Logo Studenta

tema3

¡Estudia con miles de materiales!

Vista previa del material en texto

Función logarítmica 
Función logarítmica y su representación 
Si 𝑎 > 0 y 𝑎 ≠ 0, la función exponencial 𝑓 𝑥 = 𝑎𝑥 bien se incrementa o disminuye 
y por eso mediante la prueba de la línea horizontal es uno a uno. Debido a eso 
tiene una función inversa 𝑓−1, a la cual se le da el nombre de función logarítmica 
con base a y se denota mediante 𝑙𝑜𝑔𝑎 . Si utiliza la formulación de una función 
inversa dada por (3). 
 
𝑓−1 = 𝑦 ⟺ 𝑓 𝑦 = 𝑥 
 
Luego tiene: 
 
log𝑎 𝑥 = 𝑦 ⟺ 𝑎𝑦 = 𝑥 
 
De ese modo, si x>0, en tal caso log𝑎 𝑥 es el exponente al cual debe elevarse la 
base 𝑎 para dar 𝑥. 
 
Por ejemplo: 
 
log10 0.001 = −3 
Porque: 
10−3 = 0.001 
 
Las ecuaciones de cancelación cuando se aplican las funciones 𝑓 𝑥 = 𝑎𝑥 y 
𝑓−1 = log𝑎 𝑥, se convierten en: 
 
log𝑎(𝑎)𝑥 = 𝑥 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑎 𝑥 ⋹ ℝ 
 
𝑎log 𝑎 𝑥 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑎 𝑥 > 0 
 
La función logarítmica 𝑙𝑜𝑔a tiene dominio (0,∞) e intervalo ℝ. Su grafica es el 
reflejo de la gráfica de 𝑦 = 𝑎𝑥 respecto a la línea 𝑦 = 𝑥. 
 
Ejemplo. 
Convertir 7𝑥 = 16807 a su forma logarítmica. 
Observando la ecuación exponencial anterior se tiene que: 
 
𝑎 = 7 
𝑁 = 16807 
Siguiendo la definición se tiene que: 
 
77 = 16807 → 𝑥 = log7 16807 
 
 
Ejemplo. 
 
Convertir log8 262144 = 6 a su forma exponencial 
𝑎 = 8 
 
𝑁 = 262144 
 
𝑥 = 6 
Por lo cual se obtiene: 
 
log8 262144 = 6 → 86 = 262144 
 
Propiedades de los logaritmos (Inherentes a su definición, 
Operativas) 
Leyes de los logaritmos. Si 𝑥 y 𝑦 son números positivos, entonces: 
 
1. log𝑎 𝑥𝑦 = log𝑎 𝑥 + log𝑎 𝑦 
 
2. log𝑎(
𝑥
𝑦
) = log𝑎 𝑥 − log𝑎 𝑦 
3. log𝑎(𝑥𝑟) = 𝑟 log𝑎 𝑥 (donde 𝑟 es cualquier número real). 
 
Ejemplo. 
Utilizaremos las leyes de los logaritmos para pasar a su forma exponencial lo 
siguiente. log2 80 − log2 5 
Al usar la ley 2, se tiene: 
log2 80 − log2 5 = log2 
80
5
 = log2 16 = 4 
Por que 24= 16 
Dentro de las funciones logarítmicas, se tienen dos comportamientos diferentes, 
de acuerdo al valor de la base 𝑎. 
 
Cuando 𝑎 > 1 las funciones tienen las siguientes propiedades: 
 
1. Su dominio son lo numero reales positivos. 
2. Rango son los números naturales. 
3. Son funciones continuas y creciente en todos sus dominios. 
4. Sus gráficas pasan por los puntos (1, 0) (a, 1). 
5. La recta x= 0 es una asíntota vertical. 
6. La función es negativa para los valores de para los valores de 𝑥 menores 
que 1. 
7. La función es positiva para valores de 𝑥 mayores que 1. 
 
Para demostrar lo anterior, se muestran tres funciones con 0 < 𝑎 < 1. 
 
𝒙 𝒇 𝒙 = 𝐥𝐨𝐠𝟏/𝟏𝟎 𝒙 𝒇 𝒙 = 𝐥𝐨𝐠𝟏/𝟐 𝒙 𝒇 𝒙 = 𝐥𝐨𝐠𝟐/𝟑 𝒙 
0.2 0.69897 2.32192809 3.9693623 
0.5 0.30103 1 1.70951129 
 0.8 0.09691001 0.32192809 0.55033971 
1 0 0 0 
2 -0.30103 -1 -1.70951129 
3 -0.47712125 -1.5849625 -2.70951129 
4 -0.60205999 -2 -3.41902258 
5 -0.69897 -2.32192809 -3.9693623 
6 -0.77815125 -2.5849625 -4.41902258 
7 -0.84509804 -2.80735492 -4.79920494 
8 -0.90308999 -3 -5.12853387 
9 -0.95424251 -3.169925 -5.41902258 
10 -1 -3.32192809 -5.67887359 
 
Por el hecho de ser la función logarítmica inversa de la función exponencial, se 
desprenden algunas propiedades. 
 
Por el hecho de ser la función logarítmica inversa de la función exponencial, se 
desprenden algunas propiedades: 
1. 𝑎log 𝑏 𝑥 = 𝑥 
2. log𝑎 𝑏𝑦 = 𝑦 
3. log𝑎 1 = 0 
4. log𝑎 𝑎 = 1 
Al algoritmo con base 𝑒 se le llama logaritmo natural y tiene una notación natural. 
log𝑒 𝑥 = ln 𝑥 
Si pone a = e y se sustituye log 𝑒con 𝑙𝑛, las propiedades definitorias de la 
función logaritmo natural se convierten en: 
ln 𝑥 = 𝑦 ⟺ 𝑒𝑦 = 𝑥 
ln(𝑒𝑥) = 𝑥 𝑥 ⋹ ℝ 
𝑒ln 𝑥 = 𝑥 𝑥 > 0 
En particular si se establece que 𝑥 = 1, obtiene: 
ln 𝑒 = 1 
Ejemplo encontrar 𝑥 si ln 𝑥 = 5 
Observe que: 
ln 𝑥 = 5 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎 𝑒5 = 𝑥 
Por lo tanto, 
𝑥 = 𝑒5 
Propiedades y técnicas de resolución de ecuaciones exponenciales 
y logarítmicas 
 
A continuación se presenta la solución de algunas ecuaciones tanto logarítmicas y 
exponenciales. Por comodidad se utiliza el logaritmo base 10 ó base 𝑒, los cuales 
son los que ofrecen directamente las calculadoras. 
 
Ejemplo: 
 
Soluciona la ecuación 1024𝑥 = 4 
 
Hay dos formas de resolverlo, una es transformando la ecuación exponencial a su 
forma logarítmica utilizando la definición, y la otra opción es aplicando logaritmo en 
ambos lados de la ecuación y se utilizan las propiedades de logaritmos. 
 
Las siguientes tablas presentan las dos formas de solucionar la ecuación. 
 
Utilizando la definición Descripción del proceso 
1024𝑥 = 4 Ecuación original 
log1024 4 Se aplica la definición 
log 4
log 1024
 
Se aplica la propiedad del cambio de 
logaritmo 
log𝑎 𝑀 =
log 𝑀
log 𝑎
 
𝑥 = 0.2 Mediante la calculadora se realiza la 
división. 
 
Utilizando la definición Descripción del proceso 
1024𝑥 = 4 Ecuación original 
log 1024𝑥 = log 4 Se aplica logaritmo base 10 a ambos 
lados 
𝑥 log 1204 = log 4 Se aplica la propiedad del cambio de 
logaritmo 
log𝑎 𝑀𝑛 = 𝑛 log𝑎 𝑀 
𝑥 =
log 4
log 1024
 
Se despeja la variable. 
𝑥 = 0.2 Mediante la calculadora se realiza la 
división. 
 
Ejemplo 
 
Resolver la ecuación 4𝑥−1 = 3𝑥 . 
 
Como notara, la ecuación tiene en ambos miembros la variable 𝑥 como exponente, 
debido a esto conviene utilizar las propiedades para que se mas sencilla su 
solución. 
 
Primero se aplica logaritmo base 10 a ambos lados de la ecuación. 
 
4𝑥−1 = 3𝑥 
log 4𝑥−1 = 𝑙𝑜𝑔3𝑥 
 
Posteriormente, se bajan los exponentes como coeficientes en cada uno de los 
logaritmos. 
 𝑥 − 1 log 4 = 𝑥 log 3 
 
A continuación se quita el paréntesis del lado izquierdo de la ecuación. 
 
𝑥 log 4 − log 4 = 𝑥 log 3 
 
Se pasan las variables de lado derecho y se factoriza por factor común, para 
poder despejar la variable y encontrar su valor. 
 
𝑥 log 4 − 𝑥 log 3 = log 4 
 
𝑥(log 4 − log 3) = log 4 
 
𝑥 =
log 4
(log 4 − log 3)
 
 
𝑥 = 4.819 
 
Ejemplo. Resolver la ecuación: 
log(3𝑥 − 1) − log 𝑥 = 0 
 
Como se observa en la ecuación, hay una diferencia de logaritmos y se puede 
unificar ya que existe una propiedad para hacerlo, como se muestra a 
continuación. 
 
log(3𝑥 − 1) − log 𝑥 = 0 
 
log(
3𝑥 − 1
𝑥
) = 0 
 
Ahora se transforma el logaritmo como ecuación exponencial, utilizando la 
definición (recordando que la base del logaritmo es 10), como se muestra a 
continuación. 
 
100 =
3𝑥 − 1
𝑥
 
 
1 =
3𝑥 − 1
𝑥
 
 
𝑥 = 3𝑥 − 1 
 
𝑥 − 3𝑥 = −1 
 
−2𝑥 = −1 
 
𝑥 =
1
2
 
 
Como cualquier ecuación, se puede comprobar el resultado sustituyéndolo en la 
ecuación original y corroborando que se cumple la igualdad. 
 
log 3𝑥 − 1 − log 𝑥 = 0 
 
log 3 1
2 − 1 − log(1
2 ) = 0 
 
log 3
2 − 1 − log(1
2 ) = 0 
 
log 1
2 − log(1
2 ) = 0 
 
0 = 0

Continuar navegando

Contenido elegido para ti