A maior rede de estudos do Brasil

Alguém faz o passo-a-passo dessa questão? Fiz de duas formas e não encontrei o valor que iguala-se a resposta correta (7,5 x10^4 Pa na Pres mais alta)

Um cano de água entra em uma casa 2,0 m abaixo do nível do solo. Um cano de menor diâmetro leva água a uma torneira situada no segundo andar, 5,0 acima do solo. A velocidade da água é 2,0 m/s no cano principal e 7,0 m/s no segundo andar. Tome a massa específica da água como sendo 1,0 × 10kg/m3. Se a diferença de pressão no cano principal é 2,0 × 10Pa, a pressão no segundo andar é:

Física IIIESAM

1 resposta(s) - Contém resposta de Especialista

User badge image

RD Resoluções Verified user icon

Há mais de um mês

Para resolver este exercício devemos utilizar a equação de Bernoulli, que é uma equação muito conhecida quando falamos de cálculo de pressões entre duas superfícies separadas por uma determinada altura. Nesse caso, como estamos falando de uma diferença de altura entre dois canos, é pertinente usarmos essa equação para esse tipo de sistuação. Sabendo disso, abaixo podemos ver como é definida a equação de Bernoulli:

\(\begin{align} & {{P}_{1}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}={{P}_{2}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ & \frac{{{P}_{1}}}{{{l}_{1}}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}=\frac{{{P}_{2}}}{{{l}_{2}}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ \end{align} \)

Agora que conhecemos a equação de Beronoulli, calcularemos a pressão do tubo no segundo andar e para isso realizaremos os cálculos abaixo:

\(\begin{align} & \frac{{{P}_{1}}}{{{l}_{1}}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}=\frac{{{P}_{2}}}{{{l}_{2}}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ & \frac{200000}{2}+0+\frac{1000{{(2)}^{2}}}{2}=\frac{{{P}_{2}}}{10}+1000\cdot 10\cdot 7+\frac{1000\cdot {{7}^{2}}}{2} \\ & \frac{200000}{2}+2000=\frac{{{P}_{2}}}{2}+70000+24500 \\ & {{P}_{2}}=75000Pa \\ \end{align} \)

Portanto, a pressão no tubo do segundo andar será de \(\boxed{{\text{P = 75000 Pa}}}\).

Para resolver este exercício devemos utilizar a equação de Bernoulli, que é uma equação muito conhecida quando falamos de cálculo de pressões entre duas superfícies separadas por uma determinada altura. Nesse caso, como estamos falando de uma diferença de altura entre dois canos, é pertinente usarmos essa equação para esse tipo de sistuação. Sabendo disso, abaixo podemos ver como é definida a equação de Bernoulli:

\(\begin{align} & {{P}_{1}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}={{P}_{2}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ & \frac{{{P}_{1}}}{{{l}_{1}}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}=\frac{{{P}_{2}}}{{{l}_{2}}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ \end{align} \)

Agora que conhecemos a equação de Beronoulli, calcularemos a pressão do tubo no segundo andar e para isso realizaremos os cálculos abaixo:

\(\begin{align} & \frac{{{P}_{1}}}{{{l}_{1}}}+dg{{h}_{1}}+\frac{d{{({{v}_{1}})}^{2}}}{2}=\frac{{{P}_{2}}}{{{l}_{2}}}+dg{{h}_{2}}+\frac{d{{({{v}_{2}})}^{2}}}{2} \\ & \frac{200000}{2}+0+\frac{1000{{(2)}^{2}}}{2}=\frac{{{P}_{2}}}{10}+1000\cdot 10\cdot 7+\frac{1000\cdot {{7}^{2}}}{2} \\ & \frac{200000}{2}+2000=\frac{{{P}_{2}}}{2}+70000+24500 \\ & {{P}_{2}}=75000Pa \\ \end{align} \)

Portanto, a pressão no tubo do segundo andar será de \(\boxed{{\text{P = 75000 Pa}}}\).

Essa pergunta já foi respondida por um dos nossos especialistas