑟.
a) Plantee el problema de optimización de esta empresa para el periodo 2, y obtenga un
valor para la producción y el nivel de deuda. (No es necesario obtener una forma
reducida sino una expresión que establezca el nivel óptimo de producción y
endeudamiento).
b) Suponga que esta empresa enfrenta una restricción de endeudamiento tal que 𝐿 ≤
𝑊 . ¿Cuándo será restrictiva esta condición? Si así lo fuera, calcule el nivel de deuda
contratado y el nivel de producción en el segundo periodo.
c) ¿Cómo afecta al nivel óptimo de deuda contratado una caída de $1 en el valor de los
activos 𝐴 . Compare la situación de una empresa restringida financieramente y otra
que no lo está, y suponga que 𝐴 = 2𝑊 .
d) ¿Cómo se afecta la actividad en el segundo periodo con una caída de 10% en el valor
de los activos del primer periodo 𝐴 ? Compare su respuesta en el caso en que la
restricción de financiamiento está activa y el caso en que no lo está.
e) Calcule el impacto en la actividad del segundo periodo de una caída de 10% en la
productividad del segundo periodo 𝐴 . Compare su respuesta en el caso en que la
restricción de financiamiento está activa y el caso en que no lo está.
f) Finalmente, suponga que el valor de los activos a fines del primer periodo 𝐴 se
mueve 1 a 1 con la productividad en el primer periodo (como si el nivel de
producción fuese 𝑦 = 𝐴 ). Calcule el efecto sobre la producción en el periodo 2 de
un shock permanente en la productividad de 10%; esto es, 𝑑𝑙𝑛𝐴 = 𝑑𝑙𝑛𝐴 = −10%.
¿Para qué valor de 𝛼 el efecto en ambos escenarios es idéntico?
28
26. Considere un país donde las empresas pueden elegir entre dos proyectos: uno
bueno denominado 𝐵 y uno malo denominado M. El proyecto bueno es tal que tiene
una probabilidad de éxito 𝜋 y el pago total final (capital más tasa de retorno) es 𝐵
después de haber invertido 1. En caso de no resultar, el pago final es 0. El proyectomalo, en cambio, tiene una probabilidad 𝜋 de ser exitoso, en cuyo caso paga una suma
total de M. Si no es exitoso, el pago final es 0. Se da el caso que 𝜋 > 𝜋 y que 𝑀 >
𝐵 > 1, cumpliéndose que 𝜋 ∙ 𝐵 > 1 > 𝜋 ∙ 𝑀. Esto significa que el proyecto malo es
uno con baja probabilidad de éxito, aunque si tiene éxito su retorno es alto. Lo opuesto
pasa con el proyecto bueno. Suponemos que la tasa libre de riesgo es 0, por lo que el
proyecto bueno tiene un valor presente neto esperado positivo (descontado a la tasa
libre de riesgo) e igual a 𝜋 ∙ 𝐵 − 1. Lo opuesto sucede con el proyecto malo.
Existe un banco – que se financia a la tasa libre de riesgo – que está disponible para
prestar a esta empresa. El banco, después de pagar un costo C, puede monitorear al
cliente y obligarlo a hacer el buen proyecto con su préstamo. El banco opera en
competencia perfecta por lo que, en equilibrio, obtendrá una utilidad esperada sobre
normal igual a cero. Así, el banco – que es neutral al riesgo - estará dispuesto a prestar a
la empresa si 𝜋 ∙ 𝑅 = 1 + 𝐶, donde 𝑅 es el pago (capital más intereses) que recibirá
el banco en caso de ser exitoso el proyecto. Dado que el banco puede inducir a la
empresa a hacer el proyecto B cuya probabilidad de éxito es 𝜋 , el retorno esperado es
𝜋 ∙ 𝑅 , ya que en caso de no ser exitoso el proyecto pagará cero.
a) Muestre que el equilibrio el banco le prestará a todas las empresas que tengan
proyectos buenos cuya probabilidad de éxito sea superior a (1 + 𝐶) 𝐵⁄ .
b) Suponga ahora que aparece la posibilidad de financiarse directamente en el mercado
de capitales, donde no existe la posibilidad de monitorear e imponer el desarrollo del
buen proyecto. En este caso la empresa puede endeudarse a una tasa 𝑅 . El
elemento crucial en este caso es que la decisión de qué tecnología usar dependerá de
costo de financiamiento. En efecto, la empresa usará la tecnología buena si la utilidad
esperada de usarla supera a la de usar la tecnología mala. Analíticamente, 𝜋 ∙
(𝐵 − 𝑅 ) > 𝜋 ∙ (𝑀 − 𝑅 ). Esto determina un nivel de 𝑅 = 𝑅 bajo el cual la
empresa preferirá hacer el buen proyecto. Obtenga un valor para este nivel y discuta
la intuición.
c) Para el acreedor, y en un contexto de competencia, la tasa cobrada será tal que el
retorno esperado es igual al costo de oportunidad: 𝜋(𝑅 ) ∙ 𝑅 = 1, donde 𝜋(𝑅 ) =
𝜋 si 𝑅 es suficientemente bajo (𝑅 ≤ 𝑅), y es igual a 𝜋 si 𝑅 es suficientemente
alto (𝑅 > 𝑅). Muestre que si 𝜋 > 1 𝑅⁄ la empresa podrá acudir al mercado de
capitales.
d) Suponga que se cumple que 1 𝑅 > (1 + 𝐶) 𝐵⁄⁄ . Muestre que las empresas con
mejores proyectos (mayor 𝜋 ) se financiarán en el mercado de capitales mientras
que aquellas con proyectos de calidad mediana se financiarán en los bancos.
¿quiénes pagan menores tasas de interés por sus deudas?, ¿Por qué?
29
e) Estos resultados tienen implicancias importantes sobre las causas de las
desbancarización en algunas economías y de la competencia en los bancos por
encontrar proyectos suficientemente atractivos. Discuta en base a su lectura del libro
“La Pregunta de la Reina” el rol que pudo haber tenido el desarrollo del mercado de
capitales y de intermediarios financieros no bancarios en la gestación de la crisis
financiera comenzada el 2007.
30
27. Suponga una economía con 2 tipos de productores de frutas (bien no durable).
Ambos usan el único activo productivo 𝑘 (tierra) para producir. La oferta agregada de
tierra está fija y es igual a 𝐾. Los productores tipo A usan una función de producción
donde 𝑘 unidades de tierra en el año 𝑡 producen 𝑎𝑘 unidades de fruta en 𝑡 + 1. Estos
productores están sujetos a la siguiente restricción de flujos: 𝑞 𝑘 − 𝑏 = 𝑎𝑘 +
𝑞 𝑘 − 𝑅𝑏 , donde 𝑞 es el precio de la tierra (expresado en términos de frutas) el
año 𝑡, 𝑅 es igual a uno más la tasa de interés real, 𝑏 es el stock de deuda que la
empresa tiene a comienzo del periodo 𝑡, mientras que 𝑏 es el nivel de deuda que
adquiere en el periodo 𝑡. Estos productores enfrentan la siguiente restricción de
financiamiento: 𝑅𝑏 ≤ 𝑞 𝑘 . Suponemos que estos productores siempre quisieran
expandir su producción al máximo, por lo que esta restricción se cumple siempre con
igualdad.
a) Explique intuitivamente la restricción de flujos y la restricción de financiamiento.
b) Combine ambas ecuaciones y derive la siguiente condición
𝑘 =
1
𝑞 −
𝑞
𝑅
∙ [(𝑎 + 𝑞 )𝑘 − 𝑅𝑏 ]
c) Interprete esta condición. ¿Qué rol cumple el término en el paréntesis corchete, y
discuta por qué el término (q − q R⁄ ) se puede interpretar como el pie necesario
que un productor de frutas tipo A debe pagar por cada unidad de tierra que compra?
¿Por qué es ∂k ∂a > 0⁄ ?
d) ¿Cuál el efecto de un aumento en q transitorio/permanente sobre la compra de
tierra por parte de estos productores? Discuta las fuerzas que operan.
Suponga que los productores tipo B tienen una tecnología con retornos decrecientes a
escala, tal que 𝑘 unidades de tierra en el año 𝑡 producen 𝑘 unidades de fruta en 𝑡 + 1,
con 𝛼 < 1. Estos productores no enfrentan una restricción de financiamiento, y
compran tierra para maximizar el valor presente de su flujo neto de frutas, descontado
por el factor 𝑅. El equilibrio en el mercado de tierra implica que 𝑘 + 𝑘 = 𝐾.
e) Plantee el problema de optimización de estos productores, y muestre que la
condición de equilibrio implica que q − q = α(K − k )
f) Manteniendo q constante, discute el impacto en el precio de la tierra hoy de un
aumento en k .
Juntemos ahora las distintas partes del problema para entender el efecto amplificador
de un aumento transitorio en la productividad en el sector 𝐴.
g) Discuta el impacto de un aumento en el parámetro a en el año t sobre la demanda
por tierra de los productores tipo A.
h) ¿Cómo afecta esto al precio de la tierra, y cómo se produce la amplificación del
shock? (Suponga que el impacto de un aumento en el precio sobre la riqueza del
productor domina el efecto de menor demanda debido al mayor precio, por lo que
𝜕𝑘 𝜕𝑞 > 0⁄ .) ¿Por qué los efectos del shock persisten en el tiempo aun cuando el
aumento en productividad haya sido transitorio?
31
28. De acuerdo al modelo de Diamond-Dybvig, existen tres momentos del
tiempo: en 𝑡 = 0 el consumidor ahorra 1 unidad del bien, y el consumo será en 𝑡 = 1
con probabilidad 𝜆 y en 𝑡 = 2 con probabilidad (1 − 𝜆). En el momento de la decisión
de ahorro, el consumidor no conoce su necesidad, la que será revelada en 𝑡 = 1. La
función de utilidad del consumidor es 𝑈(𝑐) = −1 𝑐⁄ .
El consumidor tiene disponibles tres activos, denominados 𝐴 = (1,1), 𝐵 = (1, 𝑅), y 𝐶 =
(1 2⁄ , 𝛼𝑅), donde 𝛼 > 1 y 𝑅 > 1. Las combinaciones (𝑥, 𝑦) se refieren al pago que el
activo tendrá en el periodo 1 o en el periodo 2, dependiendo de cuando el consumidor
decida exigir sus fondos.
a) Deriva la condición bajo la cual el proyecto B será preferido a C.
b) Suponga que 𝜆 es igual a 1 (1 + 2𝑅)⁄ . ¿Cuál es el nivel de 𝛼 que asegura que el
proyecto B es preferido al proyecto C? Discuta la intuición. De aquí en adelante,
suponga que esa condición se cumple.
c) Suponga ahora que aparece un banco que quiere invertir en el proyecto C que
promueve un mayor crecimiento de la economía. Para ello, debe captar depósitos
en condiciones atractivas para los consumidores. Plantee el problema de
maximización del banco, y derive el set de pagos (𝑑 , 𝑑 ) que es coherente con el
proyecto C y que maximiza la utilidad esperada de los consumidores.
d) Para 𝜆 = 1 (1 + 2𝑅⁄ ), derive la condición que hace viable al banco en el sentido de
ofrecer a los ahorrantes un esquema de pagos que entrega una utilidad esperada
superior a la de cualquier proyecto financiado directamente por los consumidores.
e) Suponiendo que 𝑅 = 2 (y por lo tanto que 𝜆 = 1 5⁄ ), muestre que parael 𝛼 crítico
encontrado en b), el banco es viable. Encuentre algún 𝛼 menor que el encontrado
en b) tal que los consumidores no querrían financiar el proyecto ilíquido C de
manera directa, pero si lo harán a través del banco.
f) Discuta la siguiente aseveración: “Mientras mayor sea 𝑅 (satisfaciendo la condición
𝜆 = 1 (1 + 2𝑅⁄ )), más amplio es el set de valores de 𝛼 que hace viable la existencia
de un banco que financia el proyecto C y que aumenta el crecimiento de la
economía.” Sea claro en su intuición.
32
29. Suponga una economía de dos períodos con un solo bien de consumo. La función
de utilidad del individuo representativo es 𝑈 = 𝑈(𝑐 ) + 𝛽𝑈(𝑐 ). El individuo tiene una
unidad de tierra, que produce 𝑦 unidades de producto en 𝑡 = 1 e 𝑦 unidades el
segundo periodo. A su vez, el individuo tiene acceso al mercado financiero internacional
a una tasa 𝑟, o también puede decidir arrendar parte de su tierra a otro habitante del
país. (Nota: Por supuesto, como todos los individuos son iguales, en equilibrio no habrá
intercambio de tierra. Pero esta es una condición de equilibrio que no debe ser incluida
en el planteamiento del problema sino impuesta al final de este.)
De esta manera, el individuo debe decidir cuánto consume en cada periodo, su nivel de
deuda a fines del primer periodo, y la cantidad de tierra que arrienda (1 − 𝑙 ), siendo 𝑙
la cantidad de tierra con que queda para el segundo periodo. El retorno del arriendo de
tierra es 𝑝.
a) La restricción de flujos el primer periodo es c = y + d + (1 − l ) ∙ p, y la restricción
de flujo del segundo periodo es c = y ∙ l − d(1 + r). Explique cada una de estas
expresiones.
b) Plantee el problema de optimización del individuo representativo, y obtenga las
condiciones de primer orden. Suponga β(1 + r) = 1. ¿Cuál es el nivel de consumo en
cada periodo en equilibrio?, ¿Cuál es el nivel de deuda óptima el primer periodo?, ¿Cuál
es el precio de equilibrio de arriendo de la tierra? Discuta la intuición.
c) ¿Cómo afecta a c y d una caída en y ?
d) Suponga ahora que existe una restricción financiera con el exterior, de tal manera
que el nivel de deuda no puede superar un porcentaje del valor de la tierra. Esto es, d ≤
ϕ ∙ p. ¿Bajo qué condiciones será restrictiva esta condición?
e) Refiérase al valor de la tierra en el equilibrio restringido. ¿Cómo diferirá de lo
obtenido en b)? Discuta la intuición.
f) Plantee el problema de optimización bajo restricción, y obtenga una expresión para
el precio de la tierra en equilibrio que soporte su resultado en e).
g) Refiérase al impacto de una caída en y sobre c y d en un contexto donde la
restricción de financiamiento es relevante. ¿De dónde proviene el mecanismo
amplificador de los ciclos?
33
30. Considere un modelo de dos periodos donde la producción del bien 𝑋 está dada
por la siguiente función: 𝑎 ∙ 𝑓(𝑘 ). En el periodo 1, la empresa arrastra una deuda
anterior cuyo pago en el primer periodo corresponde a (1 + 𝑟 )𝑑 , y el stock de capital
es 𝑘 . De esta manera, dependiendo del nivel que alcance la productividad en el primer
periodo 𝑎 , la empresa podrá continuar operando. En particular, suponga que la
empresa seguirá produciendo si 𝑛 = 𝑎 ∙ 𝑓(𝑘 ) − (1 + 𝑟 )𝑑 > 0. De otra manera, el
banco acreedor enfrentará una pérdida equivalente a 𝑛 .
Una vez conocido 𝑛 , la empresa debe decidir cuanto invierte para el segundo periodo
(asuma que la depreciación del capital es 100%), asumiendo que la productividad será
𝑎 y enfrentando una tasa de interés igual a 𝑟 .
a) Plantee el problema de optimización de este productor, y derive una expresión
de equilibrio para la actividad económica en el segundo periodo.
b) Suponga ahora que existe una restricción a la deuda máxima que puede
contratar esta empresa el periodo 1 y que es equivalente a 𝛼 ∙ 𝑛 . ¿Bajo qué condición
esta economía alcanzará su producción óptima?
c) Compare el efecto sobre la producción en el segundo periodo de un shock
negativo en la productividad en el primer periodo (caída en 𝑎 ) o de una caída en la
productividad en el segundo periodo (caída en 𝑎 ). ¿En qué caso se ve más perjudicada
la actividad económica en el segundo periodo?, ¿Por qué?
d) Suponga que el modelo anterior solo representa al sector 𝑋 de la economía, y
que el resto de la economía, representada por un sector 𝑌, también depende del crédito
bancario. Suponga que el único banco acreedor debe mantener en todo momento una
relación préstamos/patrimonio de 10 veces. ¿Cómo se verá afectada la actividad
económica en el sector 𝑌 con un shock negativo a 𝑎 ?
e) El gobierno le pide su opinión sobre distintas políticas para evitar un efecto
mayor de la caída en 𝑎 sobre el resto de la economía. En particular, suponga que el
gobierno tiene un monto a gastar equivalente a 𝐾, y que las opciones disponibles son:
(i) apoyar con recursos para que los productores de 𝑌 puedan pagar su deuda, (ii)
otorgar garantías a los productores del bien 𝑋 para endeudarse, y (iii) capitalizar los
bancos.
f) A la luz de su lectura del libro La Pregunta de la Reina (Claro y Gredig, 2010,
Pearson), presente escuetamente (máximo dos planas, con ¡buena letra!) los principales
mecanismos usados por la Reserva Federal y el gobierno de Estados Unidos para evitar
que la crisis inmobiliaria en ese país generara un impacto mayor sobre el resto de la
economía. Usa alguno de los modelos vistos durante el curso para guiar su respuesta.