Ed
há 2 meses
Para calcular o produto escalar entre os vetores \( A \) e \( B \), precisamos primeiro identificar as componentes de cada vetor. Dado: - \( A = 2\hat{i} + 3\hat{j} \) - \( B = \hat{i} + \hat{j} \) O produto escalar \( A \cdot B \) é dado pela fórmula: \[ A \cdot B = A_x \cdot B_x + A_y \cdot B_y \] onde \( A_x \) e \( A_y \) são as componentes de \( A \), e \( B_x \) e \( B_y \) são as componentes de \( B \). Substituindo as componentes: - \( A_x = 2 \), \( A_y = 3 \) - \( B_x = 1 \), \( B_y = 1 \) Agora, calculamos o produto escalar: \[ A \cdot B = (2)(1) + (3)(1) = 2 + 3 = 5 \] Portanto, a resposta correta é: d) 5.
Mais perguntas desse material