A maior rede de estudos do Brasil

Matematica Financeira

Ana Vitória quitou um empréstimo pagando o valor descontado comercial de R$ 7.840,00, com 6 meses de antecedência a uma taxa de desconto de 18% a.a. Determine qual era o valor nominal do título e a taxa de juros efetiva do desconto comercial, respectivamente.
 
Elaborado pelo autor, 2018.
Matemática FinanceiraUNICESUMAR EAD

2 resposta(s) - Contém resposta de Especialista

User badge image

Profª. Thayná Leal Verified user icon

Há mais de um mês

Para encontrarmos o valor nominal do título, utilizaremos a fórmula de desconto comercial:

VP = VF . [1 - (i . n)]

Como o período é de 6 meses, podemos considerar a taxa de 9% ao semestre.

Daí,

VP = VF . [1 - (i . n)]

7840 = VF . [1 - (9%)]

7840 = VF . [0,91]

VF = 8615,38

Para descobrir a taxa de juros efetiva, usaremos a fórmula:

ie = ia/[1 - (ia . n)]

Onde,

ie = taxa efetiva

ia = taxa atual - 18% ao ano. Podemos dizer que é 18%/12 = 1,5% ao mês.

ie = ia/[1 - (ia . n)]

ie = 0,015/[1 - (0,015 . 6)]

ie = 0,015/0,91

ie = 1,648% ao mês. 

 

 

Para encontrarmos o valor nominal do título, utilizaremos a fórmula de desconto comercial:

VP = VF . [1 - (i . n)]

Como o período é de 6 meses, podemos considerar a taxa de 9% ao semestre.

Daí,

VP = VF . [1 - (i . n)]

7840 = VF . [1 - (9%)]

7840 = VF . [0,91]

VF = 8615,38

Para descobrir a taxa de juros efetiva, usaremos a fórmula:

ie = ia/[1 - (ia . n)]

Onde,

ie = taxa efetiva

ia = taxa atual - 18% ao ano. Podemos dizer que é 18%/12 = 1,5% ao mês.

ie = ia/[1 - (ia . n)]

ie = 0,015/[1 - (0,015 . 6)]

ie = 0,015/0,91

ie = 1,648% ao mês. 

 

 

User badge image

Juliano

Há mais de um mês

boa noite....

segue abaixo a resolução

6/12= 0,50 

7.840,00 x 0,50 x 0.18 = 705,60

valor do titulo sem o desconto de antecedencia é = 7.840,00 + 705,60 = 8.545,60

 

Essa pergunta já foi respondida por um dos nossos especialistas