Text Material Preview
“principal” 2010/4/19 page 19 Estilo OBMEPi i i i i i i i N SEC. 1.7: MÚLTIPLOS COMUNS 19 Problema 1.21. Sejam dados números naturais a, b e c tais que a é múltiplo de c. Mostre que a + b é múltiplo de c se, e somente se, b é múltiplo de c. Multiplicação e Ordem. A relação entre a adição e a ordem se reflete numa relação entre a multiplicação e a ordem que já tivemos oportunidade de abordar no Problema 1.16: Se a < b e c > 0, então c × a < c × b. Problema 1.22. Mostre que o menor elemento do conjunto dos múltiplos não nulos de um número natural a > 0 é o próprio a. 1.7 Múltiplos Comuns Um conceito importante é o de múltiplo comum de dois números. Por exemplo, considere a sequência dos múltiplos de 3: 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, . . . e a sequência dos múltiplos de 5: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, . . . Assim, a sequência dos números que são simultaneamente múlti- plos de 3 e de 5 é: 0, 15, 30, 45, . . . “principal” 2010/4/19 page 20 Estilo OBMEPi i i i i i i i 20 � CAP. 1: OS NÚMEROS NATURAIS Você saberia continuar a sequência acima? Aparentemente, trata- se da sequência dos múltiplos de 15, ou seja, os múltiplos do menor múltiplo comum não nulo de 3 e de 5, que é 15. Isso é absolutamente correto e é um resultado geral que provare- mos a seu tempo. Problema 1.23. Determine os dois primeiros múltiplos comuns de 4 e 14. Como você continuaria esta sequência? Se a e b são números naturais não nulos, sabemos por definição que o número a× b é um múltiplo não nulo de b. Por outro lado, pela propriedade comutativa da multiplicação, tem-se que ele é também um múltiplo de a. Assim, o conjunto dos múltiplos comuns de a e b, além de conter o número 0, contém também o número a × b 6= 0. Definição. O menor múltiplo comum não nulo de dois números na- turais não nulos a e b é denotado por mmc(a, b) e será chamado de mínimo múltiplo comum1 de a e b (ou abreviadamente mmc). Problema 1.24. Ache o mmc dos seguintes pares de números: 3 e 4; 6 e 11; 6 e 8; 3 e 9. Voce percebeu que algumas vezes mmc(a, b) = a × b e outras vezes não? Qual será a razão? Desvendaremos mais este mistério no Capítulo 3. 1Este número existe em função da observação acima e do Princípio da Boa Ordem.