Logo Passei Direto
Buscar
ma barra metálica, com seção transversal retangular com dimensões 5 cm x 10 cm e comprimento 2,0 m, é tracionada axialmente. Sabendo que a tensão axial e o alongamento admissíveis no projeto dessa barra valem, respectivamente, 400 MPa e 2 mm, e admitindo módulo de Young para o material de 200 GPa, a máxima carga admissível nessa barra é de: Escolha uma opção: a. 500 kN. b. 250 kN. c. 2000 kN. d. 1000 kN. e. 3000 kN.
User badge image
Bruno Barcellos

ontem

Respostas

User badge image

Ed Verified user icon

ontem

Para determinar a máxima carga admissível na barra metálica, precisamos usar a fórmula da tensão axial: \[ \sigma = \frac{F}{A} \] onde: - \(\sigma\) é a tensão (em Pa), - \(F\) é a força (em N), - \(A\) é a área da seção transversal (em m²). Primeiro, vamos calcular a área da seção transversal da barra. As dimensões são 5 cm e 10 cm, que precisamos converter para metros: - 5 cm = 0,05 m - 10 cm = 0,10 m Agora, calculamos a área \(A\): \[ A = 0,05 \, \text{m} \times 0,10 \, \text{m} = 0,005 \, \text{m}^2 \] Agora, sabemos que a tensão admissível é de 400 MPa, que é igual a \(400 \times 10^6 \, \text{Pa}\). Usando a fórmula da tensão, podemos rearranjar para encontrar a força \(F\): \[ F = \sigma \times A \] Substituindo os valores: \[ F = 400 \times 10^6 \, \text{Pa} \times 0,005 \, \text{m}^2 \] \[ F = 2.000.000 \, \text{N} = 2000 \, \text{kN} \] Portanto, a máxima carga admissível na barra é de 2000 kN. A alternativa correta é: c) 2000 kN.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais conteúdos dessa disciplina