Logo Passei Direto

6-(Problemas) TP N1 - Serie 2

User badge image
GUS

en

Herramientas de estudio

Preguntas resueltas

Calculate the wavelength, frequency, and energy of a photon with a frequency of 7.5 x 10^14 s^-1.
Wavelength = 400 nm
Frequency = 7.5 x 10^14 s^-1
Energy = 1.65 x 10^-19 J

Calculate the frequency and energy of a photon with a wavelength of 750 nm.
Frequency = 4.0 x 10^14 s^-1
Energy = 2.65 x 10^-19 J

Calculate the wavelength of an electron with a mass of 9.11 x 10^-31 kg and a velocity of 0.2c.
Wavelength = 1.2 x 10^-11 m
Wavelength = 3.5 x 10^-36 m
The calculation of the wavelength is based on the de Broglie equation.

Calculate the wavelength, frequency, and energy of a photon with a transition from n1 = 3 to n2 = 3.
Wavelength = 1.02 x 10^-7 m
Frequency = 2.94 x 10^15 s^-1
Energy = 1.94 x 10^-18 J
The calculation of the wavelength, frequency, and energy is based on the Rydberg equation.
The transition is part of the Balmer series.
The value of the Rydberg constant is R = 109,678 cm^-1.

Calculate the value of n2 for a transition from n1 = 2 in the Balmer series.
n2 = 6
The calculation of the value of n2 is based on the Rydberg equation.
The Balmer series corresponds to transitions from n1 > 2 to n2 = 2.

Calculate the wavelength, frequency, and energy of a photon emitted by an atom that has undergone ionization.
Wavelength = 9.117 x 10^-6 cm
Frequency = 3.29 x 10^15 s^-1
Energy = 2.18 x 10^-18 J
The calculation of the wavelength, frequency, and energy is based on the Rydberg equation.
The atom has undergone ionization, which means that n2 tends to infinity.
The value of the Rydberg constant is R = 109,678 cm^-1.

What is the difference between the half-life and the mean life of a radioactive isotope?
The half-life is the time required for half of the radioactive nuclei in a sample to decay, while the mean life is the average time that a nucleus will decay.
The half-life and the mean life are concepts used to describe the decay of radioactive isotopes.
The half-life is a characteristic of the isotope and is independent of the amount of material present.
The mean life is related to the half-life by the equation: mean life = half-life / ln(2).

A sample of a radioactive isotope has a half-life of 15 hours. What is the time required for the activity of the sample to decrease to 1% of its initial value?
Time = 99.68 hours
The calculation of the time required for the activity of the sample to decrease to 1% of its initial value is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.

A sample of Ra-226 has an activity of 8 mg. What is the activity of the sample after 12.5 hours if the half-life of Ra-226 is 1600 years?
Activity = 102 mg 18 F
The calculation of the activity of the sample after a certain time is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.
The activity of the sample is given by the equation: activity = initial activity * e^(-decay constant * time).

A sample of C-14 has an activity of 15 disintegrations per minute per gram of carbon. What fraction of the original C-14 remains in a sample that is 5700 years old?
Fraction = 6.25%
The calculation of the fraction of the original C-14 that remains in a sample is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.
The activity of the sample is related to the number of disintegrations per minute by the equation: activity = number of disintegrations per minute / 0.693.
The fraction of the original C-14 that remains in a sample is given by the equation: fraction = activity / initial activity.

Material
¡Estudia con miles de materiales!

Preguntas resueltas

Calculate the wavelength, frequency, and energy of a photon with a frequency of 7.5 x 10^14 s^-1.
Wavelength = 400 nm
Frequency = 7.5 x 10^14 s^-1
Energy = 1.65 x 10^-19 J

Calculate the frequency and energy of a photon with a wavelength of 750 nm.
Frequency = 4.0 x 10^14 s^-1
Energy = 2.65 x 10^-19 J

Calculate the wavelength of an electron with a mass of 9.11 x 10^-31 kg and a velocity of 0.2c.
Wavelength = 1.2 x 10^-11 m
Wavelength = 3.5 x 10^-36 m
The calculation of the wavelength is based on the de Broglie equation.

Calculate the wavelength, frequency, and energy of a photon with a transition from n1 = 3 to n2 = 3.
Wavelength = 1.02 x 10^-7 m
Frequency = 2.94 x 10^15 s^-1
Energy = 1.94 x 10^-18 J
The calculation of the wavelength, frequency, and energy is based on the Rydberg equation.
The transition is part of the Balmer series.
The value of the Rydberg constant is R = 109,678 cm^-1.

Calculate the value of n2 for a transition from n1 = 2 in the Balmer series.
n2 = 6
The calculation of the value of n2 is based on the Rydberg equation.
The Balmer series corresponds to transitions from n1 > 2 to n2 = 2.

Calculate the wavelength, frequency, and energy of a photon emitted by an atom that has undergone ionization.
Wavelength = 9.117 x 10^-6 cm
Frequency = 3.29 x 10^15 s^-1
Energy = 2.18 x 10^-18 J
The calculation of the wavelength, frequency, and energy is based on the Rydberg equation.
The atom has undergone ionization, which means that n2 tends to infinity.
The value of the Rydberg constant is R = 109,678 cm^-1.

What is the difference between the half-life and the mean life of a radioactive isotope?
The half-life is the time required for half of the radioactive nuclei in a sample to decay, while the mean life is the average time that a nucleus will decay.
The half-life and the mean life are concepts used to describe the decay of radioactive isotopes.
The half-life is a characteristic of the isotope and is independent of the amount of material present.
The mean life is related to the half-life by the equation: mean life = half-life / ln(2).

A sample of a radioactive isotope has a half-life of 15 hours. What is the time required for the activity of the sample to decrease to 1% of its initial value?
Time = 99.68 hours
The calculation of the time required for the activity of the sample to decrease to 1% of its initial value is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.

A sample of Ra-226 has an activity of 8 mg. What is the activity of the sample after 12.5 hours if the half-life of Ra-226 is 1600 years?
Activity = 102 mg 18 F
The calculation of the activity of the sample after a certain time is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.
The activity of the sample is given by the equation: activity = initial activity * e^(-decay constant * time).

A sample of C-14 has an activity of 15 disintegrations per minute per gram of carbon. What fraction of the original C-14 remains in a sample that is 5700 years old?
Fraction = 6.25%
The calculation of the fraction of the original C-14 that remains in a sample is based on the half-life of the isotope.
The half-life is related to the decay constant by the equation: half-life = ln(2) / decay constant.
The activity of the sample is related to the number of disintegrations per minute by the equation: activity = number of disintegrations per minute / 0.693.
The fraction of the original C-14 that remains in a sample is given by the equation: fraction = activity / initial activity.

Vista previa del material en texto

PROBLEMAS 
T.P.1 – Serie 2 
 
1) f = C / λ = 3.108 m. S -1 / 400 . 10-9 m = 7.5 .10 14 S-1 (RECORDAR 
que 1 nm = 1.10-9 m) 
 
2) f = C / λ = 3.108 m. S -1 / 750. 10-9 m = 4.0 .10 14 S-1 
 E = h .f = 6,63. 10-34 J.S . 4.0 .1014 S-1 
 
3) a) λ = h / me . V = 6.63.10-34 J.S / 9.11 10-31 kg. (0,2). 3.108 m. S-1 
Pero como 1 J = Kg. m2 / S2entónces reemplazando llego a que λ= 1.2 10-11 
m 
 b) si m= 70 Kg y V= 2,7 m / S, entonces λ = 3,5 10-36 m 
 
 4) 
 En este caso n11 y n2 = 3, R= 109.678 cm-1 
 
 Λ = Long de Onda = 1,02 10-7 m; f =2,94 1015 S-1 ; E = 1,94 10-18 J 
 
 5) Utiliza la Ecuación de Rydberg y para este caso n1 = 2 dado que se trata de la 
Serie de Balmer y 
 n2 es la incógnita del problema. Así: 
 1 / 4,102 10-5 cm = 109.678 cm-1 (1/ 22 – 1/ n22), despejando y simplificando 
 unidades llegamos a saber que n2 = 6 
 
 6) Se usa la Ecuación de Rydberg donde n12 =1 y como se ionizará el átomo 
 n22 = ∞ y 1 / ∞ tiende a cero (es matemáticamente una 
 indeterminación) y la Long. Onda = 9,117.10-6 cm, 
 f = 3,29.1015S-1 , 
 E = 2,18.10-18 J para un átomo y 1312,360 KJ = 1312360 J para 1 mol de 
 átomos (para su cálculo se multiplicó el valor de E para un átomo por el 
 Nro. De Avogadro) 
 
 7) Tarea 
 
 8) La Desintegración Radiactiva sigue la siguiente ley de primer orden: 
 
 A = A o e 
-kt 
 dónde 
 Af = actividad en el tiempo t (a veces lo ves como At) 
 Ao = actividad inicial (es decir, cuando t = 0)k = la constante de 
 descomposición 
 t = tiempo 
 K = Constante de Desintegración Radiactiva. 
 La Ecuación puede reorganizarse aplicando antilogaritmos y plantearse como: 
ln (Af / A o) = - Kt 
 También puede aplicarse en forma de porcentajes: ln (Af /100) = -Kt 
 
Así, “t” se conoce como Tiempo de Vida Media del radioisótopo. 
 
En Radioquímica se define el Período de Semidesintegración (también 
llamado Tiempo de Semivida) como el tiempo necesario para que se desintegren la 
mitad de los núcleos de una muestra inicial de un radioisótopo. 
El Período de Semidesintegración no debe confundirse con la Vida Media. Este 
concepto es ampliamente utilizado en los cálculos de cinéticas nucleares, para caracterizar 
a los núclidos. 
También se puede entender como el tiempo que tardan en transmutarse la mitad de 
los átomos radiactivos de una muestra. 
En este problema, como la reacción sigue una cinética de primer orden, 
K = 0,693 / t, por lo tanto: K = 0,693 / 15 hs = 0,0462 hs-1 
Reemplazando en la Ecuación ln (1 /100) = -K t½ obtengo que t½ = 99,68 hs 
https://es.wikipedia.org/wiki/Semivida
https://es.wikipedia.org/wiki/N%C3%BAcleo_at%C3%B3mico
https://es.wikipedia.org/wiki/Radiois%C3%B3topo
https://es.wikipedia.org/wiki/Vida_media
 
 9) K= 0,693 / t½ = 0,37 hs -1, ln Af / A0 = -K t½ , 
 ln 1 mg / A0 = - 0,37 hs -1. 12,5 hs = 
 (0 – ln A0) = - 4,625 
 A = anti ln (4,625) =102 mg 18 F 
 
 10) Calculo K y su resultado es 4,33.10-4 años -1, aplico la ecuación: 
 ln (Af / 100) = - 4,33.10-4 años -1. 6400 años = - 2, 772 
 Al / 100 = e-2,772 =0,0625; Af = 6,25% (indica la cantidad que queda 
 sin desintegrar) 
 Por lo tanto, la fracción de Ra desintegrada es el 93,75 % 
 
 11) Calculo K = 0,693 / 5700 años= 1,22.10-4 años-1 
 Luego: ln Af / A0 = - K t, ln 15 / 8 = (ln 15 – ln 8) = -1,22.10-4 años -1. t 
 Así, t = -5153 años (época en que murió el Faraón, son 5153 años 
 Hacia atrás (antigüedad) 
 Año de Construcción de la Tumba= (5153 – 1974) = 3.179 años A.C. 
 
IMPORTANTE “El 14C EXTRAÍDO DE UN ORGANISMO VIVO PRODUCE 15 
 DESINTEGRACIONES β POR MINUTO. GRAMO”