Logo Passei Direto
Buscar

Álgebra

Outros
11. Mostrar que se p1 e p2 são primos tais que p2 = p1 + 2 e p1 > 3, então p1 + p2 ≡ 0 (mod 12). Vejamos que, dividindo um número por, obtemos números da forma 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4 e 6k + 5. Notemos, também, que 6k, 6k + 2, 6k + 3 e 6k + 4 não são primos. Dessa forma, os números primos são da forma 6k + 1 ou 6k + 5. Como p1 > 3, então p1  5, ou seja, p2  7. Então: Se p1 = 6k + 5, então p2 = 6k + 7, ou seja, p1 + p2 = 12k + 12 = 12(k + 1). Então, p1 + p2 ≡ 0 (mod 12). Se p2 = 6k + 1, então p1 = 6k  1, ou seja, p1 + p2 = 12k. Então, p1 + p2 ≡ 0 (mod 12). ∎ Observação: Notemos que: Se p1 = 6k + 1, então p2 = 6k + 3 (Absurdo, pois p2 é primo). Se p2 = 6k + 5, então p1 = 6k + 3 (Absurdo, pois p1 é primo).

User badge image
Questões para Estudantes

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

A demonstração apresentada mostra que se p1 e p2 são primos tais que p2 = p1 + 2 e p1 > 3, então p1 + p2 ≡ 0 (mod 12). Analisando a explicação fornecida, podemos concluir que a demonstração está correta e bem fundamentada. Ela mostra que, devido às propriedades dos números primos e à forma como são distribuídos na sequência dos números naturais, quando p1 e p2 atendem às condições estabelecidas, a soma p1 + p2 é congruente a 0 (mod 12). Portanto, a resposta correta é que p1 + p2 ≡ 0 (mod 12).

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina