Logo Passei Direto
Material
Study with thousands of resources!

Text Material Preview

S E V E N 
 
 Steady-State Errors 
 
SOLUTIONS TO CASE STUDIES CHALLENGES 
Antenna Control: Steady-State Error Design via Gain 
 a. G(s) = 
 
76.39K
s(s 150)(s 1.32)
. System is Type 1. Step input: e() = 0; Ramp input: 
e() = 
V
1
K
 
= 

1
76.39K
150 1.32
= 
2.59
K
; Parabolic input: e() = . 
 b. 
V
1
K
 
= 
2.59
K
= 0.2. Therefore, K = 12.95. Now test the closed-loop transfer function, 
T(s) = 
  3 2
989.25
s 151.32s 198s 989.25
, for stability. Using Routh-Hurwitz, the system is stable. 
 
s3 1 198 
s2 151.32 989.25 
s1 191.46253 0 
s0 989.25 0 
 
Video Laser Disc Recorder: Steady-State Error Design via Gain 
a. The input, 15t2, transforms into 30/s3. e() = 30/Ka = 0.005. 
Ka = 
0.2*600
20000
* K1K2K3 = 6x10
-3
 K1K2K3. Therefore: e() = 30/Ka = 3
1 2 3
30
6x10 K K K
 
= 5x10
-3
. Therefore K1K2K3 = 10
6
. 
b. Using K1K2K3 = 10
6
, G(s) = 


5
2 4
2x10 (s 600)
s (s 2x10 )
. Therefore, T(s) = 

  
5
3 4 2 5 8
2x10 (s 600)
s 2x10 s 2x10 s 1.2x10
. 
 Making a Routh table, 
 
7-2 Chapter 7: Steady-State Errors 
 
s3 1 2x10
5 
s2 2x10
4 
1.2x10
8 
s1 194000 0 
s0 120000000 0 
we see that the system is stable. 
 
c. 
Program: 
numg=200000*[1 600]; 
deng=poly([0 0 -20000]); 
G=tf(numg,deng); 
'T(s)' 
T=feedback(G,1) 
poles=pole(T) 
 
Computer response: 
ans = 
 
T(s) 
 
Transfer function: 
 200000 s + 1.2e008 
------------------------------------ 
s^3 + 20000 s^2 + 200000 s + 1.2e008 
 
poles = 
 
 1.0e+004 * 
 
 -1.9990 
 -0.0005 + 0.0077i 
 -0.0005 - 0.0077I 
 
ANSWERS TO REVIEW QUESTIONS 
1. Nonlinear, system configuration 
2. Infinite 
3. Step(position), ramp(velocity), parabola(acceleration) 
4. Step(position)-1, ramp(velocity)-2, parabola(acceleration)-3 
5. Decreases the steady-state error 
6. Static error coefficient is much greater than unity. 
7. They are exact reciprocals. 
8. A test input of a step is used; the system has no integrations in the forward path; the error for a step input 
is 1/10001. 
Solutions to Problems 7-3 
9. The number of pure integrations in the forward path 
10. Type 0 since there are no poles at the origin 
11. Minimizes their effect 
12. If each transfer function has no pure integrations, then the disturbance is minimized by decreasing the 
plant gain and increasing the controller gain. If any function has an integration then there is no control over 
its effect through gain adjustment. 
13. No 
14. A unity feedback is created by subtracting one from H(s). G(s) with H(s)-1 as feedback form an 
equivalent forward path transfer function with unity feedback. 
15. The fractional change in a function caused by a fractional change in a parameter 
16. Final value theorem and input substitution methods 
 
SOLUTIONS TO PROBLEMS 
1. 
s 0 s 0
s R(s)
e( ) lim sE(s) lim
1 G(s) 
  

 
where 
2
450(s 12)(s 8)(s 15)
G(s)
s(s 38)(s 2s 28)
  

  
. 
For step, e () = 0. For 37tu(t), 
2
37
R(s)
s
 . Thus, e () = 6.075x10-2. For parabolic input, 
e() = . 
 
2. 
a. From the figure 6 4 2
ss ss ss
e r c     . 
b. Since the system is linear, and because the original input was    2r t tu t , the new steady state 
error is  
2
1
2
sse . 
 
3. 
s 0 s 0
s R(s)
e( ) lim sE(s) lim
1 G(s) 
  

 
 =
3
s 0
2
s(160/s )
lim 2.83
60(s 3)(s 4)(s 8)
1
s (s 6)(s 17)


  

 
 
 
 
 
7-4 Chapter 7: Steady-State Errors 
 
 
 
4. 
Reduce the system to an equivalent unit feedback system by first moving 1/s to the left past 
the summing junction. This move creates a forward path consisting of a parallel pair 
 
 
 
1
1
s
 
in cascade with a feedback loop consisting of   

3
4
G s
s
 and    2H s . Thus, 
 
 
 
  
       
3 / 41
1 24 / 4
e
ss
G s
s s
 
Hence the system is Type 1, and the steady-state errors are as follows: 
Steady state error for   10 0u t 
Steady state error for     
10 10
10 93.33
3 / 28v
tu t
K
 
Steady state error for    210t u t 
 
 
 
5. 
 
System is type 0. Kp = 1.4881. 
For 20 u(t),   

20
( ) 8.04
1 P
e
K
 
For 60 t u(t),   ( )e 
For 81t
 2
 u(t),   ( )e 
 
6. 
 
   

  
4
3
( ) 150 /
( )
210( 4)( 6)( 11)( 13)1 ( )
1
( 7)( 14)( 19)
R s S
E s
S S S SG s
S S S S
 
Thus, 

   
0
150
( ) lim ( ) 0.3875
(210)(4)(6)(11)(13)
(7)(14)(19)
s
e sE s 
 
 7. 
de
s E (s)
dt
 
 
 
 
Solutions to Design Problems 7-5 
Therefore, e( )

 =
0
lim
s
s2E(s) = 
0
lim
s
s2 
R(s)
1 G(s) 
= 
2
4
0
2
6
lim
100( 1)( 2)
1
( 10)( 3)
s
s
s
s s
s s s
  

 
= 
9
10
. 
 
8. 
15 1020(13)(26)(33)
( ) ; 25.65
1 (65)(75)(91)
p
p
e K
K
   

. Therefore, e() = 0.563. 
9. 
For 70u(t), ess = 
70 70
14
1 5
p
K
 

 ; For 70tu(t), ess = , since the system is Type 0. 
 
 
10. 
a. The closed-loop transfer function is, 
 
2
5000
( )
75 5000
T s
s s

 
 
from which, n = 5000 and 2n = 75. Thus,  = 0.53 and 
2/ 1
%OS=e x100
  
 = 14.01%. 
b. Ts = 
4
n

= 
4
75 / 2
= 0.107 second. 
c. Since system is Type 1, ess for 5u(t) is zero. 
d. Since Kv is 
5000
75
= 66.67, ess = 
5
v
K
= 0.075. 
e. ess = , since system is Type 1. 
 
11. 
 
   
   0
500000 7 20 45
lim 35000
30 50s
K sG s

  
v
 
Thus 60  . 
 
12. 
 
2
0
2 4 6
lim ( ) 10,000
5 7
a
s
Kx x x
K s G s
x
   . Therefore, K = 7291.667. 
 
7-6 Chapter 7: Steady-State Errors 
13. 
a. Ge(s) = 
5
s(s 1)(s 2)
5(s+3)
1
s(s 1)(s 2)
 

 
= 
3 2
5
s 3s 7s 15  
 
Therefore, Kp = 1/3; Kv = 0; and Ka = 0. 
b. For 50u(t), e() = 
p
50
1 K
= 37.5; For 50tu(t), e() = ; For 50t2u(t), e() =  
c. Type 0 
 
 
 
 
 
 
 
 
 14. 
( )
( )
1 ( )
R s
E s
G s


. Thus, 
0
( ) lim ( )
s
e sE s

  = 
4
2 20
3
60
lim
1030( 8 23)( 21 18)
1
( 6)( 13)
s
s
s
s s s s
s s s
    

 
 
= 0.0110. 
 
 15. 
Collapsing the inner loop and multiplying by 1000/s yields the equivalent forward-path transfer 
function as, 
5
2
10 ( 2)
( )
( 1005 2000)
e
s
G s
s s s


 
 
Hence, the system is Type 1. 
 
16. 
 
The transfer function from command input to error signal can be found using Mason’s rule or any 
other method: 
 

 
 
 


2
2
1
1
20
1
( 3) 20( ) ( 3)
20( ) ( 3) 20
1
( 3)
G
s s GE s s s
R s s s G
G
s s
 
Letting 
1
( )R s
s
and by the final value theorem: 
 
   2
0 0
1
( )
( )
( )
ss
s s
G s
e LimsE s Lim
G s
 
Solutions to Design Problems 7-7 
a. If 
1
G is type 0, it is required that 
2
( ) 0G s  
b. If 
1
G is type 1, it is required that 
2
( )G s must be type 0 
c. If 
1
G is type 2, it is required that 
2
( )G s must be type 1 
 
 
 
 
 
17. 
 
2 2 
0 0
( )
 ( )= lims E(s) = lims
1 ( )s s
R s
e
G s

 


. 
 For Type 0, step input: R(s) = 
1
s
, and 
0
 ( )= lim = 0
1 ( )s
s
e
G s




 
 For Type 0, ramp input: R(s) = 
2
1
s
, and 
 
 
0
0
1 1 1
( )= lim = = 
1 ( ) 1 lim ( ) 1s
p
s
e
G s G s K




  
 
 For Type 0, parabolic input: R(s) = 
3
1
s
, and 
0
1
( )= lim = 
( )s
e
s sG s


 

 
 For Type 1, step input: R(s) = 
1
s
, and 
0
( )= lim = 0
1 ( )s
s
e
G s




 
 For Type 1, ramp input: R(s) = 
2
1
s
, and 
0
1
( )= lim = 0
1 ( )s
e
G s




 
 For Type 1, parabolic input: R(s) = 
3
1
s
, and 



0 v
1 1
( )= lim =
( ) Ks
e
s sG s
 
 For Type 2, step input: R(s) = 
1
s
, and 
0
( )= lim = 0
1 ( )s
s
e
G s




 
 For Type 2, ramp input: R(s) = 
2
1
s
, and 
0
1
( )= lim = 0
1 ( )s
e
G s




 
 For Type 2, parabolic input: R(s) = 
3
1
s
, and 
0
1
( )= lim = 
( )s
e
s sG s



0 
 
7-8 Chapter 7: Steady-State Errors 
 
 
18. 
 a. 
1/10 7
e( )= 0.01; where 10.
5 8 12
v
v
K
K
K x x
    Thus, 685.71K  . 
b. Kv = 10. 
c. The minimum error will occur for the maximum gain before instability. Using the Routh-Hurwitz 
Criterion along with 
 4 3 2
( 7)
( )
25 196 480 7
K s
T s
s s s K s K


    
: 
 
s
4 
1 196 7K For Stability 
s
3 
25 480+K 
s
2 
4420-K 175K K < 4420 
s
1 2 435 2121600K K   -1690.2 < K < 
1255.2 
s
0 
175K K > 0 
 
Thus, for stability and minimum error K = 1255.2. Thus, 
7
18.3
5 8 12
v
K
K
x x
  and 
1/10 1/10
e( )= 0.0055
18.3
v
K
   . 
19. 
30 30 900
( ) 0.005
/ 30
v
e
K Ka Ka
     . 
Hence, Ka = 180000. 
 
 
Solutions to Design Problems 7-9 
20. 
Find the equivalent  G s for a unit feedback system.  
 
 
2
5 7
1
2
K
s s K
G s
s s
s

 



. Thus 
 
100 100
0.01
/ 7
v
e
K K
    ; from which 70000K  . 
 
21. 
 
3 20
; ( ) 0.061. Hence, 765.03.
7
a
a
K
K e K
K
     
22. 
 a. e() = 
V
10
K
= 
1
6000
. But, Kv = 
30K
5
= 60,000. Hence, K = 10,000. For finite error for a ramp 
input, n = 1. 
 b. 
 
 
   

2
0 0
10000( 3 30)
lim ( ) lim
( 5)
p
s s
s s
K G s
s s
 
 
 
 
  

2
0 0
10000( 3 30)
lim ( ) lim 60000
( 5)
v
s s
s s
K sG s s
s s
 
 
 
 
  

2
2 2
0 0
10000( 3 30)
lim ( ) lim 0
( 5)
a
s s
s s
K s G s s
s s
 
23. 
 a. Type 0 
 b. E(s) = 

R(s)
1 G(s)
. Thus, 
 
   
 

 
20 0
2
12 / 12
( ) lim ( ) lim
1 0.08( 6 6)
1
( 5) ( 3)
s s
s
e sE s s
KK s s
s s
. 
 c. e() = , since the system is Type 0. 
 
24. 
 
27 27
e( ) = = = 0.4. Thus, K = 325
247 /1188vK K
. 
25. 
 e() = 

1
1 pK
= 

1
6K
1
58
 = 0.08. Thus, K = 111. 
26. 
The system is stable for 0 < K < 2000. Since the maximum Kv is Kv = 
K
320
= 
2000
320
= 6.25, the 
minimum steady-state error is 
V
1
K
 = 
1
6.25
= 0.16. 
27. 
 To meet steady-state error characteristics: 
7-10 Chapter 7: Steady-State Errors 
 
 
   
    

   
      

2
2
2
2
R(s) 1
E(s)
1 G(s) K(s )
s 1
(s )
1
e(t) sE(s) 0.1
1t s 0 K K
 
 Therefore, K = 92. 
 To meet the transient requirement: Since T(s) = 
α
β β α2 2
K(s )
s (K 2 )s ( K )

   
, 
n
2 = 10 = 2 + K ; 2n = 10
 
= K+2Solving for ,  = ±1. For  = +1, K = 1.16 and  = 7.76. 
An alternate solution is  = -1, K = 5.16, and  = 1.74. 
28. 
 a. System Type = 1 
 b. Assume G(s) = 
α
K
s(s )
. Therefore, e() = 
V
1
K
 
= 
α
1
K/
 
= 0.01, or 
α
K
 = 100. 
 But, T(s) = 

G(s)
1 G(s)
 = 
α 2
K
s s K
. 
 Since n = 10, K = 100, and  = 1. Hence, G(s) = 
100
s(s+1)
. 
 c. 2n =  = 1. Thus,  = 
1
20
. 
 
29. 
a. Since the steady-state output of the system can follow a ramp input with a finite error, 
then the system is type-1; 
b. The velocity error constant is given by: lim ( )
0
v
K
K sG s
s 
 

. 
Given that 
1
( ) 0.01
v
e
K
   , we have: 100
v
K
K

  . 
But, 
2
( )
( )
1 ( ) ( )
G s K K
T s
G s s s K s s K 
  
    
, where 
2 25K
n
  . 
Thus, 0.25
100
K
   . 
c. But 
0.25
2 0.25 0.025
2 5
n
      

 
Solutions to Design Problems 7-11 
d. When K = 4 and  = 0.4,  
 2
( ) 4
( )
( ) 0.4 4
C s
T s
R s s s
, then: 

      
4 1
10 ( ) 0.1
0.4
v
v
K
K e
K
;   4 2n rad/sec; 
      

0.4
2 0.4 0.1
2 2
n . 
 
30. 
 T(s) = 
G(s)
1 G(s)
 = 
α
β α2
K(s )
s (K ) s K

  
. Hence, K+ = 2, K = n
2 = (12+12) = 2. 
Also, e() = 
V
1
K
 
= 
β
β α α
α
    0.1. Therefore, 0.1K 0.2, K 1.8, and 1.111.
K
 
 
 
 
 
31. 
 System Type = 1. T(s) = 

G(s)
1 G(s)
 
= 
 2
K
s as K
. From G(s), Kv = 
K
a
 
= 110. For 12% overshoot,  = 
0.56. Therefore, 2n = a, and n
2 = K. Hence, a = 1.12 K . 
Also, a = 
110
K
. Solving simultaneously, 
K = 1.52 x 104, and a = 1.38 x 102. 
 
 
32. 
 a. For 20% overshoot,  = 0.456. Also, Kv = 1000 = 
K
a
. Since T(s) = 
 2
K
s as K
, 2n = a, and 
n = K . Hence, a = 0.912 K . Solving for a and K, K = 831,744, and a = 831.744. 
 b. For 10% overshoot,  = 0.591. Also, 
V
1
K
 = 0.01. Thus, Kv = 100 = 
K
a
. Since T(s) = 
 2
K
s as K
, 
2n = a, and n = K . Hence, a = 1.182 K . Solving for a and K, K = 13971 and a = 139.71. 
33. 
a. For the inner loop: 
G1(s) = 


 


2
4 3
3
1
ss (s 1)
1 s s 1
1
s (s 1)
 
Ge(s) = 
2
1
s (s 3)
 G1(s) = 
   5 4 3
1
s(s 4s 3s s 3)
 
7-12 Chapter 7: Steady-State Errors 
 
T(s) = 

e
e
G (s)
1 G (s)
 = 
    6 5 4 2
1
s 4s 3s s 3s 1
 
b. From Ge(s), system is Type 1. 
c. Since system is Type 1, ess = 0 
d. ; From Ge(s), Kv = 
0
lim ( )e
s
sG s = 
1
3
. Therefore, ess = 
V
5
K
 = 15. 
e. Poles of T(s) = -3.0190, -1.3166, 0.3426 ± j0.7762, -0.3495. Therefore, system is unstable and 
results of (c) and (d) are meaningless 
 
34. 
a. For the inner loop: 
G1(s) = 

10
s(s+1)(s+3)(s+4)
20
1
(s+1)(s+3)(s+4)
 =
 3 2
10
s(s +8s 19s 32)
 
 
Ge(s) = 
 3 2
20
s(s +8s 19s 32)
 
 
T(s) = 

e
e
G (s)
1 G (s)
= 
   4 3 2
20
s 8s 19s 32s 20
 
b. From Ge(s), system is Type 1. 
c. Since system is Type 1, ess = 0 
d. From Ge(s), Kv = 
0
lim ( )e
s
sG s = 
20
32
= 
5
8
. Therefore, ess = 
V
5
K
= 8. 
e. Poles of T(s) = -5.4755, -0.7622 ± j1.7526, -1. Therefore, system is stable and results of parts c and 
d are valid. 
 
35. 
Program: 
numg1=[1 9];deng1=poly([0 -6 -12 -14]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
numg2=6*poly([-9 -17]);deng2=poly([-12 -32 -68]); 
'G2(s)=' 
G2=tf(numg2,deng2) 
numh1=13;denh1=1; 
'H1(s)=' 
H1=tf(numh1,denh1) 
numh2=1;denh2=[1 7]; 
'H2(s)=' 
H2=tf(numh2,denh2) 
%Close loop with H1 and form G3 
'G3(s)=G2(s)/(1+G2(s)H1(s)' 
G3=feedback(G2,H1) 
%Form G4=G1G3 
'G4(s)=G1(s)G3(s)' 
G4=series(G1,G3) 
%Form Ge=G4/1+G4H2 
Solutions to Design Problems 7-13 
'Ge(s)=G4(s)/(1+G4(s)H2(s))' 
Ge=feedback(G4,H2) 
%Form T(s)=Ge(s)/(1+Ge(s)) to test stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
'Poles of T(s)' 
pole(T) 
%Computer response shows that system is stable. Now find error specs. 
Kp=dcgain(Ge) 
'sGe(s)=' 
sGe=tf([1 0],1)*Ge; 
'sGe(s)' 
sGe=minreal(sGe) 
Kv=dcgain(sGe) 
's^2Ge(s)=' 
s2Ge=tf([1 0],1)*sGe; 
's^2Ge(s)' 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
essstep=100/(1+Kp) 
essramp=100/Kv 
essparabola=200/Ka 
 
 
Computer response: 
 
ans = 
G1(s)= 
Transfer function: 
s + 9 
------------------------------- 
s^4 + 32 s^3 + 324 s^2 + 1008 s 
ans = 
G2(s)= 
Transfer function: 
6 s^2 + 156 s + 918 
------------------------------ 
s^3 + 112 s^2 + 3376 s + 26112 
ans = 
H1(s)= 
Transfer function: 
13 
ans = 
H2(s)= 
Transfer function: 
1 
----- 
s + 7 
ans = 
G3(s)=G2(s)/(1+G2(s)H1(s) 
Transfer function: 
6 s^2 + 156 s + 918 
------------------------------ 
s^3 + 190 s^2 + 5404 s + 38046 
Solutions to Problems 7-13 
ans = 
G4(s)=G1(s)G3(s) 
Transfer function: 
6 s^3 + 210 s^2 + 2322 s + 8262 
------------------------------------------------------ 
s^7 + 222 s^6 + 11808 s^5 + 273542 s^4 + 3.16e006 s^3 
+ 1.777e007 s^2 + 3.835e007 s 
ans = 
7-14 Chapter 7: Steady-State Errors 
Ge(s)=G4(s)/(1+G4(s)H2(s)) 
 
Transfer function: 
6 s^4 + 252 s^3 + 3792 s^2 + 24516 s + 57834 
------------------------------------------------------- 
s^8 + 229 s^7 + 13362 s^6 + 356198 s^5 + 5.075e006 s^4 
+ 3.989e007 s^3 + 1.628e008 s^2 + 2.685e008 s 
+ 8262 
ans = 
T(s)=Ge(s)/(1+Ge(s)) 
Transfer function: 
6 s^4 + 252 s^3 + 3792 s^2 + 24516 s + 57834 
------------------------------------------------------- 
s^8 + 229 s^7 + 13362 s^6 + 356198 s^5 + 5.075e006 s^4 
+ 3.989e007 s^3 + 1.628e008 s^2 + 2.685e008 s 
+ 66096 
ans = 
Poles of T(s) 
ans = 
-157.1538 
-21.6791-14.0006 
-11.9987 
-11.1678 
-7.0001 
-5.9997 
-0.0002 
Kp = 
7 
ans = 
sGe(s)= 
ans = 
sGe(s) 
Transfer function: 
6 s^5 + 252 s^4 + 3792 s^3 + 2.452e004 s^2 
+ 5.783e004 s 
-------------------------------------------------------- 
s^8 + 229 s^7 + 1.336e004 s^6 + 3.562e005 s^5 
+ 5.075e006 s^4 + 3.989e007 s^3 + 1.628e008 s^2 
+ 2.685e008 s + 8262 
Kv = 
0 
ans = 
s^2Ge(s)= 
ans = 
s^2Ge(s) 
Transfer function: 
6 s^6 + 252 s^5 + 3792 s^4 + 2.452e004 s^3 
+ 5.783e004 s^2 
-------------------------------------------------------- 
s^8 + 229 s^7 + 1.336e004 s^6 + 3.562e005 s^5 
+ 5.075e006 s^4 + 3.989e007 s^3 + 1.628e008 s^2 
+ 2.685e008 s + 8262 
Solutions to Problems 7-15 
Ka = 
0 
essstep = 
12.5000 
essramp = 
Inf 
 
 
 
 
essparabola = 
Inf 
36. 
Solutions to Design Problems 7-15 
The equivalent forward transfer function is  
 

 
15
2 5 f
K
G s
s s K
. Also 
 
 
   
 
   
1
2
1
5
1 2 5 5f
G s K
T s
G s s K s K
. From the problem statement  

15 20
2 5
v
f
K
K
K
 and 
  2 2 5n fK where   15n K . Solving simultaneously for 1K and  fK we get 1 156.8K , 
 7.44fK . 
 
37. 
 
We calculate the Velocity Error Constant, 
0 0
3 2 2
( 34.16 144.4 7047 557.2) 0.00842( 7.895)( 0.108 0.3393)
25 4 3 2
( 0.07895)( 4 8)13.18 95.93 14.61 31.94
( ) ( )
v
s s
s s s s s s s
s s ss s s s s
K Lim sG s P s Lim
 
      
     
 
 
 
557.2
0.0357 0.623
31.94
 
For a unit ramp input the steady state error is  
1
1.605ss
v
e
K
. The input slope is 
25
15.6
1.605
 
38. 
 e() = 
s 0
lim
 
2
1 2
sR(s)-sD(s)G (s)
1 G (s)G (s)
, where G1(s) = 

1
s 5
 and G2 = 

100
s 2
. From the problem statement, 
 R(s) = D(s) = 
1
s
. Hence, e() = 




 
s 0
100
1
s 2lim
1 100
1
s 5 s 2
= -
49
11
. 
39. 
Error due only to disturbance: Rearranging the block diagram to show D(s) as the input, 
 
 Therefore, 
7-16 Chapter 7: Steady-State Errors 
 -E(s) = D(s) 



 
2
1 2
K
s(s 4)
K K (s 2)
1
s(s 3)(s 4)
 = D(s) 

   
2
1 2
K (s 3)
s(s 3)(s 4) K K (s 2)
 
For D(s) = 
1
s
, e
D
() = 
0
1
3
lim ( )
2s
sE s
K
  . 
Error due only to input: e
R
() =
V
1
K
= 
1 2
1
K K
6
= 
1 2
6
K K
. 
Design: 
e
D
() = - 0.00001 = - 
1
3
2K
, or K
1
 = 150,000. 
e
R
() = 0.002 = 
1 2
6
K K
, or K
2
 = 0.02 
 
 
 
 
40. 
a. The open loop transmission is 
35
( ) ( )
2
G s P s
s


, so 
0
35
( ) ( )
2
P
s
K Lim G s P s

  . For a unit 
step input 
1
0.0541
1
ssr
P
e
K
 

. Since the input is threefold that we have that 
3(0.0541) 0.1622
ssr
e   
 
 
 
 
b. 
 
 
Solutions to Design Problems 7-17 
 
 
7-18 Chapter 7: Steady-State Errors 
 
 
 
b. The transfer function from disturbance to error signal is    



7
( ) 72
7( ) 37
1 5
2
E s s
D s s
s
 Using the 
final value theorem 
0 0
7 1 7
( ) 0.1892
37 37
ssd
s s
e Lim sE s Lim s
s s 
  
       
  
 
c. 
 
Solutions to Design Problems 7-19 
 
 
 
e. 0.1622 0.1892 0.351
tot ssr ssd
e e e     
f. 
 
7-20 Chapter 7: Steady-State Errors 
 
 
 
 
 
 
 
 
 
41. 
a11 2 1
2 1 2 1
1
1
0
2 1
E ( )( ) ( ) ( )( )
; 
( ) 1 ( ) ( ) ( ) 1 ( ) ( )
( ) ( )
( ) lim
1 ( ) ( )
a
s
sG s G s G sC s
R s G s H s R s G s H s
sR s G s
e
G s H s
  
 
 

 
 42. 
System 1: 
Forming a unity-feedback path, the equivalent unity feedback system has a forward transfer function of 
 
2
10( 10)
10( 10)( 2)
( )
10( 10)( 3) 11 132 300
1
( 2)
e
s
ss s
G s
s s s s
s s


 
   


 
a. Type 0 System; b. Kp = 
0
lim ( ) 1/ 3
p e
s
K G s

  ; c. step input; d. e() = 
1
1
p
K
= 3/4; 
 e. 
0 0
1
( )
( ) lim lim 0
10( 10)( 4)1 ( ) ( )
1
( 2)
a step
s s
s
sR s s
e
s sG s H s
s s

 
 
 
    
 


. 
System 2: 
Solutions to Design Problems 7-21 
Forming a unity-feedback path, the equivalent unity feedback system has a forward transfer function of 
 


 
 


10( 10)
10( 10)( 2)
( )
10( 10) (11 102)
1
( 2)
e
s
ss s
G s
s s s s
s s
 
a. Type 1 System; b. 

 
0
lim ( ) 0.98v e
s
K sG s ; c. ramp input; d.   
1
( ) 1.02
v
e
K
; 
e. 
 
 
  
   
 


2
0 0
1
( ) 1
( ) lim lim
10( 10)( 1)1 ( ) ( ) 50
1
( 2)
a ramp
s s
s
sR s s
e
s sG s H s
s s
. 
43. 
System 1. Push 5 to the right past the summing junction: 
 
 
Produce a unity-feedback system: 
 
 
Thus, 

 
 
  

 
2
5( 4)
5( 4)( 3)( 7)
( )
5( 4) 15 41
1
( 3)( 7)
e
s
ss s
G s
s s s
s s
. Kp = 
20
41
. estep = 
p
1
1+K
 = 0.67, eramp = , eparabola 
= . 
Checking for stability, from first block diagram above, T(s) = 
2
5( 4)
20 61
s
s s

 
. The system is stable. 
7-22 Chapter 7: Steady-State Errors 
System 2. Push 20 to the right past the summing junction and push 10 to the left past the pickoff point: 
 
 
Produce a unity-feedback system: 
 
 
 
Thus, 
2
200( 4)
200( 4)( 3)( 7)
( )
200( 4) 39 185 759
1
( 3)( 7) 40
e
s
ss s
G s
s s s
s s

 
 
   
  
   
. Kp = 
200(4)
1.05
759
 

. 
estep = 
p
1
1 K
 = -20, eramp = , eparabola = . 
Checking for stability, from first block diagram above, 
2
( ) 200( 4)
( )
1 ( ) 15 41
e
e
G s s
T s
G s s s

 
  
. 
Therefore, system is stable and steady-state error calculations are valid. 
( )
1 ( )
e
e
G s
G s


 
 
44. 
Produce a unity-feedback system: 
Solutions to Design Problems 7-23 
 
 
 
Thus, Ge(s) = 





2
2
(s 1)
s (s 2)
(s 1)(K-1)
1
s (s 2)
= 

  3 2
s 1
s 2s (K-1)s (K-1)
. Error = 0.001 = 
p
1
1 K
. 
Therefore, Kp = 999 = 
1
K-1
. Hence, K = 1.001001. 
Check stability: Using original block diagram, T(s) = 
2
2
(s 1)
s (s 2)
K(s 1)
1
s (s 2)





=
3 2
s 1
s 2s Ks K

  
. 
Making a Routh table: 
 
s3 1 K 
s2 2 K 
s1 
K
2
 0 
s0 K 0 
 
Therefore, system is stable and steady-state error calculations are valid. 
 
45. 
a. Produce a unity-feedback system: 
1
5 3
( ) 1
2 2
s
H s
s s

  
 
 
7-24 Chapter 7: Steady-State Errors 
 
Thus, 
2
4 3 2
2
( 1)
( 1)( 2)( 4)
( )
3 ( 1) 6 8 3 3
1
( 4)( 2)
e
K s
K s ss s
G s
K s s s s Ks K
s s s

 
 
    

 
. System is Type 0. 
b. Since Type 0, appropriate static error constant is Kp. 
c. 
2 2
3 3
P
K
K
K
  
d. 
1 1 3
0.6
21 5
1
3
step
P
e
K
   


 
 
Check stability: Using original block diagram, 
 
2
4 3 2
2
( 1)
( 1)( 2)( 3)
( )
( 1)( 4) 5 ( 6) 5 4
1
( 3)( 2)
K s
K s ss s
T s
K s s s s K s Ks K
s s s

 
 
      

 
. 
2
4 3 2
2
( 1)
( 1)( 2)( 4)
( )
( 1)( 5) 6 ( 8) 6 5
1
( 4)( 2)
K s
K s ss s
T s
K s s s s K s Ks K
s s s

 
 
      

 
 
Making a Routh table: 
 
Solutions to Design Problems 7-25 
s4 1 K+8 5K 
s3 6 6K 0 
s2 8 5K 0 
s1 
9
4
K
 0 0 
s0 5K 0 0 
 
Therefore, system is stable for K > 0 and steady-state error calculations are valid. 
 
 
 
 
 
46. 
Program: 
K=10 
numg1=K*poly([-1 -2]);deng1=poly([0 0 -4 -5 -6]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
numh1=[1 6];denh1=poly([-8 -9]); 
'H1(s)=' 
H1=tf(numh1,denh1) 
'H2(s)=H1-1' 
H2=H1-1 
%Form Ge(s)=G1(s)/(1+G1(s)H2(s) 
'Ge(s)=G1(s)/(1+G1(s)H2(s))' 
Ge=feedback(G1,H2) 
%Test system stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
pole(T) 
Kp=dcgain(Ge) 
'sGe(s)' 
sGe=tf([1 0],1)*Ge; 
sGe=minreal(sGe) 
Kv=dcgain(sGe) 
's^2Ge(s)' 
s2Ge=tf([1 0],1)*sGe; 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
essstep=30/(1+Kp) 
essramp=30/Kv 
essparabola=60/Ka 
 
K=1E6 
numg1=K*poly([-1 -2]);deng1=poly([0 0 -4 -5 -6]); 
'G1(s)=' 
G1=tf(numg1,deng1) 
7-26 Chapter 7: Steady-State Errors 
numh1=[1 6];denh1=poly([-8-9]); 
'H1(s)=' 
H1=tf(numh1,denh1) 
'H2(s)=H1-1' 
H2=H1-1 
%Form Ge(s)=G1(s)/(1+G1(s)H2(s) 
'Ge(s)=G1(s)/(1+G1(s)H2(s))' 
Ge=feedback(G1,H2) 
%Test system stability 
'T(s)=Ge(s)/(1+Ge(s))' 
T=feedback(Ge,1) 
pole(T) 
Kp=dcgain(Ge) 
'sGe(s)' 
sGe=tf([1 0],1)*Ge; 
sGe=minreal(sGe) 
Kv=dcgain(sGe) 
's^2Ge(s)' 
s2Ge=tf([1 0],1)*sGe; 
s2Ge=minreal(s2Ge) 
Ka=dcgain(s2Ge) 
 
essstep=30/(1+Kp) 
essramp=30/Kv 
essparabola=60/Ka 
 
 
 
 
Computer response: 
 
K = 
 
 10 
 
 
ans = 
 
G1(s)= 
 
 
Transfer function: 
 10 s^2 + 30 s + 20 
------------------------------- 
s^5 + 15 s^4 + 74 s^3 + 120 s^2 
 
 
ans = 
 
H1(s)= 
 
 
Transfer function: 
 s + 6 
--------------- 
s^2 + 17 s + 72 
 
 
ans = 
 
H2(s)=H1-1 
Solutions to Design Problems 7-27 
Transfer function: 
-s^2 - 16 s - 66 
---------------- 
s^2 + 17 s + 72 
 
ans = 
 
Ge(s)=G1(s)/(1+G1(s)H2(s)) 
 
 
Transfer function: 
 10 s^4 + 200 s^3 + 1250 s^2 + 2500 s + 1440 
----------------------------------------------------------------------- 
 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
 
 
ans = 
 
T(s)=Ge(s)/(1+Ge(s)) 
 
 
Transfer function: 
 10 s^4 + 200 s^3 + 1250 s^2 + 2500 s + 1440 
--------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2458 s^4 + 7378 s^3 + 8730 s^2 + 200 s + 120 
 
 
ans = 
 
 -8.5901 + 0.3993i 
 -8.5901 - 0.3993i 
 -6.0000 
 -4.4042 + 0.1165i 
 -4.4042 - 0.1165i 
 -0.0057 + 0.1179i 
 -0.0057 - 0.1179i 
 
 
Kp = 
 
 -1.0909 
 
 
ans = 
 
sGe(s) 
 
 
 
7-28 Chapter 7: Steady-State Errors 
Transfer function: 
 10 s^5 + 200 s^4 + 1250 s^3 + 2500 s^2 + 1440 s 
----------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
 
 
Kv = 
 
 0 
 
 
ans = 
 
s^2Ge(s) 
 
 
Transfer function: 
 10 s^6 + 200 s^5 + 1250 s^4 + 2500 s^3 + 1440 s^2 
 
----------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 + 2448 s^4 + 7178 s^3 + 7480 s^2 - 2300 s - 1320 
 
 
Ka = 
 
 0 
 
essstep = 
 
 -330.0000 
 
 
essramp = 
 
 Inf 
 
 
essparabola = 
 
 Inf 
 
 
K = 
 
 1000000 
 
ans = 
 
G1(s)= 
 
 
 
Solutions to Design Problems 7-29 
Transfer function: 
 1e006 s^2 + 3e006 s + 2e006 
------------------------------- 
s^5 + 15 s^4 + 74 s^3 + 120 s^2 
 
ans = 
 
H1(s)= 
 
 
Transfer function: 
 s + 6 
--------------- 
s^2 + 17 s + 72 
 
 
ans = 
 
H2(s)=H1-1 
 
 
Transfer function: 
-s^2 - 16 s - 66 
---------------- 
s^2 + 17 s + 72 
 
 
ans = 
 
Ge(s)=G1(s)/(1+G1(s)H2(s)) 
 
 
Transfer function: 
 
 1e006 s^4 + 2e007 s^3 + 1.25e008 s^2 + 2.5e008 s + 1.44e008 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 997542 s^4 - 1.899e007 s^3 - 1.16e008 s^2 - 2.3e008 s 
 
 - 1.32e008 
 
 
 
ans = 
 
T(s)=Ge(s)/(1+Ge(s)) 
 
Transfer function: 
 
 1e006 s^4 + 2e007 s^3 + 1.25e008 s^2 + 2.5e008 s + 1.44e008 
-------------------------------------------------------------------------------- 
 
7-30 Chapter 7: Steady-State Errors 
s^7 + 32 s^6 + 401 s^5 + 2458 s^4 + 1.007e006 s^3 + 9.009e006 s^2 + 2e007 s 
 
 + 1.2e007 
 
 
 
 
 
 
ans = 
 
 -28.2460 +22.2384i 
 -28.2460 -22.2384i 
 16.7458 +22.2084i 
 16.7458 -22.2084i 
 -6.0000 
 -1.9990 
 -1.0007 
 
 
Kp = 
 
 -1.0909 
 
 
ans = 
 
sGe(s) 
 
 
 
Transfer function: 
 
 1e006 s^5 + 2e007 s^4 + 1.25e008 s^3 + 2.5e008 s^2 + 1.44e008 s 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 9.975e005 s^4 - 1.899e007 s^3 - 1.16e008 s^2 
 
 - 2.3e008 s - 1.32e008 
 
 
 
 
 
 
Kv = 
 
 0 
 
 
 
ans = 
 
s^2Ge(s) 
 
 
 
Transfer function: 
 
 1e006 s^6 + 2e007 s^5 + 1.25e008 s^4 + 2.5e008 s^3 + 1.44e008 s^2 
-------------------------------------------------------------------------------- 
s^7 + 32 s^6 + 401 s^5 - 9.975e005 s^4 - 1.899e007 s^3 - 1.16e008 s^2 
 
 - 2.3e008 s - 1.32e008 
Solutions to Design Problems 7-31 
 
 
 
Ka = 
 
 0 
 
 
essstep = 
 
 -330.0000 
 
 
essramp = 
 
 Inf 
 
 
essparabola = 
 
 
 Inf 
47. 
a. Mason’s rule can be used to find the open loop transfer from input to output: 
Only one forward path, 
1 2
1 1
( )
T v m
T K K K
s LCs
  
Three touching loops, 
1
m
K
L
Ls

  , 2 2
1
L
LCs
  , 
3
1
L
L
Z Cs
  
2
1 1
1 m
L
K
Ls LCs Z Cs

     ; 
1
1  
2
1 1
2
1
( )
( )
1 1
1
T m
v
m
L
K K
K
T LCs sG s
K
Ls LCs Z Cs




 

  
. Letting 
1
L
L
Z
sC
 
 
 

  


 
 
  
2
2
2
1
( )
( 1)
( )
1 ( )
1
T m
v
T m v
m L L m
K K
K
K K K ssLCsG s
K C s L C C s K C
Ls CLCs
 
Since the system is not unity feedback, we calculate 
 
7-32 Chapter 7: Steady-State Errors 
 
   

 
 

   

 

  
 
   
2
2 2
( 1)
( )( )
( 1) ( 1)1 ( ) ( )
1
( ) ( )
T m v
L m
T m v T m v
L m L m
K K K s
s L C C s K CG s
K K K s K K K sGH s G s
s L C C s K C s L C C s K C
 
 


  



    2
( 1)
( ) ( 1) ( 1)
T m v
T m
L m v
K K K s
K K
s L C C s K C K s
 
The system is type 0. 
 
b. For a step input we calculate 
0
( ) 1
1 ( ) ( ) 1
P
s
G s
K Lim
GH s G s 
 
  
 
Then 
1 1
1
1
ss
P
e
K 
  

 
 
 
48. 
 Y(s) = R(s) 
1 2
1 2
G (s)G (s)
1 G (s)G (s)H(s)
+
2
1 2
D(s)G (s)
1 G (s)G (s)H(s)
 
 
 E(s) = R(s) - Y(s) = R(s) - 
1 2
1 2
G (s)G (s)
1 G (s)G (s)H(s)
R(s) - 
2
1 2
D(s)G (s)
1 G (s)G (s)H(s)
 
 
 = 
1 2
1 2
G (s)G (s)
1
1 G (s)G (s)H(s)
 
 
 
 R(s) - 
2
1 2
G (s)
1 G (s)G (s)H(s)
D(s) 
Thus, 
 
e() = 
 
   
   
    
1 2 2
s 0 s 0
1 2 1 2
G (s)G (s) G (s)
lim sE(s) lim 1- R(s)- D(s)
1 G (s)G (s)H(s) 1 G (s)G (s)H(s)
 
 49. 
a. E(s) = R(s) - C(s). But, C(s) = [R(s) - C(s)H(s)]G1(s)G2(s) + D(s). Solving for C(s), 
 
C(s) = 

1 2
1 2
R(s)G (s)G (s)
1 G (s)G (s)H(s)
 + 
 1 2
D(s)
1 G (s)G (s)H(s)
 
Substituting into E(s), 
 
E(s) = 
 
 
 
1 2
1 2
G (s)G (s)
1-
1 G (s)G (s)H(s)
 R(s) - 
1 2
1
1 G (s)G (s)H(s)
 D(s) 
 
b. For R(s) = D(s) = 
1
s
, 
 
Solutions to Design Problems 7-33 
e() = 
s 0
lim

 sE(s) = 1 - 
1 2
s 0
1 2
s 0
lim G (s)G (s)
1 lim G (s)G (s)H(s)



 - 
1 2
s 0
1
1 lim G (s)G (s)H(s)


 
 c. Zero error if G1(s) and/or G2(s) is Type 1. Also, H(s) is Type 0 with unity dc gain. 
50. 
First find the forward transfer function of an equivalent unity feedback system. 
 
 
 
      

 
3 2
( 2)( 5)
( )
( 1) 7 ( 10) ( 1)1
( 2)( 5)
e
K
Ks s s
G s
K s a s s K s K a
s s s
 
Thus, 

   



1 1 1
( )
1
1
( 1)
p
a
e
KK a
K a
 
 
Finding the sensitivity of e(), we get: Se:a = 
a e
e a


= 
2
( 1)
1
a a a
a a
a
  
    
 
 
= 
1
1a
. 
 
The following MATLAB M-file was written and used to plot the sensitivity, e, as a function of the 
parameter a. The graph obtained is shown below. 
 
a = 0 : 0.1 : 10; 
e = (a-1).^-1; 
plot (a, e,'LineWidth',2) 
grid 
title 'Sensitivity to Parameter a' 
xlabel 'a' 
ylabel 'Sensitivity of errror, e, to a' 
 
 
7-34 Chapter 7: Steady-State Errors 
 
 
51 
a. 
 
   
    
                  
    


 
 


: 2
1
1
1
T P
L s F s G s H s F s L s G s H sP sP T
S
F s L sT P H s L s
H s L s
 
 
   
     
   
 
 
1
1 1
P s F s G s H s
F s L s L s L s
 
b.  
   
   
 
 
   
 
:
1
1
1 1
T P
T s H s L s
S s
F s L s L s
. 
52. 
a. 
     

 
  
2
: 2
1 2
1 2 20
T P
s s
S
G s P s s s
 so    
 


20
2
G s P s
s s
 and  
 
 

20
2 4
5 2
s s
G s
s
s
. Also 
   
   
 
 

 
  


2
20
2 20
201 2 20
1
2
G s P s s s
G s P s s s
s s
, so  
 
   
   
   
  
   
  
 
 
2
2
200
1 3 2 20 10
20 1 3
2 201
K
s s s sT s K
F s
G s P s s s
s sG s P s
. 
Solutions to Design Problems 7-35 
b. The system is type 1, so for  0sse it is required that  

 
0
10
lim 1
3s
F s K . So 
3
10
K . 
 
53. 
 From Eq. (7.70), 
 e() = 1 - 

 
 

 
   
1 2
s 0
1 2
K K
(s 2)
lim
K K (s 1)
1
(s 2)
 - 

 
 

 
   
2
s 0
1 2
K
(s 2)
lim
K K (s 1)
1
(s 2)
 = 


2
1 2
2 K
2 K K
 
 Sensitivity to K1: 
 Se:K1 = 
δ
δ
1
1
K e
e K
= - 

1 2
1 2
K K
2 K K
 = - 

(100)(0.1)
2 (100)(0.1)
 = - 0.833 
 Sensitivity to K2: 
 Se:K2 = 
δ
δ
2
2
K e
e K
 = 


2 1
2 1 2
2K (1 K )
(K -2)(2 K K )
 = 


2(0.1)(1 100)
(0.1-2)(2 (100)(0.1))
 = - 0.89 
 
54. 
a. Using Mason’s rule: 
1 1T ; Loops 
 
  
  
  
2
0
1 2 2 2 2
0 0
1t
r r
US
K
L m m
M s ss s
 and 


 

2
rmL
s
, no non-touching 
loops. 


  

1 1
rm
s
 


 
 

  

 
 
1 1
2
0
2 2
0
1
1
r
r r
m
TE s
R
m m
s ss
 
b. For a unit step input, 


 
 


   
 
 
 
20
0
2 2
0
1
11
1
1
1
r
r
ss r
s
r r
r r
m
mse Lims m
s m m
m m
s ss
 
c. For a unit ramp input, 


 
 


  
 
 
2 20
0
2 2
0
1
1
1
r
ss
s
r r
m
se Lim s
s
m m
s ss
 
d. The system is type 0. 
 
55. 
 a. Using Eq. (7.89) with 
 
7-36 Chapter 7: Steady-State Errors 
    
 
      
     
2
-1 2
3 2
2
s 15s 50 -(4s 22) -(2s 20)
1
(s - ) -(3s 15) s 10s 23 6
s 20s 111s 164
-(s 13) s 9 s 15s 38
I A 
 yields e() = 1.09756 for a step input and e() =  for a ramp input. The same results are obtained 
using 
 

  
   
 
 
1
50 22 20
1
15 23 6
164
13 9 38
A 
 and Eq. (7.96) for a step input and Eq. (7.103) for a ramp input. 
 b. Using Eq. (7.89) with 
 

 
 
    
    
2
1 2
3 2
2
s 9s s 7
1
(s - ) -(5s 7) s 7s
s 9s 5s 7
-(s 9) -1 s 9s 5
I A 
 
 yields e() = 0 for a step input and e() = 
5
7
 for a ramp input. The same results are obtained using 
 

 
   
 
  
1
0 0 7
1
7 0 0
7
9 1 5
A 
 and Eq. (12.123) for a step input and Eq. (12.130) for a ramp input. 
 c. Using Eq. (7.89) with 
 

      
 
       
          
2
1 2
3 2
2
15 4 5 23) 10)
1
(s ) 11 14 42 2 19
14 43 17
3 2) 2 3 9 5
s s s s
s s s s
s s s
s s s s
I A 
 yields e() = 6 for a step input and e() =  for a ramp input. The same results are obtained using 
 

  
 
   
   
1
4 23 10
1
11 42 19
17
2 3 5
A 
 and Eq. (7.96) for a step input and Eq. (7.103) for a ramp input. 
56. 
a. Following Figure P7.26, the transfer function from f to e is given by: 




*
1
f
f r
r Ge
KG
 
Solutions to Design Problems 7-37 
 For  
1
f
s
 we have that in steady state 
 
 

 

2
2
4
2
0.8
1 0
b
a
e
b
K
a
 
 It can be seen from this expression that if  K s is type 1 or larger    0e . 
b. From Figure P7.26: 




*
1
f r
f r
G r KGr
KG
 
 
The error is now defined as 


  

*
1 1
1
f r
f r
G r KGr
KG
=
  

*1
1
r f r
r
KG G r KG
KG
 
 
In steady state this expression becomes: 
 
   
 
 
 
    
  
 
4 2 4 4 2
2 2 2 2 2
4 4
2 2
1 0 0.8 0 1 0.2 0
1 0
1 0 1 0f
b b b b b
K K K
a a a a ar
b b
K K
a a
 
It can be seen in this equation that the steady state error cannot be made zero. 
 
57. 
a. Letting  0x ,  0y , we get two equations: 
        0k x a g h y 
             1 1q k x qa g q qh y 
Solving the first equation for x , substituting into the second and simplifying we get 




1
 
y
a h
 
b. The systems characteristic equation is calculated from 
   
   
   
                 
2 0
1 1
s k a g h
s s k g q a h g s k h a
q k s qa g q qh
I A
 
The Routh array is 
2s 1  k h a 
s     k g q a h g 
 
1 
 k h a 
For closed loop stability the second row requires       0k g q a h g or 
  
 
1k g q
h a
q
. 
7-38 Chapter 7: Steady-State Errors 
 The third row requires 0h a  . The intersection of both requirements is 
  
  
1
0
k g q
h a
q
 
c. From part a. zero steady state error requires  a h , however this value is limited by 
stability requirements as shown in part b. Therefore zero steady state error is not possible. 
 
58. 
a. The system’s type is 0 because the system shows a nonzero steady state error for a step 
input 
b.   1 0.37 0.63sse 
c. Since the system is type 0, for a ramp input 
ss
e  . 
59. 
a. We will calculate the steady state error from      e t r t c t  so we start by calculating the 
system’s closed loop transfer function. From Mason’s Rule: 

  
 
  
       
1 2 3 4
2 3 4
1 2 3 4 2 3 4 2 3 4 3
2 3 4 2 3 4 3 4
(1 )(1 )(1 )( )
( )
1
(1 )(1 )(1 ) (1 )(1 )(1 ) (1 )(1 )
K K K K
sT sT sTC s
T
K K K K K K K sv K K svR s
sT sT sT sT sT sT sT sT
 
     

      
1 2 3 4
2 3 4 1 2 3 4 2 3 4 2 3 4 3 21 1 1 1
K K K K
sT sT sT K K K K K K K sv K K sv sT
 
      E s R s C s 
     
 
          
1 2 3 4
2 3 4 1 2 3 4 2 3 4 2 3 4 3 2
1
1
1 1 1 1
K K K K
s sT sT sT K K K K K K K sv K K sv sT
 


        
  
       
2 3 4 1 2 3 4 2 3 4 2 3 4 3 2 1 2 3 4
2 3 4 1 2 3 4 2 3 4 2 3 4 3 2
(1 )(1 )(1 ) (1 )1
(1 )(1 )(1 ) (1 )
sT sT sT K K K K K K K sv K K sv sT K K K K
s sT sT sT K K K K K K K sv K K sv sT
 
Applying the Final Value Theorem 




 
       
 
      
 


2 3 4 1 2 3 4 2 3 4 2 3 4 3 2 1 2 3 4
0 0
2 3 4 1 2 3 4 2 3 4 2 3 4 3 2
1 2 3 4 1 2 3 4
1 2 3 4
(1 )(1 )(1 ) (1 )
lim ( ) lim
(1 )(1 )(1 ) (1 )
1
1
ss
s s
e
sT sT sT K K K K K K K sv K K sv sT K K K K
sE s
sT sT sT K K K K K K K sv K K sv sT
K K K K K K K K
K K K K
 
b. Since the steady state error to a step input is non-zero the system is type 0 
60. 
The Simulink model of this system and its step response (displayed in blue) from t = 0 to 300 seconds 
are shown below. Here, the reference input, r(t), is a unit step, u(t), applied at t = 0 (displayed in 
green), and the disturbance is d(t) = 0.25 u(t) applied at t = 150 seconds (displayed in yellow). As 
Solutions to Design Problems 7-39could be seen from this plot, the steady-state errors due to a step reference input, r(t) = u(t), and due to 
a disturbance, d(t) = 0.25 u(t), are both equal to zero. 
 
It should be noted, however, that the relative stability of this Type 3 system is poor, since it exhibits a 
high percent overshoot, % OS  80 %, due to the unit-step reference input. 
 
 
 
 
 
 
 
61. 
The modified Simulink models of this system and their responses (displayed in blue) from t = 0 to 100 
seconds are shown below. In the top model, the reference input, r(t), is a unit ramp, t u(t), applied at t = 
7-40 Chapter 7: Steady-State Errors 
0 (displayed in green), and the disturbance is d(t) = 0.25 t u(t) applied at t = 50 sec (displayed in 
yellow). As could be seen from this plot, the steady-state position errors due to the unit-ramp reference 
input and the 0.25 t u(t) disturbance ramp are equal to zero. 
 
 
 
 
 
 
Solutions to Design Problems 7-41 
 
 
 
7-42 Chapter 7: Steady-State Errors 
 
 
SOLUTIONS TO DESIGN PROBLEMS 
 
62. 
The force error is the actuating signal. The equivalent forward-path transfer function is 
1
1 2
( )
( )
e
K
G s
s s K K


. The feedback is ( )
e e
H s D s K  . Using Eq. (7.72) 
( )
( )
1 ( ) ( )
a
e
R s
E s
G s H s


. Applying the final value theorem, 

 
 
 
   



2
2
_
0
1
1 2
1
( ) lim 0.1
( )
1
( )
a ramp
s
e e e
s
Ks
e
K D s K K
s s K K
. Thus, K2 < 0.1Ke. Since the closed-loop system is 
second-order with positive coefficients, the system is always stable. 
 
63. 
a. The minimum steady-state error occurs for a maximum setting of gain, K. The maximum K possible 
is determined by the maximum gain for stability. The block diagram for the system is shown below. 
 
 
Pushing the input transducer to the right past the summing junction and finding the closed-loop 
transfer function, we get 
 
2
3 2
2
3
3( 10)( 4 10)
( )
3 14 50 (3 100)
1
( 10)( 4 10)
K
Ks s s
T s
K s s s K
s s s
  
 
   

  
 
 
 
 
Solutions to Design Problems 7-43 
Forming a Routh table, 
 
s
3
 1 50 
s
2
 14 3K+100 
s
1
 3 600
14
K 
 
0 
s
0
 3K+100 0 
 
The s
1
 row says - < K < 200. The s0 row says 
100
3
 < K. Thus for stability, 
100
3
 < K < 200. Hence, the maximum value of K is 200. 
b. 
3
6
100
p
K
K   . Hence, 
1 1
( )
1 7
step
p
e
K
  

. 
c. Step input. 
 
64. 
Substituting values we have 
0.1140625
( )
( 2.67)( 10)
se
P s
s s


 
, 
0.005
( )
0.005
L
G s
s


 
The proportional error constant 
0.1
0 0
0.005 140625
( ) ( ) 5273.44
0.005 ( 2.67)( 10)
s
P
s s
L e
K Lim G s P s Lim L
s s s

 
  
  
 
1 1
0.1
1 1 5273.44
ss
P
e
K L
  
 
 which gives 
31.71 10L   . 
65. 
a. The open loop transmission is 
2
48500
( )
2.89
P I
K s K
GP s
s s



. The system is type 2. 
b. The Transfer function from disturbance to error signal is 
2
3 2
2
48500
( ) 485002.89
48500( ) 2.89 48500( )
1
2.89
P I P I
E s ss s
K s KD s s s K s K
s s s
   
   


 
Using the Final value theorem 
3 20 0
48500 1
( ) 0
2.89 48500( )
ss
s s
P I
s
e Lim sE s Lim s
s s K s K s 
 
    
   
 
7-44 Chapter 7: Steady-State Errors 
c. We calculate 
2
0
48500
( ) ( )
2.89
I
a
s
K
K Lim s G s P s

  so 
1 2.89
0.05
48500
SS
a I
e
K K
   . So 
we get 0.0120
I
K  
d. The system’s characteristic equation is 
2
0.01248500
1 0
2.89
P
K s
s s s

 

 or 
3 22.89 48500 584.021 0
P
s s K s    . The Routh array is: 
 
 
3s 1 48500 PK 
2s 2.89 584.021 
s 
140165 584.21
2.89
P
K 
 
1 48500 PK 
 
 The dominant requirement is given by the third row 0.00417
P
K  
 
66. 
a. A bode plot of the open loop transmission ( ) ( )
c
G s P s shows that the open loop transfer function 
has a crossover frequency of 0.04c
rad
day
  . A convenient range for sampling periods is 
0.15 0.5
3.75 12.5
c c
day T day
 
    . T=8 days fall within range. 
b. We substitute 
1 1
4 1
z
s
z



into ( )
c
G s we get 
4 2
2
2 10 (1.145 1.71 0.8489)
( )
1.852 0.8519
c
z z
G z
z z
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solutions to Design Problems 7-45 
c. 
 
 
 
 67. 
a. When the speed controller is configured as a proportional controller, the forward-path transfer 
function of this system is: 
 

    
SC
0.11 ( 0.6)
( )
( 0.5173) 5 (s 0.6) (s 0.01908)
Ps K
G s
s s
 (1) 
For the steady-state error for a unit-step input, r(t) = u(t), to be equal to 1%: 
7-46 Chapter 7: Steady-State Errors 


   
   
        
SC
step
0
0
1 1
( ) 0.01
0.11 ( 0.6)1 lim ( )
1 lim
( 0.5173) 5 (s 0.6) (s 0.01908)
P
s
s
e
s KG s
s s
 (2) 
From equation (2), we get: 
 

  
SC
1
0.01
0.11 0.6
1
0 5 0.6 0.01908
PK
, which yields: KP
SC
 = 85.9. 
b. When the speed controller is configured as a proportional plus integral controller, the forward-path 
transfer function of the system becomes: 
 
  

    
SC
0.11 ( 0.6) (100 )
( )
( 0.5173) 5 (s 0.6) (s 0.01908)
Is s K
G s
s s s
 (3) 
For the steady-state error for a unit-ramp input, r(t) = t u(t), to be equal to 2.5%: 
 


   
   
       
SC
ramp
0
0
1 1
( ) 0.025
lim ( ) 0.11 ( 0.6) (100 )
lim
( 0.5173) 5 (s 0.6) (s 0.01908)
I
s
s
e
sG s s s K
s
s s s
 (4) 
From equation (4), we get: 
 
  
SC
1
0.025
0.11 0.6
0 5 0.6 0.01908
IK
, which yields: KI
SC
 = 34.7. 
 
c. We’ll start by finding G1(s), the equivalent transfer function of the parallel combination, 
representing the torque and speed controllers, shown in Figure P7.35: 
 
    
   
   
2
1
13.53 3 ( 0.6) 100 40 313.53 300 72
( )
( 0.5) ( 0.5) ( 0.5)
s s s s s
G s
s s s s s
 (5) 
Given that the equivalent transfer function of the car is: 



3
2
6.13 10
( )
0.01908
G s
s
, we apply equation 7.62
*
 
of the text taking into consideration that the disturbance here is a step with a magnitude equal to 83.7: 
 
     

 1
0 0
2
83.7 83.7
( ) 0
1 3.11
lim lim ( )
( )s s
e
G s
G s
 
 
Solutions to Design Problems 7-47 
68. 
a. The system is type 0 so   0lim 0.7p sK KP s K . It follows that 
  
 
1 1
0.03
1 1 0.7
ss
p
e
K K
. So  46.19K . From Problem 76, Chapter 6, the system is 
closed-loop stable for K < 9.63, so this steady-state error is not achievable. 
b. Due to stability constraints, the minimum steady state error for a unit step input is 
achievable when K = 9.63. 
  
 

1
0.1292
1 9.63 0.7
sse or 12.92% 
c. For zero steady-state error to a step input, the system must be augmented to Type 1. 
The simplest compensator that can be used to achieve this is an integrator, namely 
C
K
G
s
. 
ONLINEFFIRS 11/25/2014 13:29:37 Page 1
Copyright  2015 John Wiley & Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.
Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Ourcompany is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,
we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and
ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.
The software programs and experiments available with this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any
warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.
AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks
of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC,
Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a
trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc.
The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control
Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of National
Instruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries.
Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are
trademarks or registered trademarks of Quanser Inc. and/or its affiliates.  2010 Quanser Inc. All rights reserved.
Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a
registered trademark of Honda.
Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact
your local representative.
Library of Congress Cataloging-in-Publication Data
Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. — Seventh edition.
1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)
1. Automatic control–Textbooks. 2. Systems engineering–Textbooks. I. Title.
TJ213
629.8–dc23
2014037468
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
http://www.wiley.com/go/permissions
http://www.wiley.com/go/citizenship
http://www.wiley.com/go/returnlabel

More content from this subject