A maior rede de estudos do Brasil

Questão de vetores

Num paralelogramo ABCD, sabe-se que A(1 ; 3 ;-2) e que as diagonais são dadas pelos vetores AC=(4 ; 2 ;-3) e BD = (-2 ;0;1) . Determine as coordenadas dos outros três vertices.


1 resposta(s) - Contém resposta de Especialista

User badge image

RD Resoluções Verified user icon

Há mais de um mês

sabemos que \(A=(1,3,-2)\) e como \(\overrightarrow{AC}=C-A=(4,2,-3)\), sendo:

\(C=(x,y,z)\), temos que:

\((4,2,-3)=C-(1,3,-2)\), logo: \(C=(5,5,-5)\).

Agora seja: \(\overrightarrow{AD}=\overrightarrow{BC}\), onde \(B=(x_1,y_1,z_1)\) e \(D=(x_2,y_2,z_2)\), logo podemos escrever:

\(D-A=C-B\), o que implica que:

\((x_2-1,y_2-3,z_2+2)=(5-x_1,5-y_1,-5-z_1)\)

Daí obtemos que:

\(x_2-1=5-x_1\)\(y_2-3=5-y_1\) e \(z_2+2=-5-z_1\).

Mas por outro lado, também sabemos que \(\overrightarrow{BD}=(-2,0,1)\), isto é:

\((-2,0,1)=(x_2-x_1,y_2-y_1,z_2-z_1)\), assim temos que:

\(-2=x_2-x_1\)\(0=y_2-y_1\) e \(1=z_2-z_1\)

Portanto, temos que \(x_2-1=5-x_1\) e \(-2=x_2-x_1\), o que implica que:\(x_1=4\) e \(x_2=2\).

 \(y_2-3=5-y_1\)  e \(0=y_2-y_1\) , o que implica que: :\(y_1=4\) e \(y_2=4\)

 \(z_2+2=-5-z_1\) e \(1=z_2-z_1\) , o que implica que: \(z_1=-4\) e \(z_2=-3\)

Assim podemos conlcuir que: 

\(B=(4,4,-4)\) e \(D=(2,4,-3)\)

sabemos que \(A=(1,3,-2)\) e como \(\overrightarrow{AC}=C-A=(4,2,-3)\), sendo:

\(C=(x,y,z)\), temos que:

\((4,2,-3)=C-(1,3,-2)\), logo: \(C=(5,5,-5)\).

Agora seja: \(\overrightarrow{AD}=\overrightarrow{BC}\), onde \(B=(x_1,y_1,z_1)\) e \(D=(x_2,y_2,z_2)\), logo podemos escrever:

\(D-A=C-B\), o que implica que:

\((x_2-1,y_2-3,z_2+2)=(5-x_1,5-y_1,-5-z_1)\)

Daí obtemos que:

\(x_2-1=5-x_1\)\(y_2-3=5-y_1\) e \(z_2+2=-5-z_1\).

Mas por outro lado, também sabemos que \(\overrightarrow{BD}=(-2,0,1)\), isto é:

\((-2,0,1)=(x_2-x_1,y_2-y_1,z_2-z_1)\), assim temos que:

\(-2=x_2-x_1\)\(0=y_2-y_1\) e \(1=z_2-z_1\)

Portanto, temos que \(x_2-1=5-x_1\) e \(-2=x_2-x_1\), o que implica que:\(x_1=4\) e \(x_2=2\).

 \(y_2-3=5-y_1\)  e \(0=y_2-y_1\) , o que implica que: :\(y_1=4\) e \(y_2=4\)

 \(z_2+2=-5-z_1\) e \(1=z_2-z_1\) , o que implica que: \(z_1=-4\) e \(z_2=-3\)

Assim podemos conlcuir que: 

\(B=(4,4,-4)\) e \(D=(2,4,-3)\)

User badge image

Deyvisson Ribeiro

Há mais de um mês

B=(4,2,-3); C=(-2,0,1); D=(1,-1,0). Feito utilizando o programa Geogebra.

Essa pergunta já foi respondida!