Logo Passei Direto

Miluska Fernandez_Johanna Beltran_Trabajo de Investigacion_Bachiller_2020

Herramientas de estudio

Material
¡Estudia con miles de materiales!

Vista previa del material en texto

Facultad de Ingeniería 
Ingeniería Industrial 
 
Trabajo de Investigación: 
“Aplicación del Software Arena para la 
Simulación del Proceso de Atención al 
Cliente de una Entidad Financiera de la 
Ciudad de Arequipa para el año 2020” 
 
 
Miluska Fernanda Fernández Tesillo 
Johanna Lily Beltran Valdivia 
 
Para obtener el Grado Académico de Bachiller en: 
 Ingeniería Industrial 
 
 
Arequipa – Perú 
2020 
 
 
 
 
 
 
 
 
 
 
RESUMEN 
La realización de este trabajo de investigación tiene como objetivo disminuir los tiempos de 
espera y el costo del sistema que se presenta en el área de atención al cliente de la entidad 
financiera ubicada en la Ciudad de Arequipa. Por lo que se aplicó la metodología de la 
Teoría de Colas empleando la simulación utilizando el Software Arena. 
 
La metodología a utilizar consistió en la recopilación de información, por lo que se realizó 
una entrevista a un trabajador del banco y una observación directa por 4 días. Esta 
información fue analizada utilizando la herramienta del Microsoft Excel y el Input Analyzer, 
en el que se obtuvo que el tiempo entre llegadas de los clientes presenta una distribución 
del tipo beta y exponencial por lo que se procede a efectuar la Teoría de Colas utilizando 
la simulación. 
 
También se realizó el modelo computarizado del proceso de atención al cliente para la 
simulación, en el cual se obtuvo que la cantidad de servidores a proponer debe ser 
considerada para ambos turnos y que el costo del sistema actual es de s/. 159.1706. Por 
otro lado, se realizaron 5 escenarios en los que se modificaron la cantidad de servidores 
para observar la variación de los tiempos y el costo del sistema. Los resultados obtenidos 
fueron analizados y comparados, concluyéndose que la cantidad a proponer es de 3 
 
 
 
servidores ya que el tiempo de espera disminuye en 29% y el costo del sistema en 3.16% 
presentando un costo total de s/ 137.52. 
Palabras claves: Tiempo de Espera, Teoría de colas, Simulación, Software ARENA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
The objective of carrying out this research work is to reduce waiting times and the cost of 
the system that is presented in the customer service area of the financial institution located 
in the city of Arequipa. So the Queuing Theory methodology was applied using simulation 
using the Software Arena. 
The methodology to be used consists of the collection of information, for which an interview 
with a bank worker and a direct observation for 4 days was carried out. This information 
was analyzed using the Microsoft Excel tool and the Input Analyzer, in which the time 
between client updates was obtained. It presents a distribution of the beta and exponential 
type, so we will proceed to the Queuing Theory using the simulation. 
The computerized model of the customer service process for the simulation was also carried 
out, in which it was obtained that the number of servers to be proposed must be considered 
for both shifts and that the cost of the current system is s /. 159.1706. On the other hand, 5 
scenarios were carried out in which the number of servers was modified to observe the 
variation in times and the cost of the system. The results obtained were analyzed and 
compared, concluding that the quantity to be proposed is 3 servers since the waiting time 
decreases by 29% and the cost of the system by 3.16%, presenting a total cost of s / 137.52 
 
 
Key words: Lead Time, Theory of line, Simulation, Software ARENA
 
 
 
ÍNDICE 
 
 
INTRODUCCIÓN .......................................................................................................... 1 
1.1 Planteamiento de la Problemática .................................................................. 2 
1.2 Justificación ..................................................................................................... 4 
1.2.1 Económica .................................................................................................... 4 
1.2.2 Social ............................................................................................................. 5 
1.2.3 Técnica .......................................................................................................... 5 
1.3 Delimitación del Tema ..................................................................................... 5 
1.3.1 Delimitación Temporal .......................................................................... 5 
1.3.2 Delimitación Espacial ............................................................................ 5 
1.3.3 Delimitación Temática ........................................................................... 5 
1.3 Objetivos ........................................................................................................... 6 
1.3.1 Objetivo General ........................................................................................... 6 
1.3.2 Objetivos Específicos .................................................................................. 6 
1.4 Limitaciones ..................................................................................................... 6 
CAPÍTULO 2 ................................................................................................................ 7 
FUNDAMENTACIÓN TEÓRICA ................................................................................... 7 
2.1 Proceso de Atención al Cliente ....................................................................... 7 
2.2 Colas ................................................................................................................. 7 
2.4.1 Elementos .............................................................................................. 9 
2.4.1.1 Clientes .................................................................................................. 9 
2.4.2.2 Proceso de Llegadas ............................................................................. 9 
2.4.2.3 Proceso de Colas................................................................................... 9 
2.4.2.4 Proceso de Servicio .............................................................................. 9 
2.4.2.5 Proceso de Salida .................................................................................. 9 
2.4.3 Modelo de Colas .................................................................................. 10 
2.4.3.1 Distribución Exponencial .................................................................... 10 
2.4.3.2 Distribución no Exponencial .............................................................. 10 
2.5 Kruskal – Wallis .............................................................................................. 11 
2.6 Comparación Múltiple .................................................................................... 11 
2.7 Simulación ...................................................................................................... 11 
2.7.1 Tipos ..................................................................................................... 11 
 
 
 
2.7.1.1 Modelo Continuo ................................................................................. 11 
2.7.1.2 Modelo Discreto ................................................................................... 12 
2.7.2 Aplicaciones ........................................................................................ 12 
2.8 Software ARENA ............................................................................................ 12 
CAPÍTULO 3 .............................................................................................................. 14 
ESTADO DEL ARTE .................................................................................................. 14 
CAPÍTULO 4 ..............................................................................................................20 
DESARROLLO METODOLÓGICO ............................................................................ 20 
4.1. Técnicas e Instrumentos ............................................................................... 25 
4.2. Población ........................................................................................................ 26 
4.3. Muestra ........................................................................................................... 26 
4.4. Operacionalización de Variables ................................................................... 26 
CAPÍTULO 5 .............................................................................................................. 33 
DESARROLLO DE LA INVESTIGACIÓN .................................................................. 33 
CONCLUSIONES ....................................................................................................... 70 
6.1. Discusión de Resultados ............................................................................... 70 
6.2. Conclusiones .................................................................................................. 72 
6.3. Recomendaciones.......................................................................................... 73 
Anexos....................................................................................................................... 75 
Anexo n°1. Encuesta ................................................................................................ 75 
Anexo n°2. Guía de Preguntas de la Entrevista ...................................................... 76 
Anexo n°3. Registro de tiempos de atención a los usuarios 2019 ........................ 77 
Anexo n°4. Distribución de Chi Cuadrado .............................................................. 78 
Anexo n°5. Tiempos entre llegadas ......................................................................... 79 
Anexo n°6 Tasas por diversas operaciones ........................................................... 81 
REFERENCIAS BIBLIOGRÁFICAS ........................................................................... 84 
 
 
 
 
 
 
 
 
 
 
Índice de Figuras 
Figura 1. Colas [6] ........................................................................................................ 8 
Figura 2. Estructura de Modelo de Colas [10] ............................................................. 10 
 
 
 
 
Índice de Ilustraciones 
Ilustración 1. Tabla de Comparación ........................................................................... 22 
Ilustración 2.Punto de Equilibrio [30] ........................................................................... 23 
Ilustración 3. Modelo Computarizado del Proceso de Atención ................................... 50 
Ilustración 4. Módulos Create de turno mañana y tarde .............................................. 51 
Ilustración 5. Módulo create para cortes de llegada .................................................... 52 
Ilustración 6. Tiempo de Llegada ................................................................................ 52 
Ilustración 7. Módulo Decide ....................................................................................... 53 
Ilustración 8. Módulo Assign colocación de atributos de tipo y contador ..................... 53 
Ilustración 9. Módulo Process ..................................................................................... 54 
Ilustración 10. Módulo Schedule ................................................................................. 55 
Ilustración 11. Módulo Assign colocación de atributos de Tiempo de Proceso y 
disminución de contador ............................................................................................. 55 
Ilustración 12. Run Setup ............................................................................................ 56 
 
Índice de Tablas 
 
Tabla I Operacionalización de Variables ................................................................. 31 
Tabla II Promedio del Total de Operaciones ........................................................... 34 
Tabla III Cantidad de Operaciones por Mes ........................................................... 35 
Tabla IV Cantidad de Clientes por Mes ................................................................... 37 
Tabla V Tiempos promedios de llegada, servicio y espera .................................. 38 
Tabla VI Datos para armar la tabla de frecuencias ................................................ 40 
Tabla VII Tabla de Frecuencias ................................................................................ 40 
Tabla VIII Cantidad Promedio de Personas en Cola por Hora .............................. 43 
Tabla IX Tiempo Promedio de Espera por hora ...................................................... 45 
Tabla X Hipótesis para la Prueba no Paramétrica Kruskal-Wallis ........................ 47 
Tabla XI Rangos ........................................................................................................ 48 
Tabla XII Datos para la Prueba no Paramétrica Kruskal-Wallis ............................ 49 
Tabla XIII Cantidad Promedio de Personas............................................................ 57 
Tabla XIV Clientes que ingresan, atendidos y tiempo de espera .......................... 59 
Tabla XV Costo del Servicio en un mes .................................................................. 60 
 
 
 
Tabla XVI Costo del Servicio en una hora ............................................................... 61 
Tabla XVII Costo de Atención por cliente ............................................................... 62 
Tabla XVIII Resultados del Software Arena y Costos ............................................. 62 
Tabla XIX Beneficio con 3 servidores...................................................................... 67 
Tabla XX Herramientas Básicas............................................................................... 68 
Tabla XXI Artículos de Oficina ................................................................................. 69 
Tabla XXII Artículos Personales .............................................................................. 70 
Tabla XXIII Capacitación .......................................................................................... 71 
Tabla XXIV Remuneración ........................................................................................ 72 
Tabla XXV Inversión Total ........................................................................................ 72 
Tabla XXVI Flujo de Caja .......................................................................................... 74 
Tabla XXVII Beneficio Costo .................................................................................... 69 
 
Índice de Gráficos 
Gráfico 1. Porcentaje de utilización de operaciones .................................................... 34 
Gráfico 2. Horario de Trabajo ...................................................................................... 36 
Gráfico 3. Tiempos promedio de llegada, servicio y espera ........................................ 39 
Gráfico 4. Histograma de Cantidad de Personas en Cola ........................................... 41 
Gráfico 5. Porcentaje de Cantidad de Personas presentes en la cola ......................... 42 
Gráfico 6.Promedio de cantidad de personas presentes en la cola por hora ............... 44 
Gráfico 7. Gráfico de Líneas del tiempo de espera por hora ....................................... 46 
Gráfico 8. Distribución de Tiempos entre llegadas ...................................................... 47 
Gráfico 9. Cantidad Promedio de Máximas Personas Retiradas ................................. 58 
Gráfico 10. Porcentaje de Reducción de los Tiempos Promedios ............................... 64 
Gráfico 11. Porcentajede Utilización .......................................................................... 65 
Gráfico 12. Costos en el Sistema de Espera ............................................................... 66 
Gráfico 13. Costos ...................................................................................................... 73 
Gráfico 14. Ingresos.................................................................................................... 73 
 
 
Índice de Fórmulas 
 
Fórmula de Kruskal Wallis(1) ...................................................................................... 21 
Fórmula de Comparación Múltiple de Tukey(2) ........................................................... 22 
Fórmula de Costo de Servicio(3) ................................................................................ 24 
Fórmula de Costo de Espera (4) ................................................................................. 24 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCCIÓN 
Las empresas que ofrecen sus servicios y productos a la población se encuentran 
afrontando problemas en el servicio al cliente debido a que se presenta congestión 
por el aumento de la cantidad de personas que requieren de este bien o servicio y por 
la inadecuada organización de los recursos necesarios para ofrecer una atención 
eficaz. La presencia de este problema en las entidades financieras es perjudicial, ya 
que estas entidades se encargan de contribuir en el progreso de la población y de las 
demás empresas, por lo que debe tener un proceso eficiente para satisfacer las 
necesidades de los clientes. 
Por esta razón, se está utilizando actualmente la metodología de la Teoría de Colas 
utilizando la simulación, debido a que esta herramienta ayuda a obtener datos que se 
aproximan más a la realidad para poder dar solución al problema que ocasiona esta 
deficiencia en el proceso, y de esta manera mejorar su proceso para aumentar la 
satisfacción en sus clientes. Además, de que también influyen en la reducción del 
costo del sistema que se presenta a lo largo del proceso. 
 
 
 
2 
 
 
 
 
 
 
CAPÍTULO 1 
 
1.1 Planteamiento de la Problemática 
En la actualidad muchas empresas buscan ofrecer un adecuado servicio al cliente 
para poder diferenciarse de sus competidores, convirtiendo este servicio en un 
factor importante que agrega valor al producto o servicio. Siendo así que al 
satisfacer las necesidades de los clientes se genera una ventaja competitiva [1]. 
Las líneas de espera son parte intrínseca de la vida diaria, puesto que se presenta 
cuando se realizan actividades sencillas o para adquirir un servicio. A través del 
tiempo nos hemos acostumbrado a esperar; sin embargo, esto no es ajeno a 
malestares e incomodidades. Por otra parte, este índice de espera forma parte de 
un indicador de calidad de vida de un país, así como de su economía [2]. 
La problemática que se presenta en las entidades financieras son los altos tiempos 
de espera, puesto que con la globalización son más las personas que adquieren 
esos servicios. Actualmente las diversas entidades financieras han adquirido 
herramientas para contrarrestar los altos tiempos de espera, tales como equipos 
tecnológicos, modelos matemáticos o probabilísticos. 
En la entidad financiera de objeto de estudio, la atención al cliente se está viendo 
afectado por demoras en los tiempos de espera y atención, los mismos que derivan 
a que los procesos en el área de plataforma sean lentos, convirtiendo estos 
aspectos en insatisfacción por parte de los usuarios. Además, ocasiona una mala 
imagen, pérdida de fidelidad y confianza para con la entidad financiera. 
 
 
3 
 
Esta empresa cuenta con dos plataformas, siendo la principal la que se encarga de 
la mayoría de los procesos como venta de productos, brindar información, recepción 
de documentación, entre otros. Actualmente la mayor afluencia de personas se 
presenta en dos horarios, de 12:00 pm a 2:00 pm y de 4:00 pm a 6:30 pm, 
sobrepasando la capacidad que presenta la agencia (2 módulos), presentando 
tiempos de espera de hasta 45 minutos. Por otra parte, por políticas del banco toda 
persona que ingresa al banco hasta las 6:30 pm debe de ser atendida, es por ello 
que se genera una congestión en el proceso de atención, presentando colas de 
hasta 5 personas con un tiempo de espera para la atención de 25 minutos en 
promedio [2]. 
En la agencia esta problemática se presenta recurrentemente, puesto que según 
un estudio que realiza el banco en las agencias de Arequipa denominado “Índice 
anual de satisfacción” indica que la agencia se encuentra con un 36% de 
aceptación, dentro del cual los altos tiempos de espera ocupa uno de los principales 
problemas [3]. 
De acuerdo a lo anterior, una inadecuada atención conlleva a consecuencias que 
no son favorables para la empresa, por lo que si la empresa no logra satisfacer las 
necesidades del cliente es probable que no vuelva a requerir de sus servicios 
nuevamente, lo que originaría que se vea afectado la reputación de la empresa y a 
la vez sus ingresos futuros 
Actualmente la tasa de no permanencia es de 14% en la agencia de la entidad 
financiera, esta tasa representa el número de clientes que migra a otras entidades 
financieras por diversos motivos, dentro de los cuales se tiene la tasa de interés 
como principal factor, seguido de la insatisfacción del cliente en el servicio, entre 
otros [3] . Esto conlleva una pérdida en los ingresos anuales de la entidad financiera, 
puesto que según el ratio de créditos estos varían en su mayoría entre los S./5000 
a los S./30000 soles, para lo cual se ha realizado encuestas a 40 clientes en 
 
4 
 
noviembre del 2019, teniendo como referencia un modelo de encuesta de atención 
al cliente aplicada en una financiera [4] (Anexo n°1). 
Citando los resultados de la encuesta ya mencionada, el 57% de usuarios se 
plantearía cambiarse de entidad financiera ante una mala atención o demoras 
prolongadas en el servicio de forma recurrente, un 71% encuentra molesto los altos 
tiempos de espera que se presentan en horas punta y un 27% indica que no seguiría 
trabajando con la entidad financiera por problemas con el servicio. 
De continuar con esta situación, los clientes de la agencia bancaria van a seguir 
migrando a otras entidades financieras, provocando que la imagen de la 
corporación se vea afectada y esto se vería reflejado en la disminución progresiva 
del balance anual de colocaciones brutas de la entidad. 
Pregunta principal de investigación 
 ¿En cuánto se reduce el costo total del sistema de colas que se presenta en la 
entidad financiera variando la cantidad de servidores mediante la aplicación de 
la simulación con el Software Arena? 
 
1.2 Justificación 
1.2.1 Económica 
Esta investigación es factible debido a que no se necesita de una gran inversión 
porque solo se va a presentar gastos en el transporte, ya que se cuenta con el 
software a utilizar. Además, se cuenta con acceso a la información necesaria para 
la investigación. 
Por otro lado, esta investigación va a beneficiar a la empresa y a la población, 
puesto que para la primera se reducirán sus pérdidas y con relación a la segunda 
los tiempos de espera se verán reducidos 
 
5 
 
1.2.2 Social 
La información que se obtenga de este estudio va a beneficiar a la entidad financiera 
debido a que va a tener información sobre su proceso de atención al cliente, la 
cantidad de clientes que van a adquirir el servicio, sus respectivos tiempos de 
espera y el costo del sistema. Por lo que va a poder tomar decisiones adecuadas 
para la situación actual de la entidad financiera. 
Por otro lado, va a proveer conocimiento a la población estudiantil sobre la 
utilización de estos métodos, siendo una guía de ayuda para posteriores 
investigaciones que se realicen en otras empresas u organizacionesque requieran 
mejorar su servicio al cliente 
1.2.3 Técnica 
Se realiza un estudio de tiempos con los datos recolectados del proceso de atención 
al cliente agencia bancaria para mejorar el servicio al cliente y de esta manera 
aumentar su respectiva satisfacción y lealtad. Además de que se busca conocer la 
variación del tiempo de dicha atención cuando se le aplica la metodología de la 
Teoría de colas utilizando la simulación mediante el software ARENA, con el 
objetivo de reducir el tiempo de espera y el costo del sistema en la entidad 
financiera. 
 
1.3 Delimitación del Tema 
1.3.1 Delimitación Temporal 
Este estudio se va a realizar en el año 2020. 
1.3.2 Delimitación Espacial 
Esta investigación se realizó en el Proceso de Atención al Cliente del área de la 
primera plataforma de la entidad financiera ubicada en la ciudad de Arequipa. 
1.3.3 Delimitación Temática 
 
 
6 
 
La realización de esta investigación abarca el tema de la simulación mediante la 
utilización del software ARENA. 
 
1.3 Objetivos 
1.3.1 Objetivo General 
Reducir el costo del sistema presente en la entidad financiera variando la cantidad 
de servidores mediante la aplicación de la simulación con el Software Arena 
1.3.2 Objetivos Específicos 
 Analizar las operaciones del proceso de atención de la agencia bancaria de 
Arequipa 
 Simular el proceso de atención al cliente de la agencia bancaria de Arequipa 
 Evaluar escenarios para la reducción del tiempo de espera y el costo del sistema 
 Realizar un análisis de Beneficio y/o Costo. 
 
1.4 Limitaciones 
● Poco tiempo disponible para la toma de muestras 
● Presencia de errores en la toma de tiempos 
● Pocas personas para la toma de datos 
● Desconfianza de la población 
 
 
 
 
 
 
 
 
 
7 
 
 
 
 
 
 
 
CAPÍTULO 2 
 
FUNDAMENTACIÓN TEÓRICA 
 
2.1 Proceso de Atención al Cliente 
El proceso de atención al cliente está enfocado en cumplir con los requerimientos 
de los clientes para que de esta manera se satisfaga sus necesidades actuales y 
futuras. Además de que es una herramienta del marketing, ya que tiene como 
objetivo disminuir la cantidad de pérdidas de clientes y que los errores que se 
presenten sean mínimos, por lo que es un factor decisivo para el éxito de las 
empresas debido a que se encuentra estrechamente relacionado con la demanda 
de los clientes [5]. 
 
2.2 Colas 
La cola es un conjunto de clientes que ha solicitado un servicio, los cuales se 
colocan de forma ordena según su orden de llegada. Este proceso comienza 
desde que los clientes ingresan al lugar y se unen a la cola respectiva en donde 
van a adquirir lo que necesitan para poder satisfacer sus necesidades. Cada 
cliente presente en la cola va a ser seleccionado mediante la disciplina del 
servicio para proporcionarle el servicio que requiere para finalmente terminar con 
la salida de dicho cliente del sistema de colas [6] . Esto provoca largos tiempos 
de espera causando el malestar e insatisfacción en los clientes. 
 
8 
 
 
 
 
 
 
Figura 1. Colas [6] 
2.3 Tiempo de Espera 
El lead time es el tiempo que tiene que esperar la población para obtener un 
producto o un servicio que requiere para satisfacer sus necesidades. Este tiempo 
es variable y es un indicador importante para aplicar la teoría de colas [7]. 
 
2.4 Teoría de Colas 
La teoría de colas fue creada por el matemático Danés A. K. Erlang en el año 
1909. Es una herramienta de Investigación de Operaciones (IO), el cual es un 
complemento a la teoría de control y de sistemas. Se encarga del estudio de 
tiempos de espera que se presentan ante diversas situaciones y del desempeño 
que tiene el sistema sin que colapse [8]. Esta herramienta no resuelve el 
problema, ya que solo brinda información probabilística y de utilidad para que las 
empresas tomen decisiones basados en los resultados obtenido para que los 
tiempos de espera sean los adecuados y de esta manera aumentar la satisfacción 
y la experiencia del cliente. Además, está enfocada en lograr un equilibrio 
adecuado entre los costos y el lead time ocasionados por la capacidad del 
servicio [2]. 
Se encarga de analizar el problema de filas teniendo en cuenta 5 características: 
longitud de la fila, número de clientes, tiempo de espera, tiempo total del sistema, 
utilización de las instalaciones. Estas características son examinadas mediante 
la utilización de distintas fórmulas matemáticas, y según los resultados que se 
 
9 
 
obtengan se va a ser capaz de mejorar el servicio porque indica que cambios se 
pueden realizar. 
Esta herramienta puede ser utilizada en empresas de diversos rubros debido a 
que se encarga de relacionar los tiempos de llegadas de los clientes y las 
características que presenta el proceso de servicio con las características de 
salida del mismo proceso [9]. Tiene como objetivos la minimización de los 
tiempos de espera y de los costos [10]. 
2.4.1 Elementos 
2.4.1.1 Clientes 
Los clientes son las personas que llegan a las instalaciones para recibir el servicio 
requerido. Estas personas pueden ser atendidos de manera inmediata o van a tener 
que esperar un determinado lapso de tiempo [11]. 
2.4.2.2 Proceso de Llegadas 
Se tiene que especificar qué tipo de distribución tienen las llegadas de los clientes; 
es decir, si son probabilísticos o son determinísticas [11]. 
2.4.2.3 Proceso de Colas 
Este proceso es la manera en cómo los clientes son atendidos, por lo que se 
presentan diversas disciplinas que indica el orden de atención [11]: 
● FIFO (Primero en llegar, Primero en ser atendido) 
● LIFO (Último en llegar, primero en ser atendido) 
● SIRO (Atender en forma Aleatoria) 
● GD (Disciplina general, orden por prioridad) 
2.4.2.4 Proceso de Servicio 
Es la manera y velocidad en que se da el servicio al cliente. Además, es necesario 
tomar en cuenta el tiempo en el que transcurre todo el proceso de este servicio [11]. 
2.4.2.5 Proceso de Salida 
 
 
10 
 
Se consideran dos tipos de salida de los clientes, los que abandonan después de 
ser atendidos una vez y los que se retiran después de ser atendido más de una vez 
debido a que requieren más de un solo servicio, causando una red de colas [11]. 
 
 
 
 
Figura 2. Estructura de Modelo de Colas [10] 
 
2.4.3 Modelo de Colas 
2.4.3.1 Distribución Exponencial 
Los tiempos de llegadas es de tipo Poisson y el tiempo de servicios es de manera 
exponencial. Estos dos factores deben de ser de manera constante e independiente 
del estado del sistema. El modelo base para este tipo de distribución es el modelo 
M/M/1 [2]. 
2.4.3.2 Distribución no Exponencial 
En algunas ocasiones las distribuciones de los tiempos de llegadas no llegan a ser 
de manera exponencial. Esto se presenta cuando los requerimientos para la 
atención al cliente son idénticos. La realización de la teoría de colas con este tipo 
de distribución es complicada debido a que se presentan dificultades para la 
obtención de resultados de utilidad. Por lo que se crearon modelos que se ajustan 
a este tipo de distribución. Algunos de estos modelos que otorgan resultados útiles 
son [2]: 
● Modelo M/G/1 
● Modelo M/D/s 
● Modelo M/E/s 
 
11 
 
2.5 Kruskal – Wallis 
Kruskal - Wallis es una prueba de hipótesis no paramétrica que fue creado por 
William Kruskal y W. Allen Wallis, el cual vendría a ser una extensión de la prueba 
U de Mann – Whitney. Este se puede aplicar para 3 o más grupos y se encarga de 
comparar los rangos con el propósito de indicar si existe alguna diferencia entre 
ellas [12], por lo que esta prueba es el contraste del método ANOVA [13]. 
 
2.6 Comparación Múltiple 
La comparación múltiple se utiliza cuando se presentan diferencias entre los grupos 
que se está realizando el estudio debido a que este procedimiento va a ayudar a 
agrupar los que tienen semejanzas.La importancia de realizar esta comparación 
radica en obtener resultados sin ningún tipo de error, ya que al trabajar con datos 
que no son independientes se está aceptando un error [14]. 
 
2.7 Simulación 
La simulación está conformada por diversos métodos y aplicaciones para la 
creación de un modelo computarizado que imite el sistema real con el objetivo de 
que se pueda realizar modificaciones mediante experimentos numéricos al sistema 
para poder entender su comportamiento a distintas situaciones que se puedan 
presentar [15]. Para la realización de este modelo se debe analizar el problema que 
se quiere estudiar y sintetizar sus respectivas características [16], ya que influye en 
el proceso de simulación [17]. Particularmente esta técnica es utilizada para analizar 
los riesgos en los procesos financieros y en los sistemas estocásticos [2]. 
2.7.1 Tipos 
2.7.1.1 Modelo Continuo 
Este tipo de simulación es utilizado en sistemas que cambian constantemente 
durante el tiempo, y utiliza ecuaciones diferenciales con el objetivo de saber cómo 
interactúan los diversos elementos de un sistema [18]. 
 
12 
 
2.7.1.2 Modelo Discreto 
Se utiliza mayormente en el estudio de las líneas de espera para obtener mediante 
su aplicación, el tiempo de espera promedio y el largo de la fila [18]. Las variables 
a considerar presentan variaciones en algunas ocasiones. 
2.7.2 Aplicaciones 
La simulación se puede aplicar en diversas situaciones debido a su versatilidad, por 
lo que se utiliza mayormente en la investigación operativa para el diseño y operación 
de sistemas basados en colas, sistemas basados en manufactura e inventario, entre 
otros [2]. 
 
2.8 Software ARENA 
El software ARENA se creó en 1993, mediante la combinación de los lenguajes de 
simulación SIMAN y CINEMA [19]. Consiste en la realización del diagrama de flujo 
del proceso para una mejor interacción con el programa y con el modelo. El 
diagrama se puede realizar mediante la utilización de plantillas, las cuales van a 
depender de su complejidad. Este programa utiliza varios tipos de módulos como: 
create, process, batch, entre otros; por lo que trabaja conjuntamente con sub 
modelos para disminuir su complejidad [17]. 
La facilidad del montaje tiene una relación directa con tiempo que se requiere para 
obtener resultados debido a que el funcionamiento del programa depende del 
aspecto gráfico. Por lo que solo se puede utilizar los objetos que otorga la 
herramienta y los que fueron realizados en programas como CAD, BMP, JPEG, GIF; 
ya que no afectan a la resolución [17]. 
Además, presenta programas como el Input y el Process Analyzer, los cuales 
proporcionan pruebas para determinar los ajustes en las distribuciones, datos de 
entrada, entre otros. La desventaja de esta herramienta es que solo se puede 
observar el comportamiento de los parámetros en función del tiempo y carece de 
funcionalidad estadística [17]. 
 
13 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14 
 
 
CAPÍTULO 3 
 
ESTADO DEL ARTE 
 
La Teoría de colas permite hacer estudios basados en las líneas de espera, esto hace 
que tenga una gran versatilidad en su aplicación, pudiendo aplicarse en servicios, 
logística, producción, transporte, entre otros. En áreas de servicio, la teoría de colas 
brinda información necesaria para tomar decisiones y se caracteriza por su fácil 
aplicación, tal es el caso de un estudio realizado en México en el cual se utilizó la teoría 
de colas para presentar una solución al problema de los altos tiempos en el área de 
atención de CFE (Comisión Federal de Electricidad). 
 
CFE presentaba tiempos de espera de 23 minutos, y aplicando el modelo de teoría de 
colas mediante el modelo M/M/S Kendall Lee, se logra identificar factores como el 
tiempo de espera promedio, tasa promedio de llegadas, número promedio de unidades 
en cola, factor de utilización en las colas, entre otros. Esto permitió que se tuviera toda 
la información para proponer una alternativa de solución agregando un servidor más, 
reduciendo a 9.5 minutos el tiempo de espera [20]. 
 
Esta herramienta ayuda a analizar la situación del sistema y función a ello buscar una 
alternativa de solución. Esto se ve representando en un estudio en la Farmacia 
Hospitalaria Principal de Santiago de Cuba, puesto que se busca analizar el 
comportamiento de las colas que presenta la farmacia bajo un modelo M/M/C 
presentando tiempos de espera que llegan a superar los 5 minutos, para luego proponer 
estrategias a corto, mediano y largo plazo en función a los datos encontrados en el 
modelo matemático [21]. 
 
 
15 
 
También sirve para comparar diversos sistemas, tomando en cuenta el comportamiento 
que presenta el mismo y los factores como la tasa de utilización, los tiempos de espera, 
etc. Esto fue realizado en un estudio en Nigeria, en el cual se han comparado las 
entidades financieras Wema y Skye Bank mediante el modelo de colas múltiple (M/M/X), 
identificándose las deficiencias y virtudes de cada uno de estos sistemas. Teniendo 
como resultado que el nivel de servicio del banco Skye presenta una probabilidad del 
0.000022% a comparación del banco Wema que tiene 0.019%, por lo que se indica que 
en el primer banco la generación de una línea de espera es poco probable, esto se debió 
la cantidad de servidores presentes en el área de atención [22]. 
 
Además, se puede aplicar en diversas industrias para estudiar el comportamiento de las 
colas. Por otra parte, se está haciendo uso de la simulación para obtener resultados 
más cercanos a la realidad, un ejemplo de ello es un estudio que se llevó a cabo en una 
entidad financiera en Estados Unidos utilizado la simulación mediante el método de 
Montecarlo en Microsoft Excel con el objetivo de analizar las colas presentadas por cada 
tipo de cliente, puesto que este método presenta un análisis más sensible para evaluar 
sistemas complejos que son complicados de evaluar con exactitud. En este caso, se 
obtuvo que para los clientes generales el tiempo de servicio era el adecuado, por lo que 
la probabilidad de presentarse largas colas era menor; en cambio, para los clientes de 
negocio el problema se presentaba los lunes, miércoles y viernes debido a que los 
tiempos de espera variaban entre los 13,3 min. hasta los 56.6 min., el cual era causado 
por la cantidad insuficiente de servidores que era de 2 personas. Por otra parte, para los 
clientes Drive-Through la tasa de llegada era mayor a la tasa de servicio, por lo que solo 
se necesitaba de 1 cajero más [23]. 
 
Siendo evidente la utilización de la herramienta de simulación para la obtención de datos 
más certeros a la realidad y de los factores que se presenta en el entorno, en Colombia 
se hace un análisis de las líneas de espera contrastando la teoría de colas y simulación 
 
16 
 
mediante el software Promodel Student que va a permitir observar el comportamiento 
del sistema utilizando datos como la tasa media de llegadas y la de servicio. Esto tiene 
como objetivo denotar una complementación entre estos dos apartados, para ello se 
tuvo como caso de estudio el sistema de atención de una entidad bancaria que 
presentaba una línea de espera y un servidor para la atención de los clientes. Se obtuvo 
un margen de diferencia entre ambos modelos de 7.2%, denotando una representación 
de la realidad a través de la simulación. También se evidenció que el porcentaje de 
utilización de los servidores era de 65%, el cual era causado por el tiempo entre llegadas 
de los clientes debido a que no eran cercanos, pero si este tiempo fuera corto entonces 
se presentaría problemas en la línea de espera [24]. 
 
Sin embargo, en la actualidad se tiene la presencia de múltiples softwares para hacer 
uso de la simulación. En Bolivia se hizo un estudio a una cadena de supermercados, 
cuya distribución no era de tipo Poisson, tantopara la tasa de arribos como para la tasa 
de servicio, por lo que se utiliza un modelo de simulación ya que se adecua a los 
diferentes tipos de distribución que se puedan presentar. Para este caso se empleó el 
modelo Montecarlo, el cual es adecuado para trabajar con distribuciones empíricas; sin 
embargo, su implementación se hace mediante un procedimiento manual de simulación. 
Los resultados obtenidos fueron que los servidores tienen un porcentaje de ocupación 
del 89.25% en el proceso, además de que el tiempo promedio de espera es de 16.33 
min. [25]. 
 
Estos estudios anteriormente mencionados se enfocaron en tener un diagnóstico del 
sistema actual y en la reducción de los tiempos de espera teniendo en cuenta el aumento 
de los servidores en el área; en cambio, en otras investigaciones que se han dado se 
puede observar que además se está considerando el costo del sistema para dar una 
adecuada solución con respecto a la reducción del tiempo y de los costos. Como es el 
caso de un estudio realizado a Scotiabank de Huaraz que utilizaron también un modelo 
 
17 
 
de colas de múltiples servidores (M/M/S) debido a que variaron la cantidad de servidores 
de 1 a 6, en el que calcularon el tiempo de espera y los costos respectivos en función al 
salario y al mantenimiento de los equipos informáticos. En el que se obtuvo que la 
cantidad adecuada que debe tener la entidad es de 4 servidores ya que el costo se 
reduce de a/. 10,400 a s/. 3,600 [26]. 
 
En cambio, en los sistemas bancarios de las sucursales GTBank y Ecobank de Nigeria 
que emplearon el mismo modelo de colas de múltiples servidores (M/M/S), calcularon el 
costo del sistema en función al costo de servicio y operación, y los costos de tiempo de 
espera de los clientes, con el propósito de encontrar un balance. Los resultados 
obtenidos de este estudio fue una optimización en los servidores, ya que para la primera 
sucursal era necesario una cantidad de 13 servidores y para el segundo un total de 10 
servidores para reducir los costos que se generaban en ₦ 6035 y ₦ 1311 
respectivamente, y de esta manera poder aumentar a la vez la satisfacción de cada uno 
de los clientes que van a adquirir sus servicios [27]. 
 
Como se puede observar en la entidad de Scotiabank solo se consideraron algunos 
costos, pero en los bancos de Nigeria se tomó en cuenta el costo del trabajador y el 
costo de perder a un cliente, debido a que ambos costos son esenciales para obtener la 
cantidad óptima de servidores, ya que se obtiene el costo del sistema. 
 
En el caso de la entidad financiera Guarantee Trust Bank (GTB) que es de Nigeria se 
utilizó un software denominado TORA, le cual es usado para la simulación de sistemas 
de colas, aplicando el modelo de colas M/M/C. Para el cual, se tuvo en consideración 
un tiempo de espera que presenta una distribución de Poisson y la tasa de servicio con 
una distribución exponencial, haciendo uso de la ventana de optimización de software y 
de los costos asociados al sistema. Se consideraron 3 escenarios en los que se variaron 
la cantidad de servidores de 4 a 6, para encontrar un balance general en el sistema 
 
18 
 
propuesto, logrando optimizar el sistema con 5 servidores ya que se obtenía un costo 
de #387.5012, el cual eran el mínimo que se presentaban [28]. 
 
Por otra parte, la teoría de colas y la simulación se emplean muchas veces 
conjuntamente, para tener una base matemática mediante la teoría de colas y para tener 
un método eficiente que represente el estado actual del sistema siendo cercana a la 
realidad a un bajo costo, siendo el caso de un estudio realizado en Perú en el cual se 
empleó la teoría de colas y simulación para minimizar los tiempos de espera en una 
empresa financiera mediante dos modelos de estudio con distribución exponencial. Se 
hizo uso del software WINQSV, por ser una herramienta que maneja métodos 
cuantitativos simulando colas simples de la investigación de operaciones, logrando una 
identificación de la problemática y proponiendo una mejora al aumentar el número de 
servidores a dos, reduciendo el tiempo de espera seis veces [29]. 
 
También en el Perú se aplicó esta metodología al problema de atención al cliente 
optimizando el número de cajeros en ventanilla en una organización financiera BCP 
haciendo uso de la teoría de colas y el software SIMIO, denotando que el software SIMIO 
presenta una interfaz sencilla para implementar costos asociados al sistema, 
obteniéndose una reducción en los costos al aplicar 5 cajeros, ya que se obtiene un 
costo de s/. 37.0864 a comparación de que con 4 servidores se tiene un total de s/. 
38.8641 [30]. 
En la misma línea, el software Arena y Simio han visto un auge en su utilización, esto 
se ha visto reflejado en los últimos años, siendo así que se ha generado una 
comparación entre ambos softwares mediante diversos casos de estudio dentro de las 
cuales se concluyó que el Arena tiene una interfaz más simple que la de Simio; sin 
embargo, este último presenta muchas ventajas en comparación al software Arena en 
relación al modelado del sistema, empero en Simio no se puede crear un reloj para tener 
una perspectiva del tiempo que pasa en simulación. Otro de los factores importante es 
 
19 
 
que en SIMIO no se puede identificar en que parte está el error de la simulación caso 
contrario a Arena, que identifica y presenta los errores en el modelo. Por tanto, la 
elección de un simulador por sobre otro dependerá de la tarea a realizarse [31]. 
 
En Perú, se hace una propuesta para mejorar los tiempos de atención en un counter de 
informes para admisión en una universidad, para ello se ha realizado un análisis 
situacional y se ha ejecutado mediante el software Arena, el cual ofrece mayores 
beneficios en función a días simulados, escenarios, interfaz de usuario, entre otros. Por 
lo que se ha propuesto una mejora en la atención, teniendo como base la proyección 
encontrada mediante el software Arena, el cual fue que la cantidad de servidores 
actuales no era la cantidad suficiente para atender en los días de mayor afluencia 
provocando altos tiempos de espera e insatisfacción por parte de los clientes [32] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20 
 
CAPÍTULO 4 
 
DESARROLLO METODOLÓGICO 
 
Se establecerá el análisis de la situación actual de la entidad financiera, en lo que 
concerniente a los tiempos y al proceso de atención. En esa misma línea, se identificará 
una persona que trabaje en la entidad financiera en el área de atención para que brinde 
información mediante una entrevista (Anexo n°2), con el propósito de tener un 
diagnóstico inicial de los tiempos de espera, y a la vez obtener información de los 
horarios de los servidores, las operaciones que se realizan en los módulos de atención 
a clientes en la primera plataforma, los costos considerados en la operación, la cantidad 
de clientes que ingresan al banco en los distintos horarios, entre otros datos; además, 
se identificarán la cantidad de ventanillas para la atención al cliente. 
 
Se determinará los tiempos relacionados a la demanda de los clientes con la 
metodología de recolección de datos, por lo que se tomará tiempos en el proceso de 
atención en plataforma durante 4 días en el horario de las 9:00 am hasta las 6:30 pm. 
Para el cual, se empleará una ficha denominada Registro de tiempos de atención a los 
usuarios que se presentaron en el año 2019, el cual se creará en el software Microsoft 
Excel (Anexo n°3). 
 
Se analizará los datos obtenidos mediante gráficas realizadas en Microsoft Excel que 
permitan explicar el comportamiento de los tiempos en el área de atención. Además, se 
va a aplicar la metodología de Prueba de Bondad y Ajuste utilizando la herramienta Input 
Analyzer del software Arena para identificar la distribución que presentan el tiempo entre 
llegadas. 
 
 
21 
 
Por otro lado, la cantidad de clientes quese han atendido en el área de plataforma en 
los 4 últimos meses del año 2019, son analizados mediante la utilización de la 
metodología de Prueba no Paramétrica de Kruskal-Wallis, el cual va a proporcionar 
información sobre la población a estudiar ya que permite identificar si se presentan 
diferencias. Para su procedimiento, primero se va a realizar dos hipótesis y se va a 
calcular los rangos para obtener el valor de H. La fórmula a utilizar es la siguiente a 
mostrar: 
 
 
𝐻 =
12
𝑁(𝑁 + 1)
∑
𝑅2
𝑛 − 3(𝑁 + 1)
1 −
∑𝑇
𝑁3 −𝑁
 (1) 
 
 
 
 
También se va a calcular los grados de libertad que consiste en la resta de la cantidad 
de meses considerados menos 1 y se va a definir el nivel de significancia que se va a 
considerar. Estos resultados son necesarios para la obtención del valor crítico mediante 
la utilización de una tabla denominada Valores Críticos de la Distribución x2(Anexo n° 
4). Si el resultado que se ha obtenido de H es mayor al valor crítico x2 entonces se indica 
que se presentan diferencias en las muestras de la población, caso contrario no se 
presentan diferencias. 
Si se acepta la hipótesis alternativa se va a aplicar la metodología de Comparación 
Múltiple de Tukey para las respectivas agrupaciones de las poblaciones según los 
resultados obtenidos del Kruskal-Wallis con el objetivo que no se presenten errores e 
incertidumbres en el resultado final. Para efectuar esta metodología se va a calcular las 
medias de los intervalos para realizar la matriz de diferencias entre todos los posibles 
pares de medias. 
N: Número total de casos 
Rj: Rango Calculado 
Nj: Número de grupos 
 T: Número repetidos 
 
22 
 
 
 
 
 
 
 
Ilustración 1. Tabla de Comparación 
 
En esta matriz se realizan las diferencias entre cada una de las medias para compararlas 
con el valor crítico. Si el resultado de la diferencia entre los rangos de las medias es 
mayor al valor crítico, se indica que entre ese rango se presentan diferencias por lo que 
provienen de una diferente población; en cambio, si resultara menor entonces las 
poblaciones son semejantes. La fórmula que se va a utilizar para hallar el valor crítico 
es la siguiente [13]: 
 
∆= √
𝑁(𝑁 + 1)
12
𝑍1−𝑎
∗ (
2
𝑁
) (2) 
 
Para determinar y evaluar los tiempos de espera obtenidos se utilizará la metodología 
de Teoría de Colas por medio de la utilización del Software Arena, por lo que se va a 
realizar un modelo computarizado del área de atención de la primera plataforma, en el 
que se colocará la distribución de los tiempos entre llegadas y del tiempo de servicio, la 
cantidad de servidores y las operaciones que se efectúan. 
 
Los resultados a obtener de la simulación es la cantidad de personas que ingresan a la 
entidad, las personas atendidas y retiradas, los cuales van a ser analizadas empleando 
el Microsoft Excel. También, se va a obtener el tiempo promedio de llegadas, el tiempo 
promedio de atención en un servidor, entre otros datos. 
 
23 
 
 
Además, se va realizar 5 escenarios, en los que se va a variar la cantidad de servidores 
para observar los cambios que se van a dar en los tiempos de espera y el respectivo 
porcentaje de utilización de los servidores. Para los resultados, se va a aplicar la 
metodología del método comparativo para cada uno de los tiempos obtenidos mediante 
un cuadro comparativo. 
 
Asimismo, se va a comparar el costo del sistema que se presenta actualmente en el 
área de plataforma con el costo que se va a presentar con las variaciones que se van a 
realizar en el número de servidores. Para su respectivo cálculo, se va a obtener el costo 
del servicio y el costo de espera por dicho servicio, los cuales deben estar 
adecuadamente balanceados para que el proceso de atención sea el adecuado. 
 
 
 
 
 
 
 
Ilustración 2.Punto de Equilibrio [30] 
 
Para la obtención del costo de servicio, se va a considerar la cantidad de servidores que 
se va a presentar en el área de plataforma y el costo del servidor en la unidad de tiempo, 
para el cual se va a obtener información del suelo básico, el riesgo de caja, la asignación 
familiar, gratificaciones, vacaciones y el seguro ESSALUD, debido a que es en donde 
se engloba tanto el pago de personal como de la instalación, además de que se va a 
considerar los días laborales y la cantidad de horas que se trabaja al día. La fórmula a 
utilizar es la siguiente [30]: 
 
24 
 
 
 𝐸(𝐶𝑆) = 𝑘𝐶𝑠 (3) 
 
 
 
 
Con respecto al costo de espera, que es el costo que se presenta por no atender a un 
cliente se va a considerar la longitud del sistema, que es la cantidad de personas 
presentes en el sistema y el costo de espera en la unidad de tiempo. Para este último 
se tomó en cuenta la información obtenida del ingreso promedio que recibe la entidad 
financiera y se recopiló información para calcular el promedio de las tasas de interés por 
todas las operaciones que se realizan. La fórmula a utilizar es la siguiente [30]: 
 
 
 𝐸(𝐶𝑊) = 𝐶𝑤𝜆𝑊 = 𝐶𝑤𝐿 (4) 
 
 
 
 
 
 
La comparación de los resultados del Software Arena junto con el costo del sistema por 
cada escenario va a permitir la elección óptima de la cantidad de servidores que debe 
presentar el área de atención que se da en la plataforma 1. Esta cantidad óptima va a 
ser analizada mediante la metodología beneficio costo, con el propósito de saber si es 
rentable para la entidad financiera. Para el cálculo se va a considerar, los ingresos que 
se obtiene de los clientes atendidos con dicha cantidad de servidores, el cual se va a 
calcular utilizando la simulación. 
k: Número de Servidores 
Cs: Costo del servidor en 
la unidad de tiempo 
Cw: Costo de esperar en la unidad de tiempo 
𝝀: Tasa de llegadas 
W: Tiempo esperado en el sistema 
L: Longitud en el sistema 
 
25 
 
 
También se va a considerar, los costos de las herramientas básicas, los equipos de 
oficina, artículos personales, la capacitación y las remuneraciones. Teniendo estos 
datos se va a realizar una proyección durante 12 meses. Para los cuales se va a realizar 
la respectiva diferencia por cada mes para obtener el flujo de caja proyectado. Los 
resultados que se obtenga de este flujo, se va a calcular el valor actual neto, la tasa 
interna de retorno y el beneficio costo. 
 
4.1. Técnicas e Instrumentos 
Para el análisis de la situación actual de la entidad financiera se utilizará la técnica 
de la entrevista para la obtención de información de la entidad financiera con 
respecto a las operaciones, los costos y la cantidad de clientes que se atienden en 
la plataforma 1. También se empleó la técnica de observación directa para la toma 
de tiempos durante 4 días, por lo que se va a utilizar el cronómetro para medir el 
tiempo de atención y llegadas de los clientes, los cuales van ser anotados en el 
registro de tiempos realizado. 
Para el análisis de los datos se va a utilizar la técnica de estadística descriptiva y 
se va a emplear el Microsoft Excel para la obtención de datos y sus respectivas 
gráficas. Con respecto a la metodología de la prueba de bondad y ajuste, se va a 
utilizar la técnica de estadística descriptiva y se va a emplear la herramienta Input 
Analyzer del software Arena, con el objetivo de obtener la distribución respectiva de 
los tiempos entre llegadas y el tiempo de servicio obtenidos de la recolección de 
datos. 
 La metodología de Kruskal Wallis y la de comparación múltiple de Tukey utilizan la 
técnica de estadística descriptiva debido a que emplea modelos matemáticos, por 
lo que se va hacer uso del Microsoft Excel, ya que tiene incluido las fórmulas 
necesarias para su respectiva realización. Se realizará primeramente los modelos 
matemáticos para obtener su respectivo planteamiento de los pasos que se van a 
 
26 
 
realizar para obtener el resultado deseado, después se van a colocar estos datos 
en el Excel para proceder a la respectivasolución. 
Para la metodología de Teoría de Colas se va a utilizar el software ARENA, ya que 
ayuda a la obtención de datos de manera rápida y eficiente con un porcentaje de 
error menor, debido a que se va a simular utilizando un modelo computarizado del 
proceso de atención. Por lo que se va a utilizar los módulos de Basic Process para 
su respectiva construcción del modelo, los cuales son: Create, Process, Decide, 
Assign, Record y Disposes. 
Para la comparación de los tiempos de espera y de los costos se va a utilizar la 
técnica de revisión de datos, por lo que se va a requerir el registro de tiempos, el 
registro de datos obtenidos y el cuadro comparativo. Esta comparación se va a 
realizar utilizando el Microsoft Excel. 
Para la metodología de beneficio costo se va a utilizar el flujo de caja proyectado 
que indicará si es rentable o no para la entidad financiera. Este va a ser realizado 
mediante el software Microsoft Excel. 
 
4.2. Población 
La población a considerar está conformada por todos los clientes que ingresan a la 
entidad financiera entre las horas de 9:00 a 6:30 pm, para ser atendidos por el área 
de atención al cliente de la primera plataforma. 
4.3. Muestra 
Para este trabajo de investigación la muestra será censal, puesto que se utilizará el 
total de clientes considerados como población. 
 
4.4. Operacionalización de Variables 
La variable independiente es la Simulación, mientras que la variable dependiente 
es el tiempo de espera y los costos. Dentro de la simulación se va a considerar 
como dimensiones las operaciones, el patrón de llegadas de los clientes, duración 
 
27 
 
de la cola, capacidad de servicio y recursos. En la variable dependiente se va a 
considerar como dimensiones el tiempo, los costos y la rentabilidad económica.
 
31 
 
 
Tabla I 
Operacionalización de Variables 
OBJETIVOS 
ESPECÍFICOS 
VARIABLE 
DEFINICIÓN 
CONCEPTUAL 
DEFINICIÓN 
OPERACIONAL 
DIMENSIONES INDICADORES INSTRUMENTO 
ESCALA DE 
MEDICIÓN 
Analizar las 
operaciones del 
proceso de 
atención de la 
agencia bancaria 
de Arequipa 
Variable 
independiente: 
Simulación del 
proceso de 
atención al cliente 
La simulación es una 
herramienta de análisis que 
conceptualiza la realidad 
como un sistema y se 
utiliza para la observación 
del comportamiento real 
del sistema y de los 
escenarios a realizar. 
Diseñar un modelo en el 
que se permita colocar las 
características que 
presenta el sistema real 
con la finalidad de evaluar 
su comportamiento. 
Operaciones 
Número de 
operaciones 
Observación 
directa 
Microsoft Excel 
Razón 
Patrón de llegada de los 
clientes 
Tiempo promedio 
de llegadas en la 
unidad de tiempo 
Observación 
directa 
Cronómetro 
Microsoft Excel 
Razón 
Duración de la cola 
Tiempo promedio 
de atención en un 
servidor 
Observación 
directa 
Cronómetro 
Microsoft Excel 
Razón 
Tiempo de cola 
Observación 
directa 
Cronómetro 
Microsoft Excel 
Cuantitativa 
Simular el proceso 
de atención al 
cliente de la 
agencia bancaria 
de Arequipa 
Capacidad de servicio 
Número de 
servidores 
 
Software Arena 
Razón 
Costo por cada 
servidor 
Microsoft Excel Cuantitativa 
Recursos 
Porcentaje de 
utilización de los 
recursos 
Software Arena Razón 
Costo del sistema Microsoft Excel Razón 
Evaluar escenarios 
para reducción del 
tiempo de espera y 
el costo del 
sistema 
Variable 
dependiente: 
Tiempo de espera 
y costos 
Reducción de pérdidas 
para la organización 
Contraste entre los 
tiempos actuales y la 
nueva propuesta aplicada. 
Tiempo 
Número de 
ventanillas 
operativas 
Observación 
directa 
Cuantitativa 
Costos Costo de Servicio 
Base de datos 
Microsoft Excel 
Cuantitativa 
 
32 
 
Costo de Espera 
Base de datos 
Microsoft Excel 
Cuantitativa 
Realizar un análisis 
de Beneficio y/o 
Costo 
 
Costo del Sistema 
 
Base de datos 
Microsoft Excel 
Cuantitativa 
Rentabilidad Económica 
 
VAN 
 
Microsoft Excel Cuantitativa 
 
TIR 
 
Microsoft Excel Cuantitativa 
 
Beneficio/Costo 
 
Microsoft Excel Cuantitativa 
 
Fuente: Elaboración Propia
 
33 
 
 
 
 
 
 
 
 
CAPÍTULO 5 
 
DESARROLLO DE LA INVESTIGACIÓN 
 
Objetivo 1: Analizar las operaciones del proceso de atención de la agencia bancaria en 
Arequipa 
 
Se realizó un análisis de la situación actual en la agencia bancaria, en la cual se 
identificó el proceso de atención al cliente de la primera plataforma. En primer lugar, el 
cliente hace su ingreso a la agencia y pasa a formar parte de la cola (de ser el caso), 
formando una sola cola para los dos servidores de atención en caja presentes, 
indistintamente de la operación que se realice. 
 
En función a lo anterior, se obtuvo información de la cantidad de operaciones que se 
han realizado en el área de la primera plataforma durante los 4 últimos meses del año 
2019, los cuales se obtuvieron mediante la entrevista realizada. Los datos se detallan 
en la siguiente tabla: 
 
 
 
 
 
34 
 
Tabla II 
Promedio del Total de Operaciones 
 
 
 
 
 
 
 
Fuente: Elaboración Propia 
Se obtuvo que el total de operaciones que se efectuaron entre los 4 meses fue de un 
promedio de 1920, presentando en los meses de noviembre y diciembre mayor cantidad 
de operaciones. Todas las diversas operaciones que se realizan 
se encuentran comprendidos entre los horarios de las 9:00 am hasta las 6:30 pm, las 
cuales son: desembolsos, pago de cuotas, depósitos y/o giros, y cobro de servicios. 
 
 
 
 
 
 
 
 
Gráfico 1. Porcentaje de utilización de operaciones 
Fuente: Elaboración Propia 
 
En el anterior gráfico se observa el porcentaje de las operaciones efectuadas entre los 
periodos de septiembre hasta diciembre según datos entregados por la entidad 
Total de operaciones 
Septiembre 1972 
Octubre 1804 
Noviembre 1896 
Diciembre 2008 
Promedio 1920 
59%
9%
27%
5%
Porcentaje de Utilización de las 
Operaciones
Desembolsos
Depósitos y/o Giros
Pago de cuotas
Pago de servicios
 
35 
 
mediante la entrevista realizada, denota una mayor cantidad de operaciones de 
desembolso con un 59%, pago de cuotas con un 27%, mientras que los depósitos y/o 
giros fueron de un 9% y el pago de servicios un 5%. 
 
Teniendo en cuenta las 2 tablas anteriormente mencionadas, se procedió a calcular la 
cantidad de operaciones por cada tipo, las mismas que se han realizado en los meses 
de septiembre hasta diciembre mediante la multiplicación del total de operaciones por 
los respectivos porcentajes de cada operación mediante el Microsoft Excel. Los 
resultados obtenidos fueron los siguientes: 
 
Tabla III 
 Cantidad de Operaciones por Mes 
 
Fuente: Elaboración Propia 
 
Las operaciones que más se realizaron durante dicho periodo fueron los desembolsos 
y los pagos de cuotas con un total de 4531.2 y 2073.6 respectivamente, mientras que 
las operaciones de giros y de pagos de servicios fueron los menos solicitados teniendo 
un total de 691.2 y 384 operaciones respectivamente. 
Meses Total de 
Operaciones 
Desembolso Depósitos 
y/o Giro 
Pago 
de 
Cuota 
Pago de 
Servicio 
Septiembre 1972 1163.48 177.48 532.44 98.6 
Octubre 1804 1064.36 162.36 487.08 90.2 
Noviembre 1896 1118.64 170.64 511.92 94.8 
Diciembre 2008 1184.72 180.72 542.16 100.4 
Total 7680 4531.2 691.2 2073.6 384 
Promedio 1920 1132.8 172.8 518.4 96 
 
36 
 
Asimismo, se recopiló información de los dos servidores que se encuentran para la 
atención en caja de plataforma, en la cual se tiene un lapso de tiempo de 12:00 pm a 
2:00 pm en el que uno de los servidores no atiende y de 2:00 pm a 4:00 pm en el que el 
primer servidor atiende, pero el segundo ya no. 
 
 
 
 
 
 
 
 
 
Gráfico 2. Horario de Trabajo 
Fuente: Elaboración Propia 
 
Por otra parte, se obtuvo mediante una entrevista la cantidad de clientes que se 
presentaron en la entidad financiera durante los últimos 4 meses, los cuales fueronun 
total de 7261 clientes que han adquirido los servicios que se dan en la primera 
plataforma. 
 
 
 
 
 
 
 
 
 
37 
 
Tabla IV 
Cantidad de Clientes por Mes 
Meses Total 
Septiembre 1965 
Octubre 1815 
Noviembre 1450 
Diciembre 2031 
TOTAL 7261 
Fuente: Elaboración Propia 
 
Se muestra que en los meses de diciembre y septiembre se presentó una mayor 
concurrencia de clientes con un total de 2031 y 1965 respectivamente. Por otro lado, se 
obtuvo el promedio del tiempo de llegadas y el tiempo de servicio por cada día mediante 
el registro de tiempos obtenidos de los 4 días de observación utilizando el Microsoft 
Excel. 
Para el primer, segundo, tercer y cuarto día los tiempos promedios de llegadas por cada 
cliente fue de 6.08 minutos, 5.99 minutos, 6.19 minutos, 5.27 minutos respectivamente; 
con respecto al tiempo promedio de servicio fue de 11.21 minutos, 10.11 minutos, 8.95 
minutos y 9.67 minutos respectivamente. Además, los tiempos de espera fueron de 
13.97 minutos, 11.94 minutos, 6.82 minutos y 19.31 minutos respectivamente. 
 
 
 
 
 
 
 
 
38 
 
Tabla V 
 Tiempos promedios de llegada, servicio y espera 
 
PROMEDIO 
 
Tiempo de 
Llegada (min.) 
Tiempo de 
Servicio (min.) 
Tiempo de 
espera (min.) 
Día 1 6.08 11.21 13.97 
Día 2 5.99 10.11 11.94 
Día 3 6.19 8.95 6.82 
Día 4 5.27 9.67 19.31 
Fuente: Elaboración Propia 
 
Estos resultados fueron representados mediante un gráfico de barras realizado en el 
Microsoft Excel, en el que se puede observar el comportamiento en los 4 días de 
observación. Se aprecia que en el tercer día se tiene un mayor tiempo de llegadas con 
un total de 6.19 minutos, seguido del primer día con un total de 6.08 minutos. Con 
respecto al tiempo de servicio, en el primer día se tiene un elevado tiempo de 11.21 
minutos, mientras que en el cuarto día dicho tiempo se reduce a un 9.67 minutos y en 
el tercer día a 8.95 minutos. 
 
 
 
 
 
 
 
 
 
 
39 
 
 
 
 
 
 
 
 
 
 
Gráfico 3. Tiempos promedio de llegada, servicio y espera 
Fuente: Elaboración Propia 
 
El mayor tiempo de espera fue de 19.31 minutos seguido de un 13.97 minutos, mientras 
que el menor tiempo fue de 6.82 minutos, y el tiempo de servicio mayor fue de 11.21 
minutos y el menor fue de 8.95 minutos, con respecto al tiempo de llegada mayor fue de 
6.19 minutos y el menor fue de 5.27 minutos. También, se pudo apreciar que en el cuarto 
día se presentó un mayor tiempo de espera a comparación de los anteriores días, el 
cual se pudo presentar por que el tiempo entre llegadas de los clientes fue de 5.27 
minutos en promedio, el cual fue menor en comparación con los demás días. 
 
Igualmente se calculó la cantidad de clientes que se presentaban en la cola, para lo cual 
se realizó una tabla de frecuencia utilizando el Microsoft Excel. Por lo que se calculó el 
rango, el cual se halla obteniendo la diferencia entre el número máximo y el número 
mínimo de la cantidad de personas presentes en la cola durante los días observados. 
En este caso, la mayor fue de 39 personas y la menor fue de 1 sola persona; con 
respecto a la cantidad de intervalos (k) se usó la fórmula 1+3,3 log N, en donde N es la 
cantidad total de número de colas que se presentaron y según lo observado en el 
 
40 
 
registro realizado por 4 días fue de 30. Por último, se calculó la amplitud que consiste 
en la división del rango entre la cantidad de intervalos obteniéndose un total de 7. 
Tabla VI 
 Datos para armar la tabla de frecuencias 
Rango (máximo-mínimo) 38 
K =(1+3,3log30) 6 
Amplitud 7 
Fuente Elaboración Propia 
 
Teniendo en cuenta dichos datos se procedió a realizar la tabla de frecuencias en el que 
se colocó la cantidad de veces que se repitió el número de personas en cola según cada 
intervalo, el cual va a permitir calcular la frecuencia relativa, que es el porcentaje que 
representa dicha cantidad de valores. 
Tabla VII 
Tabla de Frecuencias 
 
 
 
 
 
 
 
 
 
Fuente: Elaboración Propia 
 
 
 
Personas en Cola Xi fi hi 
[1-8] 5 18 60.00% 
[8-15] 12 7 23.33% 
[15-22] 19 1 3.33% 
[22-29] 26 1 3.33% 
[29-36] 33 1 3.33% 
[36-43] 40 2 6.67% 
TOTAL 30 100.00% 
 
41 
 
Los resultados obtenidos se representaron mediante su respectivo diagrama de 
Histograma con su polígono de frecuencias, para una mejor observación del 
comportamiento de los resultados obtenidos, el cual fue obtenido utilizando el Microsoft 
Excel. 
 
 
 
 
 
 
 
 
 
Gráfico 4. Histograma de Cantidad de Personas en Cola 
Fuente: Elaboración Propia 
 
Según el gráfico, la mayoría de veces se han encontrado colas conformadas de entre 1 
a 7 personas con una frecuencia de 18, además se tiene colas de entre 8 a 14 personas 
teniendo una frecuencia de 7. Para cada uno se tiene una frecuencia relativa (hi) de 
60% y 23% respectivamente, el cual es la probabilidad de que se presente dicha 
cantidad de personas en la línea de espera. 
 
 
 
 
 
 
 
0
2
4
6
8
10
12
14
16
18
20
5 12 19 26 33 40
F
re
cu
en
ci
a
Personas en cola
Histograma de personas presentes en la cola
 
42 
 
 
 
 
 
 
 
 
 
 
Gráfico 5. Porcentaje de Cantidad de Personas presentes en la cola 
Fuente: Elaboración Propia 
 
La cantidad promedio de personas presentes en la cola por hora desde las 9 am hasta 
las 6:30 pm según el registro de tiempos de los 4 días utilizando el Microsoft Excel, 
denotaron los siguientes datos a mostrar en la tabla VIII: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43 
 
Tabla VIII 
 Cantidad Promedio de Personas en Cola por Hora 
 
Hora Día 1 Día 2 Día 3 Día 4 Promedio 
9:00 2 10 3 4 5 
10:00 1 8 13 9 8 
11:00 5 5 0 6 4 
12:00 9 0 9 9 7 
13:00 9 9 6 2 7 
14:00 13 10 3 12 10 
15:00 9 0 3 10 6 
16:00 18 10 3 14 11 
17:00 9 11 1 16 9 
18:00 3 5 9 4 5 
Fuente: Elaboración Propia 
 
 
Como se observa en la tabla, durante las 2:00pm, 4:00pm y 5:00 pm se presentan un 
promedio de 10, 11 y 9 respectivamente, por lo que se puede indicar que es en estos 
dos horarios se presenta una mayor cantidad de personas como se puede apreciar en 
el gráfico de líneas realizado mediante el Microsoft Excel. 
 
 
 
 
 
 
 
44 
 
 
 
 
 
 
 
 
 
 
Gráfico 6.Promedio de cantidad de personas presentes en la cola por hora 
Fuente: Elaboración Propia 
 
En el turno mañana también se muestra un incremento en el horario de las 10:00 am, 
pero este disminuye a las 11:00 am y en el turno tarde a las 5:00pm. Teniendo en cuenta 
el dato anterior, se procedió a calcular el promedio de los tiempos de espera que se han 
presentado por cada hora en los que se ha atendido a cada cliente mediante el Microsoft 
Excel. 
 
 
 
 
 
 
 
 
 
 
 
 
45 
 
Tabla IX 
Tiempo Promedio de Espera por hora 
Hora Día 1 
(min.) 
Día 2 
(min.) 
Día 3 
(min.) 
Día 4 
(min.) 
Promedio 
(min.) 
9:00 4.25 7.61 3.15 4.11 4.78 
10:00 1.79 5.86 9.87 8.51 6.51 
11:00 4.65 6.82 0 13.02 6.12 
12:00 8.03 0 5.78 5.18 4.75 
13:00 14.07 8.06 4.80 6.21 8.28 
14:00 13.80 11.61 1.93 11.71 9.76 
15:00 8.60 0 3.61 15.55 6.94 
16:00 19.38 18.65 5.74 34.29 19.52 
17:00 24.81 19.53 4.88 35.73 21.24 
18:00 9.27 13.02 9.30 20.59 13.05 
 
Fuente: Elaboración Propia 
 
Obteniéndose que en los horarios de las 10:00 am, 1:00 pm y 2:00 pm se presenta un 
leve incremento y en los horarios de las 4:00 pm y 5:00 pm se presentan los tiempos de 
espera promedio más altos, los cuales son 19.52 minutos y 21.24 minutos 
respectivamente. 
 
 
 
 
 
 
 
46 
 
 
 
 
 
 
 
 
 
 
Gráfico 7. Gráfico de Líneas del tiempo de espera por hora 
Fuente: Elaboración Propia 
 
En ambos gráficos realizados se puede apreciar que, al presentarse una gran cantidad 
de gente en la entidad financiera, se observar tanto un leve como un alto crecimiento en 
el tiempo promedio de espera. 
 
Por otro lado, los tiempos entre llegadas obtenidos durante los4 días de observación 
en el último mes del año 2019 (Anexo N°5), fueron colocados en el Input Analyzer que 
es una herramienta del Software Arena para realizar la Prueba de Bondad y Ajuste, en 
el cual se obtuvo que los tiempos entre llegadas presenta una distribución exponencial, 
por lo que se puede proceder a realizar la teoría de colas mediante la simulación. 
 
 
 
 
 
 
 
 
47 
 
 
 
 
 
 
 
 
 
 
Gráfico 8. Distribución de Tiempos entre llegadas 
Fuente: Elaboración Propia 
 
Para la ejecución de la teoría de colas, primeramente, se va a realizar la prueba no 
paramétrica Kruskal – Wallis utilizando el Microsoft Excel con el objetivo de saber si la 
población a estudiar presenta o no diferencias para que no se presente errores en el 
estudio. Para esta prueba se va a utilizar los datos de la cantidad de clientes que ingresa 
a la entidad financiera y se formuló dos hipótesis las cuales son: 
Tabla X 
 Hipótesis para la Prueba no Paramétrica Kruskal-Wallis 
Hipótesis Nula (Ho) No existe diferencias en la población 
Hipótesis Alternativa (Ha) Existen diferencias en la población 
 
Fuente: Elaboración Propia 
 
 
 
 
48 
 
Se consideró un nivel se significancia del 5% y un número total de casos (N) de 16 
debido a que la cantidad de personas fue obtenida por cada semana del mes, que en 
total son 4 semanas por cada mes. Después se procedió a colocar los números del 1 al 
16 en orden ascendente de acuerdo a la cantidad obtenida por cada semana, en el caso 
que se presentaran números repetidos se calcula el promedio. Estos datos van a servir 
para calcular los rangos para cada semana, los cuales van a ser elevados al cuadrado 
y divididos entre la cantidad de columnas, que en este caso son 4 según fórmula. 
Tabla XI 
Rangos 
Meses 
Semanas 
1 2 3 4 
Septiembre 14 8 5 13 
Octubre 1.5 6 10 16 
Noviembre 4 3 11 1.5 
Diciembre 9 7 15 12 
Total (Rangos) 28.5 24 41 42.5 
 
Fuente: Elaboración Propia 
 
Por cada número repetido se calculó la cantidad de repeticiones que se presentó, en 
este caso solo un número se reiteró dos veces por lo que la cantidad de veces se elevó 
al cubo y se le resta 2 según fórmula obteniéndose 6. 
 
 
 
 
 
49 
 
Tabla XII 
 Datos para la Prueba no Paramétrica Kruskal-Wallis 
 
 
 
 
 
 
 
 
 
 
Fuente: Elaboración Propia 
 
Con todos estos datos obtenidos, se calculó el valor de H mediante la fórmula (1), 
obteniéndose un total de 2.78. Este dato se comparó con el valor crítico obtenido de la 
tabla de distribución de Chi – Cuadrado (Anexo n°3) que fue de 7.8143 teniendo en 
cuenta un grado de libertad de 3 debido a que la cantidad de semanas se le resta 1, y 
un nivel de significancia considerado que es del 5%, por lo que se indica que la población 
no muestra diferencias por lo tanto no se debe realizar una comparación múltiple. 
 
Objetivo n°2: Simular el proceso de atención al cliente de la agencia bancaria en 
Arequipa 
 
El siguiente paso fue realizar la metodología de la teoría de colas mediante la 
simulación, para el cual se realizó el modelo computarizado del proceso del área de 
atención mediante el Software Arena que presenta una hora de inicio desde las 9:00 am 
debido a que es el horario en donde se empieza a atender a los clientes. 
 
Nivel de 
significancia 
5% 
N 16 
(R1^2) / n 203.0625 
(R2^2) / n 144 
(R3^2) / n 420.25 
(R4^2) / n 451.5625 
T 6 
 
50 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ilustración 3. Modelo Computarizado del Proceso de Atención 
Fuente: Elaboración Propia 
 
Para ambos turnos que presenta la entidad financiera se crearon dos Módulos Create: 
turno de mañana (9:00-12:00pm) y turno tarde (12:00pm – 6:30pm), en los cuales la 
distribución que presentan en el tiempo entre llegadas según los resultados del Input 
Analyzer se colocó en expression con la unidad de tiempo en minutos. Con respecto al 
segundo créate que es del turno tarde se colocó que la primera creación empiece desde 
los 180 minutos debido a que comienza desde las 12:00pm. 
 
 
 
 
 
 
 
 
51 
 
 
 
 
 
 
 
 
 
Ilustración 4. Módulos Create de turno mañana y tarde 
Fuente: Elaboración Propia 
 
El máximo de llegadas 1 y 2 colocados en max arrivals como se puede observar en la 
ilustración 10, es una variable que va a contener un número mayor para que la 
simulación continúe hasta un determinado tiempo en este caso es el 999999. También 
se colocó dicho número en los otros dos create que se ubican en la parte inferior 
denominados corte de clientes 1 y 2, los cuales funcionan como una condicional, por 
consiguiente, se ubicó un Módulo Assing para colocar la variable creada, para que de 
esta manera los módulos se relacionen. 
 
Para el corte 1 se determinó que la primera creación se realice a los 180 minutos, para 
que, de esta manera ya no se presenten llegadas en el módulo del turno de la mañana, 
con respecto al corte 2 sería a los 570 minutos, ya que solo se atiende hasta el último 
cliente que ingresa a la entidad a las 6:30 pm. 
 
 
 
 
 
 
52 
 
 
 
 
 
 
 
Ilustración 5. Módulo create para cortes de llegada 
Fuente: Elaboración Propia 
 
Siguiendo con el proceso se asignó dos Módulos Assign para cada turno, en donde se 
colocó el atributo nombrado arribo utilizando el TNOW, el cual se encarga de contabilizar 
el tiempo actual. Asimismo, se añadió otro atributo denominado turno con valor de 1 y 2 
para ambos turnos respectivamente con el propósito que los datos obtenidos se 
clasifiquen según el turno correspondiente. 
 
 
 
 
 
 
Ilustración 6. Tiempo de Llegada 
Fuente: Elaboración Propia 
 
Después se ubicó un Módulo Decide en el que se ha colocado que si el cliente que 
ingresa a la entidad observa que se presenta más de 5 personas en la cola se retira sin 
ser atendido. Esto debido a que en los 4 días que se registró tiempo se pudo observar 
que la mayoría de las personas se retiraban de la entidad financiera al observar que se 
presentaba dicha cantidad de personas en la cola. 
 
53 
 
 
 
 
 
 
 
 
Ilustración 7. Módulo Decide 
Fuente: Elaboración Propia 
 
Las personas que siguen en el proceso van a pasar por otro Módulo Assign en el que 
se ha colocado el atributo denominado tipo, en el que se utilizó la probabilidad discreta 
(DISC), en el cual se coloca la acumulación de los porcentajes respectivos de las 4 
operaciones efectuadas en la agencia bancaria, las mismas que se muestran en la tabla 
III. También se agregó una variable denominada C que es un contador que se va a 
encargar de contabilizar la cantidad de personas que ingresan a plataforma. 
 
 
 
 
 
 
Ilustración 8. Módulo Assign colocación de atributos de tipo y contador 
Fuente: Elaboración Propia 
 
En el Módulo Process es en donde se realiza la atención en plataforma por lo que se 
colocó en recursos a los servidores, ya que son los encargados de asistir a cada uno de 
los clientes, además se puso la distribución correspondiente del tiempo de atención que 
 
54 
 
se obtuvo de los 4 días el cual es lognormal (10,4.16). Además, se colocó que la que el 
proceso de atención a los clientes es del tipo FIFO debido a que el primero en llegar es 
el primero en ser atendido. 
 
 
 
 
 
 
 
 
 
Ilustración 9. Módulo Process 
Fuente: Elaboración Propia 
 
La cantidad de personas que se cuenta para atender se añadió en el Módulo Schedule, 
en donde se va a definir los horarios de atención en horas para cada uno de los 
servidores. Se colocó que los dos servidores van a atender durante las 3 primeras horas, 
después un solo servidor va a estar presente durante dos horas y después el otro 
servidor va a atender también durante dos horas. Esto se debe a que cada servidor 
presenta un break de dos horas según información que fue otorgada en la entrevista, el 
cual se muestra en el gráfico 1. Por último, van a estar los dos servidores por lasúltimas 
horas restantes. 
 
 
55 
 
 
 
 
 
 
 
 
 
 
 
Ilustración 10. Módulo Schedule 
Fuente: Elaboración Propia 
 
También se colocó un Módulo Assing en el cual se añadió un contador para disminuir la 
cantidad de personas que se encuentran en la operación, con el objetivo de ponerlo 
como condición y de esta manera se detenga la simulación cuando todas las personas 
que han llegado a la entidad financiera sean atendidas. 
 
 
 
 
 
 
 
Ilustración 11. Módulo Assign colocación de atributos de Tiempo de Proceso y 
disminución de contador 
Fuente: Elaboración propia 
 
 
56 
 
Además, se colocó tres Módulos Records para obtener el tiempo del sistema promedio 
que se ha presentado, el total de personas atendidas y las que se han retirado por cada 
turno. Asimismo, se ha colocado la condición para detener la simulación en el que el 
TNOW sea menor o igual a los 9.5 horas, debido a que es la cantidad de horas que se 
presenta desde las 9:00 am hasta las 6:30 pm, y que el contador termine en cero ya que 
indica que todas las personas que han ingresado han sido atendidas. 
 
 
 
 
 
 
 
 
 
 
 
 
Ilustración 12. Run Setup 
Fuente: Elaboración propia 
 
Culminando todas las modificaciones, se procedió a simular por un tiempo de 6 meses 
con la cantidad actual de servidores que es de 2, para que de esta forma se observe el 
comportamiento que se presenta el área de atención de la primera plataforma en ambos 
turnos. 
 
 
 
57 
 
Tabla XIII 
 Cantidad Promedio de Personas 
 
 Meses 
Turno Cantidad 1 2 3 4 5 6 
Mañana 
Personas que Ingresan 30.0385 30.12 30.1 30.0673 30.615 30.7564 
Personas atendidas 29.4615 29.56 29.41 29.3365 29.808 29.9487 
Personas retiradas 0.5769 0.558 0.692 0.7308 0.8077 0.8077 
Tarde 
Personas que Ingresan 68.4615 68.1 68.13 68.9712 68.615 68.9103 
Personas atendidas 51.6538 52.37 52.08 52.4231 52.023 51.9423 
Personas retiradas 16.8077 15.73 16.05 16.5481 16.592 16.9679 
Fuente: Elaboración Propia 
 
En el turno tarde se presencia un mayor ingreso de clientes, además de que a la vez se 
tiene una mayor cantidad de personas retiradas de la agencia, por lo que se puede inferir 
que la cantidad de servidores en dicho turno no es la adecuada, ya que se contempla 
una cantidad promedio de 16 a 17 personas que se retiran, en comparación, del turno 
de la mañana que solo es de 1 persona en promedio. 
 
Por otra parte, se tomó en cuenta la cantidad promedio máximo de personas que 
abandonan el área de atención, datos que se obtuvieron del registro en los reportes de 
la simulación para ambos turnos, los cuales se van a presentar en gráficos de líneas 
realizados en Microsoft Excel para una mejor apreciación de su comportamiento. 
 
 
 
 
 
 
58 
 
 
 
 
 
 
 
 
 
 
Gráfico 9. Cantidad Promedio de Máximas Personas Retiradas 
Fuente: Elaboración Propia 
 
Para el turno mañana la cantidad de personas promedio retiradas tiene un constante 
crecimiento hasta el cuarto mes, en el cual se eleva de 5 a 15 personas, y para el turno 
tarde se presencia un leve crecimiento significativo ya que la cantidad inicial fue de 29 
personas y al finalizar se obtuvo 38 personas. En ambos casos la entidad financiera 
presenta pérdidas, por lo que tomando en cuenta estos datos se consideró que es 
necesario aumentar la cantidad de servidores en ambos turnos, y de esta manera 
reducir el tiempo de espera. 
 
Objetivo n°3: Evaluar escenarios para la reducción del tiempo de espera y el costo del 
sistema 
 
Se realizó 5 escenarios que han sido simulados por 1 año, en el que se variaron la 
cantidad de servidores en el Módulo Schedule del Software Arena. Para el primer 
escenario se ha considera el total de servidores con el que cuenta actualmente la 
entidad financiera que es de 2 personas, con respecto al segundo escenario se 
consideró a 3 personas, para el tercer escenario se consideró a un total de 4 servidores, 
0
10
20
30
40
1 2 3 4 5 6
C
an
ti
d
ad
 d
e 
P
er
so
n
as
Meses
Cantidad Promedio Máximo de Personas 
Retiradas
Turno Mañana Personas retiradas Turno Tarde Personas retiradas
 
59 
 
para el cuarto 5 servidores y para el último 6 servidores debido a que es en donde las 
personas dejan de retirarse de la entidad. Los resultados obtenidos se muestran junto 
con sus respectivos los costos en la tabla XVIII. 
 
Para determinar los costos del sistema se ha empleado la herramienta Microsoft Excel 
y se ha tomado en cuenta el número promedio de clientes que ingresan a la agencia en 
una hora para hacer operaciones en la primera plataforma, los clientes que son 
atendidos por los distintos servidores y el tiempo de espera promedio que se genera en 
las colas durante los 4 días de observación. 
 
Tabla XIV 
Clientes que ingresan, atendidos y tiempo de espera 
 
Promedio En una hora 
Clientes que ingresan 12.0970 
Clientes atendidos 10.2105 
Tiempo de espera (hrs.) 0.3642 
Fuente: Elaboración Propia 
 
La cantidad de clientes en promedio que ingresan a la primera plataforma en una hora, 
se halló en función a las personas que se retiraron de la agencia por cada día de 
recolección de datos, haciendo un promedio de 18.476% de personas que se retiran. 
Por otra parte, los clientes atendidos en una hora se encuentran en función al promedio 
de clientes que ingresaban por hora y que fueron atendidos en los días de recolección 
de datos haciendo un promedio de 10.2105 de clientes; el tiempo de espera por cada 
hora es un promedio de tiempo que normalmente un cliente espera para ser atendido, 
cuyo valor expresado en horas es de 0.3642. 
 
60 
 
Dentro de los costos del sistema se tiene el costo de servicio y el costo por no atender 
a un cliente. El costo de servicio engloba los costos referentes al pago del personal y si 
fuera el caso de un nuevo servidor se engloba el pago del personal y los costos 
asociados; en lo referente al costo de servicio de un servidor de la agencia se tomará 
en cuenta según la información obtenida de la entrevista, el sueldo básico, el riesgo de 
caja, la asignación familiar, las gratificaciones, el costo de las vacaciones y el seguro en 
ESSALUD, dando un costo de servicio de S./ 2,603 al mes. 
 
Tabla XV 
Costo del Servicio en un mes 
Costo de servicio en un mes 
Sueldo básico s/. 1,500 
Riesgo de caja s/. 500 
Asignación familiar s/. 93 
Gratificaciones s/. 250 
Vacaciones s/. 125 
ESSALUD s/. 135 
Total s/. 2,603 
Fuente: Elaboración Propia 
 
Para hallar el costo de servicio en una hora, se ha tomado en consideración 26 días 
laborables en la agencia y 8 horas de trabajo al día, obteniendo el costo de servicio en 
una hora la cual asciende a S./ 12.5144 
 
 
 
 
 
61 
 
Tabla XVI 
Costo del Servicio en una hora 
Costo de servicio en una hora 
Costo de servicio al mes s/. 2603 
Costo de servicio al día s/. 100.1154 
Costo de servicio en una hora s/. 12.5144 
Fuente: Elaboración Propia 
 
El costo de no atender a un cliente es un costo asociado al sistema y se encuentra 
relacionado a la pérdida de oportunidad que se genera, puesto que deja de ingresar 
dinero para la entidad financiera por diversas operaciones y también engloba las quejas 
derivando en una mala reputación o pérdida de tiempo de los servidores para atender 
las mismas. 
 
Para obtener el costo por no atender a un cliente se ha hallado el ingreso promedio 
diario por cliente que percibe la entidad financiera por las diversas operaciones en la 
primera plataforma, para luego establecer la tasa promedio de interés por cliente que se 
genera a razón de estas operaciones. Según la información brindada por la entidad 
financiera, el ingreso promedio por las diversas operaciones que se generan según el 
área de operaciones es de s/. 1,448.33 por cliente y la tasa de interés (Anexo n°6) es 
de 2.16%, resultando s/ 31.3035 como el costo por no atender a un cliente.62 
 
Tabla XVII 
Costo de Atención por cliente 
Costo de no atender a un cliente en una hora 
Ingreso promedio general s/. 1448.33 
Interés promedio general 2.16% 
Costo de atención por cliente s/. 31.3035 
Fuente: Elaboración Propia 
 
Teniendo en cuenta los datos de las tablas XVI y XVII se procedió a calcular el costo de 
servicio utilizando la fórmula (3) y el costo de espera mediante la fórmula (4) con el 
propósito de obtener el costo del sistema para cada uno de los 5 escenarios realizados 
en el software Arena. Los resultados obtenidos durante un año de simulación se 
muestran en la siguiente tabla: 
 
Tabla XVIII 
Resultados del Software Arena y Costos 
 Cantidad de Servidores 
 2 3 4 5 6 
 Primer 
escenario 
Segundo 
Escenario 
Tercer 
Escenario 
Cuarto 
Escenario 
Quinto 
Escenario 
Tiempo Promedio de Espera 
en Cola (hrs.) 
0.347 0.1664 0.0659786 0.038757 0.013221 
Tiempo Promedio del 
Sistema (hrs.) 
0.5134 0.3327 0.2321 0.205 0.1799 
Número Promedio de 
Clientes en Cola (unid.) 
2.8972 1.5975 0.6898 0.4091 0.1426 
 
63 
 
Utilización de los Servidores 
(%) 
87.30% 67.29% 53.84% 43.54% 36.49% 
Número Promedio de 
Clientes Turno Mañana 
(unid.) 
0.8836 0.6469 0.5636 0.5505 0.5411 
Número Promedio de 
Clientes Turno Tarde (unid.) 
3.4016 2.5468 1.8321 1.582 1.3365 
Personas que se retiran 
(unid.) 
17.77 7.99 1.28 0.6058 0.076923 
Personas Atendidas (unid.) 82.22 92.94 99.13 99.9 100.46 
Costo de Servicio (s/.) 25.0289 37.5433 50.0577 62.5721 75.0865 
Costo de Espera (s/.) 134.1418 99.9739 74.9938 66.7547 58.7755 
Costo del Sistema(s/.) 159.1706 137.5173 125.0515 129.3268 133.862 
Fuente: Elaboración Propia 
 
Los tiempos promedios obtenidos de la simulación muestran una disminución conforme 
se va aumentando la cantidad de servidores, debido a que conforme este número 
incrementa a 5 y 6 servidores el tiempo promedio de espera en cola presenta tiempos 
de 0.038757 hrs. y 0.013221 hrs. respectivamente, por lo que la cantidad promedio de 
personas que se retiran de la agencia también disminuye. 
 
 
 
 
 
 
 
 
64 
 
 
 
 
 
 
 
 
 
 
Gráfico 10. Porcentaje de Reducción de los Tiempos Promedios 
Fuente: Elaboración Propia 
 
Al añadir un servidor más en el área de atención de la primera plataforma el tiempo 
promedio del sistema decrece en 12%, y el tiempo promedio de espera en la cola en 
29%; y si se incrementa dos servidores más, el tiempo promedio del sistema presenta 
una reducción del 7% y el tiempo promedio de espera en 16%, mientras que al aumentar 
de 3 hasta 4 servidores los tiempos promedios que se muestran se reducen 
mínimamente. 
 
También se observó el porcentaje de utilización para cada cantidad de servidores 
mediante la realización de un gráfico obtenido del Microsoft Excel, en el que se puede 
apreciar que al incrementar dicha cantidad el porcentaje de utilización comienza a 
disminuir. 
 
 
 
 
 
29%
16%
4% 4%
12%
7%
2% 2%
0%
5%
10%
15%
20%
25%
30%
35%
(2-3) (3-4) (4-5) (5-6)
P
o
rc
en
ta
je
Cantidad de Servidores
Porcentaje de Reducción de Tiempos Promedios
Tiempo Promedio de Espera en Cola Tiempo Promedio del Sistema
 
65 
 
 
 
 
 
 
 
 
 
 
 
Gráfico 11. Porcentaje de Utilización 
Fuente: Elaboración Propia 
 
Con la cantidad actual de servidores que presenta la entidad financiera en la primera 
plataforma se tiene un porcentaje de utilización de 87.30% y aumentando un servidor 
más se tiene un total de 67.29%, mientras que al aumentar entre 2 a 4 personas este 
porcentaje varía entre 53.84% hasta 36.49%, el cual indica un menor tiempo productivo 
por parte de los servidores. Este porcentaje no puede llegar al 100% debido a que 
siempre se va a presentar un tiempo ocioso por parte de los servidores, por lo que se 
debe tener un porcentaje cercano a este número para que sea óptimo. 
 
Asimismo, se realizó un gráfico en el que se representa el comportamiento del costo del 
sistema para la cantidad de servidores considerados en la simulación, en el que se 
puede observar que el cruce entre el costo de espera y de servicio resulta en 5 
servidores siendo esta cantidad la óptima que debe tener la agencia bancaria, debido a 
que entre ambos costos obtenidos con tales servidores son cantidades cercanas como 
se observa en el gráfico. 
 
87%
67%
54%
44%
36%
0%
20%
40%
60%
80%
100%
2 3 4 5 6
P
o
rc
en
ta
je
Cantidad de Servidores
Porcentaje de Utilización
 
66 
 
 
 
 
 
 
 
 
 
 
Gráfico 12. Costos en el Sistema de Espera 
Fuente: Elaboración Propia 
 
Sin embargo, teniendo en cuenta que el porcentaje de utilización para 5 servidores es 
demasiado bajo, se tomó la cantidad de 3 servidores ya que presenta un porcentaje de 
utilización de 67.29%, cuyo valor es aceptable en comparación a los demás escenarios 
debido a que indica que se va a presentar mayor tiempo productivo de los servidores en 
el área de trabajo, además de que es en donde se presenta una reducción en los 
tiempos. 
 
En función a la cantidad de servidores seleccionados según el análisis anteriormente 
realizado, se calculó la ganancia neta que se genera durante una hora, para el cual se 
ha tomado en cuenta la cantidad de clientes en una hora que han sido atendidos que es 
de 11.618 personas y el ingreso que se obtiene por cada cliente que es de s/. 1,448.330, 
dato colocado en la tabla XVII. Con estos datos se obtiene el ingreso que va a tener la 
entidad financiera, el cual es de un total de S/. 16,825.974. 
 
 
 
0
20
40
60
80
100
120
140
160
180
2 3 4 5 6
C
o
st
o
s
Cantidad de Servidores
Costos en el Sistema de Espera
 
67 
 
Tabla XIX 
Beneficio con 3 servidores 
Beneficios 
Servidores 3 
Clientes en una hora (unid.) 11.618 
Ingreso por un cliente (s/.) 1,448.330 
Ingreso al banco (s/.) 16,825.974 
Tasa de Interés (%) 2.16% 
Ganancia bruta en una hora (s/.) 363.669 
Costo de servicio en una hora (s/.) 37.543 
Ganancia neta en una hora (s/.) 326.125 
 
Fuente: Elaboración Propia 
 
Además, teniendo en cuenta la tabla XVII se ha colocado la tasa de interés promedio 
generada por las diversas operaciones presentes en la primera plataforma, cuyo valor 
es de 2.16%, para luego obtener la ganancia bruta obtenida en una hora que al restarse 
con el costo de los servidores en una hora se obtiene la ganancia neta de la entidad 
financiera. Con todos estos datos considerados se obtuvo que la ganancia neta en una 
hora para los tres servidores considerados es de s/. 326.125. 
 
Objetivo 4: Realizar un análisis de Beneficio y/o Costo 
 
Para obtener el beneficio costo de la contratación de un nuevo trabajador en el área de 
atención se ha tomado en cuenta los implementos que va a requerir, el cual se realizó 
mediante la utilización de Microsoft Excel. Primeramente, las herramientas básicas que 
se ha considerado en invertir son: lapiceros, perforador, engrapador, grapas, sellos, 
 
68 
 
tampón, papel bond, formatos de proforma, cinta, dispensador de cinta, tijera y papel 
térmico. 
 
Tabla XX 
Herramientas Básicas 
 
Fuente: Elaboración Propia 
 
Herramientas Básicas 
Herramientas básicas Cantidad 
Precio por unidad 
(S/.) 
Total (S/.) 
Lapiceros 12 S/1.00 S/12.00 
Perforador 1 S/14.50 S/14.50 
Engrapador 1 S/16.00 S/16.00 
Grapas 12 S/3.50 S/42.00 
Sellos 3 S/22.00 S/66.00 
Tampón 12 S/4.50 S/54.00 
Papel bond (millar) 20 S/13.50 S/270.00 
Formatos de proforma 
(millar) 5 S/19.00 S/95.00 
Cinta 10 S/1.00 S/10.00 
Dispensador de cinta 1 S/13.50 S/13.50 
Tijera 1 S/5.00 S/5.00 
Papel térmico (rollo) 65 S/3.20 S/208.00 
Valor Total de Herramientas Básicas S/806.00 
 
69 
 
En la tabla XX se muestra que los costos que se va a presentar en el año de inversión 
con respecto a las herramientas básicas, en el que se ha especificadola cantidad, el 
precio unitario y el costo total para cada uno de las herramientas consideradas, 
representa un costo anual total de s/. 806.00. 
 
También, se ha considerado los equipos de oficina que se son: computadora, silla de 
oficina, impresora, sensor biométrico, lector de barra, caja fuerte, contadora y terminal 
punto de venta. Estos equipos van a permitir que pueda realizar de manera eficiente sus 
labores en el área de plataforma. 
 
Tabla XXI 
Artículos de Oficina 
Artículos de Oficina 
Artículos de Oficina Cantidad 
Precio por unidad 
(s/.) 
Total (s/.) 
Computadora 1 S/2,299.00 S/2,299.00 
Silla de Oficina 1 S/117.17 S/117.17 
Impresora 1 S/900.00 S/900.00 
Sensor Biométrico 1 S/330.00 S/330.00 
Lector de Barra 1 S/198.00 S/198.00 
Caja Fuerte 1 S/891.00 S/891.00 
Contadora 1 S/711.00 S/711.00 
Terminal Punto de Venta 1 S/376.00 S/376.00 
Valor Total de Artículos de Oficina S/5,822.17 
Fuente: Elaboración Propia 
 
 
 
70 
 
En la tabla XXI se observan los costos que se van a presentar como inversión, esto con 
respecto a los equipos de oficina, en el que se ha especificado la cantidad, el precio 
unitario y el costo total para cada uno de los ítems considerados, representando un costo 
de s/. 5,822.17. 
 
Los artículos personales que va a requerir el nuevo trabajador son: Fotocheck, Pin y un 
uniforme, los cuales van a servir para que se pueda identificar como trabajador de la 
entidad financiera. 
 
 
Tabla XXII 
Artículos Personales 
Artículos Personales 
Artículos Cantidad 
Precio por 
unidad (s/.) 
 Total 
(s/.) 
Fotocheck 2 S/22.50 S/45.00 
Pin 2 S/15.00 S/30.00 
Uniforme 1 S/380.00 S/380.00 
Valor Total de Artículos de Oficina S/455.00 
 
Fuente: Elaboración Propia 
 
Según el resultado obtenido de la tabla XXII, los costos que se van a presentar al año 
de inversión con respecto a los artículos de oficina, en el que se ha especificado la 
cantidad, el precio unitario y el costo total para cada uno de los ítems considerados, 
representa un costo anual total de s/. 455.00. 
 
 
71 
 
Además, se ha tomado en cuenta la capacitación para la inducción que va a tener el 
nuevo trabajador, cuya capacitación tiene una duración de 96 hrs. Esta capacitación es 
indispensable para que el trabajador aprenda sobre las funciones que se tiene que 
realizar en la primera plataforma. 
 
Tabla XXIII 
Capacitación 
Capacitación 
Descripción Cantidad (hrs.) 
Precio por Unidad 
(s/.) 
Total (s/.) 
Programa de Inducción 96 S/1,800.00 S/1,800.00 
Valor total de la Capacitación S/1,800.00 
Fuente: Elaboración Propia 
 
En la tabla XXIII, se indica que el costo total de la capacitación por el tiempo de duración 
que es de 96 horas es de s/. 1,800.00, el cual solo va a ser invertido una sola vez. 
 
La remuneración que recibe el trabajador es el costo del servir que se ha calculado en 
la tabla XV, en donde se ha considerado el sueldo básico, riesgo de caja, asignación 
familiar, gratificaciones, vacaciones y ESSALUD. 
 
 
 
 
 
 
 
 
72 
 
Tabla XXIV 
Remuneración 
Remuneración 
Descripción Cantidad (mes) 
Precio por Unidad 
(s/.) 
Total (s/.) 
Trabajador en Plataforma 1 S/2,603.00 S/2,603.00 
Valor Total de remuneración S/2,603.00 
Fuente: Elaboración Propia 
 
 En la tabla XXIV se muestra el total de remuneración que tiene un trabajador en un 
mes, el cual es de s/. 2,0603.00. Con los datos obtenidos anualmente se dividió entre 
12 para obtener el costo mensual para un trabajador. 
 
 Tabla XXV 
Inversión Total 
 
 
 
 
 
 
 
 
Fuente: Elaboración Propia 
 
 
Inversión Mes 
Herramientas Básicas S/67.17 
Equipos de Oficina S/5,822.17 
Artículos personales S/37.92 
Capacitación S/1,800.00 
Remuneración S/2,603.00 
Total S/10,330.25 
 
73 
 
Se tuvo que la inversión inicial en un mes para un trabajador es de s/. 10,330.25 teniendo 
en cuenta los implementos considerados, la capacitación y la remuneración. Además, 
se calculó el costo que se presenta con la cantidad de trabajadores actuales y con la 
cantidad propuesta en un plazo de 12 meses. 
 
 
 
 
 
 
 
 
Gráfico 13. Costos 
Fuente: Elaboración Propia 
Como se aprecia en el gráfico 13, el costo y gasto operativo del proyecto propuestos es 
mayor al actual en un s/. 2,708.08 debido a que presenta nueva mano de obra, pero se 
obtiene mayores ingresos como se observa en el gráfico 14. 
 
 
 
 
 
 
 
 
Gráfico 14. Ingresos 
Fuente: Elaboración Propia 
 
 
74 
 
Estos se van incrementando progresivamente durante los 12 meses que se han 
proyectado. Para obtener los beneficios que se van a presentar, se ha simulado 
mediante el software Arena por cada mes para hallar la cantidad de personas atendidas 
con 2 y 3 trabajadores, el cual va a ser multiplicado por la ganancia que se obtiene por 
cada cliente, la tasa de interés que se menciona en la tabla XVIII y los 26 días laborales. 
Con todos los datos anteriormente mencionados se realizó el respectivo flujo de caja 
proyectado durante 12 meses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tabla XXVI 
Flujo de Caja
 
67 
 
 
RUBROS Mes 1 Mes 2 Mes 3 Mes 4 Mes 5 Mes 6 Mes 7 Mes 8 Mes 9 Mes 10 Mes 11 Mes 12 
I. MÓDULO DE 
INVERSIÓN 
-S/10,330.25 0 0 0 0 0 0 0 0 0 0 0 
Herramientas 
Básicas 
-S/67.17 
Equipos de Oficina -S/5,822.17 
Artículos personales -S/37.92 
Capacitación -S/1,800.00 
Remuneración -S/2,603.00 
II. MÓDULO DE 
OPERACIÓN (A -B) 
S/5,863.09 S/5,363.02 S/5,451.43 S/5,409.89 S/5,697.89 S/5,895.20 S/6,129.90 S/6,313.80 S/6,143.95 S/6,192.60 S/6,164.15 S/6,054.41 
A. INGRESOS 
INCREMENTALES (a 
- b) 
S/8,571.18 S/8,071.10 S/8,159.51 S/8,117.98 S/8,405.97 S/8,603.29 S/8,837.98 S/9,021.88 S/8,852.03 S/8,900.68 S/8,872.24 S/8,762.49 
(a) Ingresos con 
proyecto 
S/74,548.91 S/74,705.89 S/74,439.74 S/74,619.78 S/74,965.68 S/75,211.96 S/75,396.80 S/75,648.86 S/75,622.33 S/75,638.69 S/75,674.82 S/75,639.74 
Ingresos S/74,548.91 S/74,705.89 S/74,439.74 S/74,619.78 S/74,965.68 S/75,211.96 S/75,396.80 S/75,648.86 S/75,622.33 S/75,638.69 S/75,674.82 S/75,639.74 
(b) Ingresos sin 
proyecto 
S/65,977.74 S/66,634.79 S/66,280.23 S/66,501.80 S/66,559.71 S/66,608.68 S/66,558.82 S/66,626.98 S/66,770.29 S/66,738.00 S/66,802.59 S/66,877.25 
Ingresos S/65,977.74 S/66,634.79 S/66,280.23 S/66,501.80 S/66,559.71 S/66,608.68 S/66,558.82 S/66,626.98 S/66,770.29 S/66,738.00 S/66,802.59 S/66,877.25 
B. EGRESOS 
OPERATIVOS 
INCREMENTALES (c - 
d) 
S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 S/2,708.08 
(c) Costos y gastos 
operativos con 
proyecto 
S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 S/8,124.25 
Herramientas 
Básicas 
S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 S/201.50 
Equipos de Oficina 
 
68 
 
Artículos personales S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 S/113.75 
Capacitación 
Remuneración S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 S/7,809.00 
(d) Costos y gastos 
operativos sin 
proyecto 
S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 S/5,416.17 
Herramientas 
Básicas 
S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 S/134.33 
Artículos personales S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 S/75.83 
Remuneración S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00S/5,206.00 S/5,206.00 S/5,206.00 S/5,206.00 
FLUJO DE CAJA 
NOMINAL ( I + II ) 
-S/4,467.16 S/5,363.02 S/5,451.43 S/5,409.89 S/5,697.89 S/5,895.20 S/6,129.90 S/6,313.80 S/6,143.95 S/6,192.60 S/6,164.15 S/6,054.41 
FLUJO DE CAJA 
ACUMULADO 
-S/4,467.16 S/895.86 S/6,347.28 S/11,757.18 S/17,455.06 S/23,350.27 S/29,480.17 S/35,793.97 S/41,937.92 S/48,130.51 S/54,294.67 S/60,349.07 
VALOR ACTUAL 
NETO ( VAN ) 
S/.98,133.78 
TASA INTERNA DE 
RETORNO ( TIR ) 
122% 
TASA DE INTERÉS 
MÍNINA 
14.7% 
Fuente: Elaboración Propia
 
69 
 
Se observa que la inversión realizada se recupera en el siguiente mes ya que se obtiene 
una ganancia del s/. 895.86, el cual se incrementa en los siguientes meses de la 
proyección. Además, de que el valor actual neto obtenido es de s/. 98,133.78 indica que 
se va a obtener ganancias por encima de la rentabilidad exigida. Por otro lado, se calculó 
el beneficio costo del proyecto propuesto, para el cual se va a utilizar los ingresos 
actualizados que se obtienen de la multiplicación de la tasa mínima de interés que es 
del 14.7% y de los ingresos que se obtiene con el proyecto; con respecto a los egresos 
actualizados se multiplica la misma tasa mínima por los costos y gastos operativos con 
proyecto presentados en el flujo de caja. 
Tabla XXVII 
Beneficio Costo 
Ingresos 
actualizados 
S/411,659.19 
Egresos 
actualizados 
S/44,608.29 
Σ Costos + 
Inversión 
S/54,938.54 
B/C s/ 7.49 
 
Fuente: Elaboración Propia 
 
El resultado obtenido es de s/. 7.49, el cual nos indica que la propuesta de tener 3 
servidores en el área de atención de plataforma es rentable debido a que por cada s/. 
1.00 invertido se va a obtener una ganancia adicional de s/. 6.49. 
 
 
 
 
 
 
 
 
70 
 
 
 
 
 
 
 
CONCLUSIONES 
6.1. Discusión de Resultados 
 Según un estudio que fue realizado en una entidad financiera de los Estados 
Unidos la utilización de la simulación ayudó a tener un diagnóstico del banco, 
indicando que para los clientes generales la cantidad actual de 2 servidores es 
la adecuada, pero para los clientes de negocio y para los clientes Drive-Through 
esta cantidad era insuficiente para atender adecuadamente a la demanda [23], 
y en el estudio realizado se obtuvo mediante la aplicación de la simulación que 
la entidad financiera no cuenta con la cantidad óptima de servidores debido a 
que el tiempo de espera promedio es de 0.347 hrs., el cual provoca el retiro de 
18 personas ocasionando pérdidas a la agencia de s/. 134.1418 anualmente. 
Con esto se pudo comprobar que esta herramienta otorga información primordial 
que ayuda a tener un diagnóstico de la situación actual. 
 
 También se pudo evidenciar que al aumentar la cantidad de servidores se 
disminuye el tiempo de espera de los clientes en cola, debido a que al agregar 
un servidor más en el área de atención al cliente en la primera plataforma el 
tiempo de espera se reduce a 0.1806 hrs., esto se puede contrastar con un 
estudio que se realizó en la Comisión Federal de Electricidad de México en 
donde al aumentar un servidor sus tiempos de espera se redujeron en 9.5 
 
71 
 
minutos, aumentando la satisfacción de sus clientes y la rentabilidad del proceso 
[20]. 
 
 Para el caso de estudio se dividió en dos el tiempo de atención que comprende 
de 9:00 am a 6:30 pm en la agencia bancaria, esto debido a que la afluencia de 
clientes en ambos turnos era distinta; se tuvo que para el turno mañana se 
presentaba una distribución beta y para el turno tarde se presentaba una 
distribución exponencial. Por esta razón, se empleó la simulación para obtener 
los valores de la teoría de colas haciendo uso del software Arena; como en el 
caso de estudio en Bolivia, en el que se utilizó la simulación debido a que se 
adecua a cualquier tipo de distribución, ya que la tasa de arribo y el de servicio 
no presentaba una distribución Poisson [25]. 
 
 Por otro lado, en el estudio que fue realizado en el BCP se indicó que la cantidad 
óptima de servidores era de 5 cajeros debido a que se presentaba un menor 
costo [30]; sin embargo, siguiendo esta indicación la cantidad de servidores que 
debe presentarse en este caso debería ser de 4, ya que presentaría un menor 
costo de sistema; sin embargo, no sería una propuesta adecuada ya que aunque 
el costo del sistema disminuye de s/. 159.1706 a s/. 125.0515, el porcentaje de 
utilización que se presenta es de 53.84%, el cual indica un menor tiempo 
productivo de los trabajadores; en cambio, con la cantidad de 3 servidores se 
presenta una reducción en dicho costo a s/. 137.5173 con un porcentaje de 
utilización de 67.29%, el cual es aceptable. 
 
 
 
 
 
72 
 
6.2. Conclusiones 
 
 La entidad financiera presenta cuatro operaciones que son realizadas en la 
primera plataforma, de las cuales las más efectuadas durante el periodo 
evaluado fueron los desembolsos con un 59% y el pago de cuotas con un 27%. 
Por otro parte, en el periodo evaluado la entidad financiera presenta 
frecuentemente colas de entre 1 a 7 personas con un tiempo promedio de espera 
que varía entre los 6.82 minutos hasta un máximo de 19.31 minutos. 
 
 Los resultados obtenidos de la simulación para el área de atención en la primera 
plataforma concluyeron que se presenta una mayor afluencia en el turno tarde, 
además de que la cantidad promedio de clientes que se retiran de la agencia 
varían entre 16 a 17 personas. También se determinó que en el turno mañana 
se registran como máximo entre 5 a 15 personas en promedio que se retiran de 
la agencia. Por otra parte, con la cantidad actual de dos servidores el tiempo 
promedio de espera que se presenta en cola es de 0.347 hrs, presentando una 
cantidad promedio de 82 personas atendidas al día. 
 
 Se establecieron 5 escenarios en los que se ha asignado de 2 hasta 6 servidores 
por cada escenario, dentro de los cuales se pudo identificar que entre 4 a 6 
servidores se reduce la cantidad de clientes que se retiran de la agencia a 1 
persona, debido a que el promedio del tiempo de espera en cola es menor a 
0.1664 hrs; sin embargo, el porcentaje de utilización también se reduce hasta 
alcanzar un valor de 36.49%. Por otra parte, en el segundo escenario asignando 
3 servidores el porcentaje de utilización alcanza un valor de 67.29%, por lo que 
se presenta un mayor tiempo productivo de los servidores, además de que con 
dicha cantidad el tiempo de espera promedio es de 0.1664 hrs. presentando una 
reducción del 29% con respecto al valor actual y una ganancia de s/. 326.125, 
 
73 
 
ya que las personas que se atienden en promedio por hora con la propuesta 
simulada sería de 12 personas. 
 
 La propuesta de tener tres servidores presenta indicadores económicos de un 
TIR de 122%, VAN de s/ 98,133.78 y un Beneficio Costo de s/. 7.49, el cual indica 
que se obtiene una ganancia de s/ 6.49 por cada s/ 1.00 invertido. De acuerdo a 
lo anterior, la propuesta simulada sería rentable ya que la inversión se 
recuperaría al siguiente mes de ser implementada y se obtendría ganancias por 
encima de la rentabilidad exigida, esto debido a que se va a tener un incremento 
de 11 personas atendidas por día, reduciendo la tasa de personas que se retiran 
de la agencia. 
 
 El costo del sistema que se presenta en el área de atención de la primera 
plataforma con 2 servidores es del s/ 159.17, el mismo que engloba el costo del 
servicio que es de s/. 25.0289 y el costo de espera que es s/.134.1418. Este 
costo de sistema se reduce en un 3.16% teniendo un valor de s/ 137.52 al 
aumentar un servidor más en la atención de la primera plataforma. Esto debido 
a que el costo del servidor aumenta a un valor de s/. 37.5344 y el costo de espera 
se reduce hasta alcanzar un valor de s/. 99.9739. 
 
6.3. Recomendaciones 
 
 Se recomienda contratar un trabajador más en el áreade atención al cliente en 
la entidad financiera, puesto que implementando la propuesta el tiempo 
promedio de espera que se presenta en la cola se reduce a 0.1664 hrs, logrando 
atender a 93 personas en promedio al día, lo que derivaría en una ganancia por 
hora de s/. 326.125. 
 
74 
 
 
 Se recomienda realizar una comparación de los actuales tiempos que se 
presenta en la entidad financiera y los nuevos tiempos que se van a presentar 
en el área de atención de la primera plataforma de la entidad financiera con el 
nuevo servidor, con el propósito de realizar un seguimiento debido a que la 
cantidad de servidores puede cambiar ante la variación de los clientes en la 
agencia. 
 
 Se recomienda a la entidad financiera estar al pendiente de las quejas y/o 
reclamos de los clientes que se pudieran presentar, para que de esta manera se 
pueda conocer los diferentes factores que ocasionan la presencia de esta 
problemática, con el propósito de proponer estrategias adecuadas para 
contrarrestarlo. 
 
 Se recomienda realizar este estudio con datos anteriores de la entidad financiera 
hasta la actualidad, para que de esta forma se obtenga datos más cercanos a la 
realidad mediante la simulación. 
 
 Se recomienda realizar este estudio en las demás áreas de la agencia en donde 
se presente líneas de espera, para tener una mejor apreciación de la situación 
actual que se presenta, además de que va a permitir evaluar si la cantidad de 
servidores presentes son los adecuados para que la mayoría de los clientes sean 
atendidos y de esta manera satisfacer sus necesidades. 
 
 
 
 
 
75 
 
Anexos 
Anexo n°1. Encuesta 
 
ENCUESTA 
 
 
 
MARQUE LA ALTERNATIVA SEGÚN SU EXPERIENCIA 
 
1. A cuantas instituciones financieras ha recurrido usted para solicitar un 
préstamo: 
 
 Una ( ) 
 Dos ( ) 
 Tres ( ) 
 Cuatro ( ) 
 Cinco a más ( ) 
 
2. ¿Acudió a otras instituciones financieras para que le brindaran el 
préstamo? 
 Sí ( ) 
 No ( ) 
 
 Si marcó No, explique: __________________________________ 
 
3. ¿Cuántas veces ha recibido un préstamo por parte de la agencia 
bancaria? 
 
 Una sola vez ( ) 
 Dos veces ( ) 
 Tres veces ( ) 
 Cuatro veces ( ) 
 Cinco veces a más ( ) 
 
4. Tiene algún préstamo vigente con alguna otra institución financiera: 
 
 Sí ( ) 
 No ( ) 
 
5. ¿Considera importante el tiempo de atención a la hora de elegir una 
entidad financiera? 
 Sí ( ) 
 No ( ) 
 
6. ¿Cómo considera que es la atención en la agencia bancaria? 
 
 
76 
 
 Excelente ( ) 
 Buena ( ) 
 Regular ( ) 
 Mala ( ) 
 
7. ¿Seguiría trabajando con la entidad financiera en un futuro? 
 
 Sí ( ) 
 No ( ) 
 
 
8. ¿Considera que el tiempo de atención en la plataforma 1 es alto? 
 
 Sí ( ) 
 No ( ) 
 
9. ¿Evaluaría cambiar de entidad financiera ante una mala atención o 
demoras prolongadas en el servicio? 
 
 Sí ( ) 
 No ( ) 
 
 
 
 
Anexo n°2. Guía de Preguntas de la Entrevista 
1. Datos de Identificación: 
 
 Nombres y Apellidos: __________________________________ 
 Puesto que desempeña: 
_________________________________ 
 Institución: ___________________________________________ 
 
2. Preguntas Guía: 
 ¿Cuánto tiempo se encuentra trabajando para la entidad 
financiera? 
 ¿Qué problema a identificado que se presenta en el área de 
atención en plataforma de la entidad financiera? 
 ¿Cuáles son los horarios que presentan los trabajadores en la 
primera plataforma? 
 ¿Tiene información del tipo y cantidad de operaciones que se ha 
realizado en la primera plataforma en los últimos meses del año 
2019? ¿Cuáles son? ¿Cuál es la cantidad? 
 ¿Cuánto fue el porcentaje de utilización de dichas operaciones en 
los últimos meses del año 2019? 
 
77 
 
 ¿Cuántos clientes que realizaron dichas operaciones atendieron 
durante los últimos meses del año 2019? 
 ¿Cuáles son los costos que se considera por cada trabajador que 
atiende en la primera plataforma? 
 
 
 
 
 
Anexo n°3. Registro de tiempos de atención a los usuarios 2019 
 
Hora Hora minutos 
Tiempo 
entre 
llegadas 
Hora de 
salida 
Minutos 
Tiempo de 
Servicio 
Tiempo en 
Cola 
09:10:35 00:10:35 10.5841986 10.58419856 09:21:02 17.03333333 6.449134773 - 
09:11:38 00:11:38 11.637 1.053265262 09:28:11 25.18333333 13.54633333 - 
09:13:54 00:13:54 13.905 2.267907936 09:29:08 29.13333333 12.1 3.128333333 
09:19:48 00:19:48 19.807 5.901400364 09:37:41 37.68333333 12.5 5.376333333 
09:29:42 00:29:42 29.702 9.895584031 09:37:30 37.5 8.366666667 - 
09:42:12 00:42:12 42.194 12.49165678 09:43:06 43.1 5.6 - 
09:48:20 00:48:20 48.337 6.143418298 09:57:12 57.2 8.863 - 
10:00:20 01:00:20 60.33 11.99209998 10:12:03 72.05 11.72 - 
10:12:56 01:12:56 72.927 12.59704808 10:30:10 90.16666667 17.23966667 - 
10:13:41 01:13:41 73.679 0.752140776 10:28:01 88.01666667 15.96666667 - 
10:13:59 01:13:59 73.99 0.310826354 10:32:05 92.08333333 18.09333333 - 
10:30:09 01:30:09 90.151 16.16125814 10:39:42 99.7 9.549 - 
10:45:31 01:45:31 105.525 15.37393832 10:58:16 118.2666667 12.74166667 - 
10:51:11 01:51:11 111.19 5.665466289 11:11:27 131.45 20.26 - 
10:56:29 01:56:29 116.476 5.285816921 11:09:12 129.2 10.93333333 1.790666667 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78 
 
Anexo n°4. Distribución de Chi Cuadrado 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79 
 
Anexo n°5. Tiempos entre llegadas 
Tiempos entre llegadas 
10.58419856 
1.053265262 
2.267907936 
5.901400364 
9.895584031 
12.49165678 
6.143418298 
11.99209998 
12.59704808 
0.752140776 
0.310826354 
16.16125814 
15.37393832 
5.665466289 
5.285816921 
5.536500448 
9.015461141 
0.309395112 
5.948216278 
9.93623397 
13.71571943 
1.859333413 
2.186682388 
5.07923173 
0.908278818 
1.288314977 
24.37330598 
16.37259413 
8.37431771 
9.165003053 
7.003883564 
0.273808777 
1.909372664 
0.238708533 
13.46729839 
12.63547086 
0.824169952 
10.47849683 
0.470306855 
6.64717859 
6.554629796 
11.42178006 
0.046152687 
3.275257968 
0.762464952 
1.961854535 
2.539751747 
9.196103396 
4.764455628 
0.842497749 
1.145006743 
3.32860139 
1.825791339 
2.419042213 
2.720725156 
7.839722267 
5.76193881 
1.63409756 
0.49143475 
8.533196614 
8.754476482 
10.62135041 
2.750958462 
7.264278833 
3.241651987 
1.0465079 
1.855617716 
1.374183324 
16.04070565 
0.910972208 
13.21747353 
1.593489772 
28.43733654 
0.705749627 
1.158748356 
1.153399705 
10.65038443 
6.101016886 
16.91500602 
6.950405786 
0.2532793 
12.77359107 
2.808438616 
20.85679289 
3.40039411 
17.11944159 
2.098179652 
6.025562917 
0.444745435 
1.187160105 
1.760213608 
2.586087789 
2.756534312 
2.654991305 
23.66968626 
1.69087055 
2.549606604 
6.118250005 
12.51450818 
1.32530416 
2.947364408 
1.720204838 
2.465255889 
5.78340126 
2.380622331 
2.8340329 
10.12162389 
7.983156926 
12.16993326 
0.62709683 
1.018342391 
2.294770924 
0.057096408 
3.30968097 
20.82768211 
6.9738819 
15.06453777 
21.28224577 
9.503741326 
4.011523488 
6.307743645 
6.225620662 
2.135553654 
4.617803735 
2.307588924 
1.011798991 
6.737711028 
1.918315806 
2.270568348 
3.651474228 
1.578027904 
24.36661427 
4.415125381 
2.667946705 
2.410788304 
13.6125754 
0.98211855 
4.06415533 
14.68377162.70046866 
10.5860265 
8.78179904 
1.91322286 
1.91356383 
3.69714263 
3.76602531 
5.65674944 
6.01372409 
2.03995826 
8.29775754 
0.56087251 
22.9338142 
0.32058711 
3.73490314 
2.95455369 
0.95683432 
0.62460226 
0.86281242 
7.49488067 
1.50037366 
1.032738 
21.3606298 
3.70103207 
19.3551976 
8.2393445 
0.73993676 
6.28983712 
3.88008967 
6.8665557 
3.27229889 
7.77710424 
3.25782246 
2.57466952 
3.54077885 
4.73630359 
1.57195769 
2.72998649 
9.95355003 
14.9346158 
20.0336766 
 
80 
 
2.481200709 
10.046272 
2.382606907 
0.947236948 
5.978045491 
9.105828797 
5.66436253 
0.503640879 
10.95509729 
17.05790099 
11.78556377 
1.907981856 
0.343841912 
0.422165097 
1.27113577 
10.86276554 
11.84074965 
2.840055568 
1.093823642 
5.159062645 
13.11128332 
1.587524303 
3.833971318 
4.634884031 
1.500026443 
1.743617796 
0.276112849 
2.79963069 
11.11302497 
2.438144224 
0.06599759 
1.517910825 
2.710609782 
0.284511871 
6.913917984 
1.119396459 
1.941594246 
4.150179665 
2.285360733 
10.65056506 
0.597517057 
5.165017383 
6.826654383 
15.96975271 
5.698064503 
1.11163401 
9.759546502 
7.063101078 
25.19144247 
1.2657828 
2.737477026 
13.72520206 
5.70098297 
8.531796524 
0.809486834 
3.286756842 
8.170760327 
0.077404388 
3.398380458 
5.864624558 
0.905878953 
12.6429352 
7.746680171 
1.109460787 
3.154786242 
16.33395855 
24.16442197 
16.71044539 
4.623043993 
16.30589333 
7.521422947 
19.10315845 
7.712912234 
0.46420041 
2.175661432 
0.271105833 
2.381218639 
5.982453602 
1.581533222 
3.734229941 
0.022577761 
0.413252115 
1.346344633 
7.964114158 
2.797500564 
2.213022087 
11.95044756 
1.706893273 
1.449079026 
4.606168416 
15.11901512 
8.597113358 
3.44765743 
2.614823059 
6.063591197 
6.188923327 
12.90449384 
0.203753771 
0.665416946 
8.704938521 
8.340651139 
0.823984275 
9.292201551 
2.138005189 
1.036233362 
13.10558999 
5.529511463 
0.979017914 
7.181555336 
10.53503321 
10.69050785 
2.132904087 
0.749217333 
16.25047992 
6.09338612 
4.555617215 
5.390069931 
1.253620483 
5.308588528 
24.63833461 
13.53003839 
2.918007085 
0.599186142 
7.930708699 
6.021615645 
2.213443831 
0.466169331 
20.5356388 
4.6732476 
16.34790249 
4.806599827 
12.72409673 
18.31653615 
11.68563939 
2.662367805 
9.197367673 
1.929320718 
1.09171577 
4.23371012 
5.003773543 
1.212362648 
2.752882355 
7.426494655 
1.140022623 
0.990884408 
1.612279036 
7.934898361 
0.82452941 
0.80865239 
2.56931332 
2.73270674 
13.3436017 
1.53132388 
2.24001321 
3.93426002 
0.4023444 
2.52015934 
7.47661498 
1.70878272 
2.3941181 
0.56057129 
7.86634151 
4.37038645 
4.52728521 
7.10128807 
12.221969 
7.80684904 
2.97676409 
0.39070864 
11.7096872 
0.5630655 
3.53660715 
17.5068622 
2.07175863 
3.62510914 
3.56471434 
8.54159333 
2.04634225 
6.09845079 
8.49078079 
0.6918128 
7.05503888 
0.47113909 
3.62598039 
0.4067985 
1.95543232 
4.02140645 
16.1124697 
2.64538365 
7.37694029 
1.21769002 
0.14608601 
4.57106266 
0.92131463 
1.91800685 
10.1944357 
4.24780212 
5.15421245 
0.02580711 
4.29746902 
 
81 
 
3.89149948 
8.67274525 
 
13.1982482 
7.80778249 
 
8.20807679 
5.05533938 
 
1.09387963 
3.58995427 
 
 
 
Anexo n°6 Tasas por diversas operaciones 
MONEDA 
TEA 
TEM MÍNIMA MÁXIMA 
1.1 PRÉSTAMOS PARA TU NEGOCIO 
1.1.1. CAPITAL DE TRABAJO 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
Moneda Extranjera 17.46% 79.59% 48.53% 3.35% 
1.1.2. MÁQUINAS Y 
EQUIPOS 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
Moneda Extranjera 17.46% 79.59% 48.53% 3.35% 
1.1.2. LOCALES 
COMERCIALES 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
Moneda Extranjera 17.46% 79.59% 48.53% 3.35% 
1.1.2. LÍNEA DE CRÉDITO 
(Producto Inactivo) 
Moneda Nacional 14.57% 90.12% 52.35% 3.57% 
Moneda Extranjera 13.49% 79.59% 46.54% 3.24% 
1.1.5. COMPRA DE DEUDA 
Moneda Nacional 14.30% 90.12% 52.21% 3.56% 
1.1.6. FINANCIAMIENTO 
PARA SOAT 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
1.1.7. MERCADOS Y 
GALERÍAS COMERCIALES 
Moneda Nacional 12.68% 79.59% 46.14% 3.21% 
1.1.7. LÍNEA DE CRÉDITO 
RURAL 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
1.1.7. AGROPECUARIO DE 
LIBRE AMORTIZACIÓN 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
1.1.7. PRODUCCIÓN 
GANADERA 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
1.1.7. PRODUCCIÓN 
AGRÍCOLA 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
 
82 
 
PRODUCCIÓN DE CAFÉ 
(Producto Inactivo 
Moneda Nacional 15.39% 90.12% 52.76% 3.59% 
1.1.7. PRODUCCIÓN DE 
ARROZ (Producto Inactivo) 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
PRODUCCIÓN DE LECHE 
(Producto Inactivo) 
Moneda Nacional 20.98% 79.59% 50.29% 3.45% 
1.1.15. EFECTIVO ALTOQUE 
Moneda Nacional 14.98% 90.12% 52.55% 3.58% 
1.2 PRÉSTAMOS PARA 
GRUPOS 
Moneda Nacional 59.00% 90.12% 74.56% 4.75% 
1.3 PRÉSTAMOS POR 
CAMPAÑAS 
Moneda Nacional 19.84% 90.12% 54.98% 3.72% 
1.4 PRÉSTAMO 
HIPOTECARIOS 
Moneda Nacional 14.98% 26.82% 20.90% 1.59% 
Moneda Extranjera 17.46% 26.82% 22.14% 1.68% 
1.5 PRÉSTAMOS PARA CONSUMO 
1.5.1. CONSTRUCCIÓN DE VIVIENDA 
Moneda Nacional 14.57% 90.12% 52.3% 3.57% 
1.5.1. CONSUMO PERSONAL 
Dependientes 28.02% 90.12% 59.07% 3.94% 
Independientes 15.80% 90.12% 52.96% 3.61% 
Promedio 3.44% 
2. SEGUROS 
Hasta 6 meses 0.29% 
De 7 a 12 meses 0.63% 
De 13 a 18 meses 0.95% 
De 19 a 24 meses 1.26% 
De 25 a 30 meses 1.57% 
De 31 a 36 meses 1.88% 
De 37 a 42 meses 2.19% 
De 43 a 48 meses 2.49% 
De 49 a 54 meses 2.80% 
De 55 a 60 meses 3.10% 
De 61 a 66 meses 3.40% 
De 67 a 72 meses 3.70% 
De 73 a 78 meses 4.00% 
De 79 a 84 meses 4.29% 
De 85 a 90 meses 4.59% 
De 91 a 96 meses 4.88% 
De 97 a 120 meses 6.03% 
 
83 
 
De 121 a 144 meses 7.15% 
De 145 a 168 meses 8.26% 
De 169 a 180 meses 8.80% 
De 145 a 168 meses 8.26% 
De 169 a 180 meses 8.80% 
Promedio 4.06% 
Operaciones en cuenta y transferencias interbancarias 
Operaciones en cuenta y 
transferencias interbancarias 0.50% 
A favor del Banco Origen 1.50% 
A favor del Banco Origen 
(Exclusivo) 0.25% 
Operación en cuenta ahorro 
negocio 0.50% 
Operación en cuenta full 
ahorro 0.49% 
Promedio 0.65% 
Giros 
Nacionales 0.50% 
Internacionales 0.50% 
Promedio 0.50% 
Promedio total 2.16% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84 
 
 
 
 
 
 
 
 
REFERENCIAS BIBLIOGRÁFICAS 
 
 
[1] J. L. NAVARRO RIOS, "Teoría de Colas para el mejoramiento del proceso de 
atención del área de Plataforma. La positiva seguros y reaseguros," 29 10 2019. 
[Online]. 
[2] F. y. G. Lieberman, Introducción a la Investigación de Operaciones, México: 
McGraw-Hill, 2010. 
[3] M. I. Martinez, Interviewee, Los tiempos de espera que se presenta en la agencia 
bancaria. [Interview]. 25 9 2019. 
[4] H. J. F. Ramírez, "La Calidad de Servicio y La Satisfacción de los Clientes de 
Compartamos Financiera S.A. Agencia Casa Grande," 2015. [Online]. 
[5] J. N. Godoy, "El capital Humano en la atención al cliente y la calidad al servicio," 
Observatorio Laboral Revsta Venezolana , vol. 4, no. 8, pp. 23-35, 2011. 
[6] M. D. C. M. y. A. D. I. .. L., "¿Es posible reducir el tiempo?," Redalyc, no. 99, pp. 
52-59, 2010. 
[7] D. Y. C. Ponte, "Aplicación de teoría de colas para reducir el tiempo de espera de 
los clientes en laa empresa Lima7Barbershop Chimbote," 2018. [Online]. 
[8] K. A. C. T. y. M. A. Q. Medina, "Análisis de Mejoramiento de tiempos en Atención 
al cliente en CFE Implementando Teoría de Colas," Academia Journals , vol. 7, no. 
2, pp. 290-295, 2015. 
[9] R. C. P. y. D. G. Gómez, "Modelos de Linea de Espera, Mar de Plata," [Online]. 
[10] J. A. Amaya, Toma de desiciones gerenciales, Bogota: Ecoe Ediciones , 2009. 
 
85 
 
[11] J. A. P. P. y. G. A. L. Muñoz, "Beneficios del Análisis del Tiempo de Espera en Fila 
General o preferencial para el acueducto y alcantarillado de Popoyán S.A.," 2018. 
[Online]. 
[12] P. E. M. y. J. Najab, "Wiley Online Library," 30 6 2010. [Online]. Available:https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470479216.corpsy0491. 
[13] F. Jiménez, "Aplicación de la teoría de colas en una entidad financiera: herramienta 
para el mejoramiento de los procesos de atención al cliente," Revista Universidad 
EAFIT, vol. 44, no. 150, pp. 51-63, 2008. 
[14] J. D. S., "Comparaciones Múltiples," Revista Chilena , vol. 43, no. 4, 2014. 
[15] R. P. .. y. D. D. Kelton, SIMULATION WITH ARENA, Mc. Graw Hill. 
[16] J. y. C. Paz, "Estudio de la teoría de colas como una metodología en la optimizacón 
de tiempos del departamento de control en la municipalidad de san nicolas, 
Provincia de Nuble, Chillán: Tesis para optar el Título de Contador Público," 2016. 
[Online]. 
[17] C. y. M. Vivas, "Comparación del desempeño de los simuladores arena y promodel 
en un modelo de producción," Information Technology Track , no. 26, pp. 1-7, 2005. 
[18] H. Taha, Investigación de Operaciones, México: PEARSON, 2012, pp. 1-9. 
[19] A. y. L. Dias, "Comparison of simio and arena simulation tools," pp. 1-9. 
[20] M. L. D. Martinez, "Análisis de mejoramiento de tiempos en atención al cliente en 
CFE implementando teoria de colas, Academia JOurnlas," 2015. [Online]. 
[21] L. E. L. Hung, "Teoría de Colas aplicada al estudio del sistema de servicio de una 
farmacia," Revista Cubana de Informática Médica, vol. 10, no. 1, pp. 3-15, 2018. 
[22] N. I. O. Raimi Oluwole Abiodun, "Queuing Model for Banking System: A 
Comparative Study of Selected Banks in Owo Local Government Area of Ondo 
State Nigeria," American Journal of Engineering Research (AJER), vol. 4, no. 8, 
pp. 191-195, 2015. 
[23] P. D. ,. D. R. R. In Hoyk Choi, "Use of Monte Carlo Simulation for Analyzing Queues 
in a Financial Institution A Case Study," International Journal on Future Revolution 
in Computer Science & Communication Engineering , vol. 3, no. 4, pp. 10-19, 2017. 
[24] L. y. S. H. L.M.Portilla, "Análisis de línea de espera a travéz de la teoría de colas y 
simulación," Scientia et Technica , vol. XVII, no. 46, pp. 56-61, 2010. 
[25] R. T. Pastor, "Aplicación de la simulación en un sistema de colas simples," 
PERSPECTIVAS, no. 26, pp. 91-112, 2010. 
 
86 
 
[26] L. M. B. Dextre, ""Aplicación de la Teoría de Colas para optimizar los servicios de 
atención en una entidad bancaria 2017"," 2018. [Online]. Available: 
file:///C:/Users/Mariana/Downloads/2017.pdf. 
[27] A. O. FARAYIBI, "Investigating the Application of Queue Theory in the Nigerian 
Banking System," [Online]. Available: file:///C:/Users/Mariana/Downloads/SSRN-
id2836966.pdf. 
[28] B. O. M. E. y. O. Onoja AA, "The Application of Queuing Analysis in modeling 
Optimal Service level," Research & Reviews: Journal of Statistics and Mathematical 
Sciences, vol. 4, no. 1, pp. 16-23, 2018. 
[29] P. R. E. A. Lizárraga, "Teorí de colas para minimizar tiempos de espera en una 
empresa financiera," INGnosis, vol. 3, no. 1, pp. 218-232, 2017. 
[30] J. Arévalo, "Aplicación de la Teoría de Colas al problema de atención al cliente 
para la optimización del número de cajeros en ventanillas en la organización BCP," 
2016. [Online]. 
[31] L. D. G. P. y. J. O. A. Vieira, "Comparison of simio and arena simulation tools FCT-
Fundacao para a Ciencia e tecnologia," 2014. [Online]. 
[32] R. J. D. Avilez, "Propuesta de mejora en los tiempos de atención para información 
y pre-inscripción de alumnos en el counter de informes para admisión de la 
Universidad," 2010. [Online]. Available: http://hdl.handle.net/10757/301455. 
[Accessed 18 Marzo 2020].