Vista previa del material en texto
Ácidos y bases Muchos ácidos orgánicos se presentan en el reino vegetal. Los modelos moleculares mues- tran el ácido ascórbico, también conocido como vitamina C (C6H8O6), el ácido cítrico (C6H8O7) (que se encuentra en limones, naranjas y tomates) y el ácido oxálico (H2C2O4) (en ruibarbos y espinacas). 15_CHAPTER 15.indd 658 12/20/09 7:05:07 PM Avance del capítulo • Comenzaremos con una revisión y ampliación de las definiciones de los ácidos y bases de Brønsted (en el capítulo 4) en términos de pares conjugados ácido-base. (15.1) • Después, examinaremos las propiedades ácido-base del agua y definiremos la cons- tante del producto iónico para la autoionización del agua que produce iones H+ y OH–. (15.2) • Definiremos al pH como una medida de la acidez y también presentaremos la escala del pOH. Observaremos que la acidez de una disolución depende de las concentra- ciones relativas de iones H+ y OH–. (15.3) • Los ácidos y bases se pueden clasificar como fuertes o débiles, según la extensión de su ionización en la disolución. (15.4) • Aprenderemos a calcular el pH de una disolución de un ácido débil a partir de su concentración y su constante de ionización y a desarrollar cálculos similares para bases débiles. (15.5 y 15.6) • Derivaremos una relación importante entre las constantes de ionización de ácidos y bases de un par conjugado. (15.7) • Después estudiaremos los ácidos dipróticos y polipróticos. (15.8) • Continuaremos explorando la relación entre la fuerza del ácido y su estructura mole- cular. (15.9) • Las reacciones entre sales y agua las podemos estudiar en términos de ionizaciones de ácidos y bases de los cationes y aniones individuales que constituyen la sal. (15.10) • Los óxidos y los hidróxidos se pueden clasificar como ácidos, básicos y anfóteros. (15.11) • El capítulo concluye con un análisis de los ácidos y bases de Lewis. Un ácido de Lewis es un aceptor de electrones y una base de Lewis es un donador de electrones. (15.12) Algunos de los procesos más importantes de los sistemas químicos y biológicos son reacciones ácido-base en disolución acuosa. En este capítulo, el primero de los dos que se relacionan con las propiedades de los ácidos y las bases, estudiaremos algunas definiciones de ácidos y bases, la escala del pH, la ionización de ácidos y bases débiles y la relación entre la fuerza de los ácidos y la estructura molecular. También analiza- remos los óxidos que pueden actuar como ácidos y bases. Sumario Actividad interactiva del estudiante Media Player Chapter Summary ARIS Example Practice Problems End of Chapter Problems Quantum Tutors End of Chapter Problems 659 15.1 Ácidos y bases de Brønsted 15.2 Propiedades ácido-base del agua 15.3 El pH: una medida de la acidez 15.4 Fuerza de los ácidos y las bases 15.5 Ácidos débiles y la constante de ionización de un ácido 15.6 Bases débiles y la constante de ionización de una base 15.7 Relación entre las constantes de ionización de los ácidos y sus bases conjugadas 15.8 Ácidos dipróticos y polipróticos 15.9 Estructura molecular y fuerza de los ácidos 15.10 Propiedades ácido-base de las sales 15.11 Propiedades ácido-base de los óxidos y los hidróxidos 15.12 Ácidos y bases de Lewis 15_CHAPTER 15.indd 659 12/20/09 7:05:19 PM 660 CAPíTULO 15 Ácidos y bases 15.1 Ácidos y bases de Brønsted En el capítulo 4 definimos un ácido de Brønsted como una sustancia capaz de donar un pro- tón, y una base de Brønsted como una sustancia que puede aceptar un protón. En general, estas definiciones son adecuadas para analizar las propiedades y las reacciones de los ácidos y las bases. Una extensión de la definición de Brønsted de ácidos y bases es el concepto de par con- jugado ácido-base, que se define como un ácido y su base conjugada o como una base y su ácido conjugado. La base conjugada de un ácido de Brønsted es la especie que resulta cuando el ácido pierde un protón. A la inversa, un ácido conjugado resulta de la adición de un protón a una base de Brønsted. Todo ácido de Brønsted tiene una base conjugada y toda base de Brønsted tiene un ácido conjugado. Por ejemplo, el ion cloruro (Cl–) es la base conjugada que se forma a partir del ácido HCl, y H2O es la base conjugada a partir del ácido H3O + (ion hidronio). HCl + H2O h H3O + + Cl– Del mismo modo, la ionización del ácido acético se representa como Los subíndices 1 y 2 identifican los dos pares conjugados ácido-base. Así, el ion acetato (CH3COO–) es la base conjugada de CH3COOH. Tanto la ionización del HCl (vea la sección 4.3) como la ionización del CH3COOH son ejemplos de reacciones ácido-base de Brønsted. La definición de Brønsted también permite clasificar el amoniaco como una base, debido a su capacidad para aceptar un protón: En este caso, NH4 + es el ácido conjugado de la base NH3, y el ion hidróxido OH – es la base conjugada del ácido H2O. Observe que el átomo de la base de Brønsted que acepta un ion H+ debe tener un par de electrones libres. En el ejemplo 15.1 identificamos los pares conjugados en una reacción ácido-base. Conjugar significa “unirse entre sí”. El protón siempre está asociado con moléculas de agua en disolución acuosa. El ion H3O + es la fórmula más simple de un protón hidratado. CH3COOH(ac) � H2O(l) 34 CH3COO�(ac) � H3O�(ac) base1 ácido2ácido1 base2 � HOCOCOOOH � HOOS 34 HOCOCOOS� � HOOOH H A A H H A A H A H A H SOS B SOS B O OOQOQ NH3(ac) � H2O(l) 34 NH4(ac) � OH�(ac) � HONOH � HOOS 34 HONOH � HOOS� H A A H A H A H O O OQ base1 ácido1ácido2 base2 � Identifique los pares conjugados ácido-base en la reacción entre el amoniaco y el ácido fluorhídrico en disolución acuosa. NH3(ac) + HF(ac) m NH4(ac) + F –(ac) (continúa) EjEmplo 15.1 + 15_CHAPTER 15.indd 660 12/20/09 7:05:23 PM 66115.2 Propiedades ácido-base del agua Es admisible representar el protón en disolución acuosa como H+ o como H3O +. La fórmula H+ es más práctica para cálculos que incluyen concentraciones de iones hidrógeno o constantes de equilibrio, en tanto que H3O + es de mayor utilidad en el estudio de las propie- dades ácido-base de Brønsted. 15.2 Propiedades ácido-base del agua Como es bien sabido, el agua es un disolvente único. Una de sus propiedades especiales es su capacidad para actuar como ácido o como base. El agua se comporta como una base en reacciones con ácidos como HCl y CH3COOH y funciona como un ácido frente a bases como el NH3. El agua es un electrólito muy débil y, por tanto, un mal conductor de la electricidad, pero experimenta una ligera ionización: H2O(l) m H+(ac) + OH–(ac) En ocasiones, a esta reacción se le conoce como autoionización del agua. Para describir las propiedades ácido-base del agua, según el esquema de Brønsted, la autoionización del agua se expresa como sigue (véase también la figura 15.1): o (15.1) Los pares conjugados ácido-base son: 1) H2O (ácido) y OH– (base), y 2) H3O + (ácido) y H2O (base). Estrategia Recuerde que una base conjugada siempre tiene un átomo H menos y una carga más negativa (o una carga positiva menor) que la fórmula del ácido correspondiente. Solución El NH3 tiene un átomo H menos y una carga positiva menor que NH+ 4, el F – tiene un átomo H menos y una carga más negativa que HF. Por tanto, los pares conjugados ácido- base son: 1) NH+ 4 y NH3, y 2) HF y F –. Ejercicio de práctica Identifique los pares conjugados ácido-base para la reacción CN – + H2O m HCN + OH – Problema similar: 15.5. El agua del grifo y la proveniente de fuentes subterráneas son conductoras de la electricidad debido a que contienen gran cantidad de iones disueltos. Revisión de conceptos ¿Cuál de los siguientes no es un par conjugado ácido base? a) HNO2–NO– 2. b) H2CO3–CO2– 3 . c) CH3NH+ 3–CH3NH2. HOOS HOOS�34 HOOOH HOOS A H A H O O A H O OQ base1ácido1 ácido2base2 H2O � H2O 34 H3O� � OH� Figura 15.1 Reacción entre dos moléculasde agua para for- mar iones hidronio e hidroxilo. � �34 15_CHAPTER 15.indd 661 12/20/09 7:05:26 PM 662 CAPíTULO 15 Ácidos y bases El producto iónico del agua En el estudio de las reacciones ácido-base, la concentración del ion hidrógeno es muy impor- tante, ya que indica la acidez o basicidad de una disolución. Ya que sólo una fracción muy pequeña de moléculas del agua se ioniza, la concentración del agua, [H2O], permanece vir- tualmente sin cambios. Por consiguiente, la constante de equilibrio para la autoionización del agua, de acuerdo con la ecuación (15.1), es Kc = [H3O +][OH–] Como se utiliza H+(ac) y H3O +(ac) de manera indistinta para representar al protón hidratado, la constante de equilibrio también se puede expresar como Kc = [H+][OH–] Para indicar que la constante de equilibrio se refiere a la autoionización del agua, se reemplaza Kc con Kw Kw = [H3O +][OH–] = [H+][OH–] (15.2) donde Kw se denomina constante del producto iónico, que es el producto de las concentracio- nes molares de los iones H + y OH – a una temperatura en particular. En el agua pura a 25°C las concentraciones de los iones H+ y OH– son iguales y se en- cuentra que [H+] = 1.0 × 10–7 M y [OH–] = 1.0 × 10–7 M. Entonces, a partir de la ecuación (15.2), a 25°C Kw = (1.0 × 10–7)(1.0 × 10–7) = 1.0 × 10–14 Independientemente de que se trate de agua pura o de una disolución acuosa de especies di- sueltas, la siguiente relación siempre se cumple a 25°C: Kw = [H+][OH –] = 1.0 × 10–14 (15.3) Siempre que [H+] = [OH–] se dice que la disolución acuosa es neutra. En una disolución ácida hay un exceso de iones H+, de modo que [H+] > [OH–]. En una disolución básica hay un exceso de iones hidroxilo, por lo que [H+] < [OH–]. En la práctica podemos cambiar tanto la concentración de los iones H+ como la de los iones OH– en disolución, pero no podemos variar ambas de manera independiente. Si ajustamos una disolución de manera que [H+] = 1.0 × 10–6 M, la concentración de OH– debe cambiar a [OH–] = Kw = 1.0 × 10–14 = 1.0 × 10–8 M [H+] 1.0 × 10–6 En el ejemplo 15.2 se proporciona una aplicación de la ecuación (15.3). Recuerde que en el agua pura, [H2O] = 55.5 M (vea la página 621). Si fuera posible remover y examinar aleatoriamente 10 partículas (H2O, H+ o OH– ) por segundo de un litro de agua, ¡tomaría dos años, de trabajo sin descanso, encontrar un ion H+! La concentración de iones OH– en cierta disolución limpiadora para el hogar a base de amoniaco es de 0.0025 M. Calcule la concentración de iones H+. Estrategia Se nos proporciona la concentración de los iones OH – y se nos pide que calculemos [H + ]. La relación entre [H+] y [OH – ] en agua o en una disolución acuosa está dada por el producto iónico del agua, Kw [ecuación (15.3)]. (continúa) EjEmplo 15.2 15_CHAPTER 15.indd 662 12/20/09 7:05:27 PM 66315.3 El pH: una medida de la acidez 15.3 El pH: una medida de la acidez Puesto que las concentraciones de los iones H+ y OH – en disoluciones acuosas con frecuencia son números muy pequeños y, por tanto, es difícil trabajar con ellos, Soren Sorensen1 propuso, en 1909, una medida más práctica denominada pH. El pH de una disolución se define como el logaritmo negativo de la concentración del ion hidrógeno (en mol/L): pH = –log [H3O +] o pH = –log [H+] (15.4) Hay que recordar que la ecuación (15.4) es sólo una definición establecida para tener números convenientes con los cuales trabajar. El logaritmo negativo proporciona un número positivo para el pH, el cual, de otra manera, sería negativo debido al pequeño valor de [H+]. Así, el término [H+] en la ecuación (15.4) sólo corresponde a la parte numérica de la expresión para la concentración del ion hidrógeno, ya que no se puede tomar el logaritmo de las unidades. Entonces, al igual que la constante de equilibrio, el pH de una disolución es una cantidad adimensional. Debido a que el pH sólo es una manera de expresar la concentración del ion hidrógeno, las disoluciones ácidas y básicas a 25°C se identifican por sus valores del pH, como sigue: Disoluciones ácidas: [H+] > 1.0 × 10–7 M, pH < 7.00 Disoluciones básicas: [H+] < 1.0 × 10–7 M, pH > 7.00 Disoluciones neutras: [H+] = 1.0 × 10–7 M, pH = 7.00 Observe que el pH aumenta a medida que [H+] disminuye. Es probable que algunas veces se nos proporcione el valor del pH de una disolución y se nos pida calcular la concentración del ion H+. En ese caso, necesitamos obtener el antilogarit- mo de la ecuación (15.4) como sigue: [H3O +] = 10– pH o [H+] = 10– pH (15.5) Debe recordarse que la definición que se acaba de mostrar del pH, así como todos los cálculos que incluyen concentraciones de disoluciones (expresadas como molaridad o mola- lidad) que estudiamos en los capítulos anteriores, están sujetos a cierto error, porque en ellos se supone, de manera implícita, el comportamiento ideal. En realidad, tanto la formación de pares iónicos como diversos tipos de interacciones moleculares, pueden afectar la concen- tración real de las especies en disolución y, por tanto, también los valores de la constante de equilibrio. Esta situación es análoga a la relación que existe entre el comportamiento de los Solución Al reordenar la ecuación (15.3) escribimos Verificación Como [H+] < [OH – ], la disolución es básica, como podríamos esperar con base en el análisis previo de la reacción del amoniaco con agua. Ejercicio de práctica Calcule la concentración de iones OH – en una disolución de HCl cuya concentración de iones hidrógeno es 1.3 M. [H + ] = Kw = 1.0 × 10–14 = [OH –] 0.0025 4.0 × 10–12 M Problemas similares: 15.15, 15.16. El pH de disoluciones ácidas concentradas puede ser negativo. Por ejemplo, el pH de una disolución de HCl 2.0 M es de –0.30. 1 Soren Peer Lauritz Sorensen (1868-1939). Bioquímico danés. Sorensen originalmente escribió el símbolo como pH y designó a la p como “el exponente del ion hidrógeno” (Wasserstoffionexponent); es la letra inicial de Potenz (ale- mán), puissance (francés) y power (inglés). Ahora se acostumbra escribir el símbolo como pH. 15_CHAPTER 15.indd 663 12/20/09 7:05:28 PM 664 CAPíTULO 15 Ácidos y bases gases ideales y el de los gases reales que estudiamos en el capítulo 5. Dependiendo de la tem- peratura, el volumen, la cantidad y el tipo del gas presente, la medición de la presión del gas puede diferir de la que se calcula con la ecuación de los gases ideales. De manera semejante, la concentración real o “efectiva” de un soluto tal vez no sea la que se espera tomando en cuenta la cantidad de sustancia que originalmente se encuentra disuelta en una disolución. De la mis- ma manera que tenemos la ecuación de Van der Waals, entre otras, para ajustar las diferencias entre el comportamiento de gas ideal y el comportamiento no ideal, se cuenta con alternativas para explicar el comportamiento no ideal de las disoluciones. Una manera es reemplazar el término concentración por el de actividad, que representa la concentración efectiva. Entonces, estrictamente hablando, el pH de la disolución se debe definir como pH = –log aH+ (15.6) donde aH+ es la actividad del ion H+. Como se mencionó en el capítulo 14 (vea la página 621), para una disolución ideal, la actividad es numéricamente igual a la concentración. En cuanto a disoluciones reales, la actividad por lo general difiere de la concentración, algunas veces de manera apreciable. Una vez que se conoce la concentración del soluto, hay formas confiables basadas en la termodinámica para estimar su actividad, pero los detalles no se incluirán en este texto. Por tanto, recuerde que el pH medido, excepto para disoluciones diluidas, por lo general no es el mismo que el calculado a partir de la ecuación (15.4), debido a que la concen- tración en molaridad del ion H+ no es numéricamente igual a su valor de actividad. Aunque continuaremos utilizando la concentración en el análisis, es importante saber que este enfoque nos darásólo una aproximación de los procesos químicos que en realidad se presentan en la fase de la disolución. En el laboratorio, el pH de una disolución se mide con un medidor de pH (figura 15.2). En la tabla 15.1 se muestran los valores del pH de algunos fluidos comunes. Como observamos, el pH de los fluidos corporales varía mucho, en virtud de su localización y de su función. El pH bajo (alta acidez) de los jugos gástricos facilita la digestión, en tanto que el pH más alto de la sangre es necesario para el transporte del oxígeno. Estas acciones, que dependen del pH, se ejemplifican en la sección Química en acción de este capítulo y en el 16. Con el logaritmo negativo de la concentración de iones hidróxido de una disolución se obtiene una escala de pOH, análoga a la del pH. Así, definimos el pOH como pOH = –log [OH – ] (15.7) Si tenemos el valor de pOH de una disolución y se nos pide calcular la concentración del ion OH –, podemos extraer el antilogaritmo de la ecuación (15.7) como se muestra a continuación [OH – ] = 10– pOH (15.8) Figura 15.2 Un medidor del pH se utiliza comúnmente en el labo- ratorio para determinar el pH de una disolución. A pesar de que muchos medidores del pH tienen escalas marcadas con valores que van de 1 a 14, los valores del pH, de hecho, pueden ser menores a 1 y mayores que 14. muestra Valor del pH Jugo gástrico 1.0-2.0 en el estómago Jugo de limón 2.4 Vinagre 3.0 Jugo de uva 3.2 Jugo de naranja 3.5 Orina 4.8-7.5 Agua expuesta 5.5 al aire* Saliva 6.4-6.9 Leche 6.5 Agua pura 7.0 Sangre 7.35-7.45 Lágrimas 7.4 Leche de 10.6 magnesia Amoniaco 11.5 doméstico los pH de algunos fluidos comunes TABlA 15.1 * El agua expuesta al aire durante largo tiempo absorbe el CO2 atmosférico para formar ácido carbónico, H2CO3. 15_CHAPTER 15.indd 664 12/20/09 7:05:30 PM 66515.3 El pH: una medida de la acidez Ahora, al considerar otra vez la constante del producto iónico del agua a 25°C: [H+][OH –] = Kw = 1.0 × 10–14 Al tomar el logaritmo negativo en ambos lados, obtenemos (–log [H+] + log [OH –]) = –log (1.0 × 10–14) –log [H+] – log [OH –] = 14.00 A partir de las definiciones del pH y del pOH, obtenemos pH + pOH = 14.00 (15.9) La ecuación (15.9) constituye otra forma de expresar la relación entre la concentración de ion H+ y la concentración de ion OH–. En los ejemplos 15.3, 15.4 y 15.5 se muestran cálculos que implican el pH. La concentración de iones H+ en una botella de vino de mesa, justo después de que se le removió el corcho, fue de 3.2 × 10 – 4 M. Sólo se consumió la mitad del vino. Se encontró que la otra mitad, después de haber estado expuesta al aire durante un mes, tenía una concentración de ion hidrógeno igual a 1.0 × 10 –3 M. Calcule el pH del vino en estas dos ocasiones. Estrategia Se nos da la concentración del ion H+ y se nos pide calcular el pH de la disolución. ¿Cuál es la definición del pH? Solución De acuerdo con la ecuación (15.4), pH = –log [H+]. Cuando se abrió la botella por primera vez, [H+] = 3.2 × 10 –4 M, que sustituimos en la ecuación (15.4) pH = –log [H+] = –log (3.2 × 10–4) = En la segunda ocasión [H+] = 1.0 × 10–3 M, de manera que pH = –log (1.0 × 10–3] = Comentario El incremento en la concentración de ion hidrógeno (o disminución en el pH) es, en gran parte, resultado de la conversión de una parte del alcohol (etanol) en ácido acético, una reacción que tiene lugar en presencia del oxígeno molecular. Ejercicio de práctica El ácido nítrico (HNO3) se utiliza en la producción de fertilizantes, colorantes, medicamentos y explosivos. Calcule el pH de una disolución de HNO3 que tiene una concentración de ion hidrógeno de 0.76 M. EjEmplo 15.3 3.49 3.00 El pH del agua de lluvia recolectada en determinada región del noreste de Estados Unidos en un día en particular fue de 4.82. Calcule la concentración del ion H+ del agua de lluvia. Estrategia Aquí se nos dio el pH de una disolución y se nos pidió calcular [H+]. Debido a que el pH está definido como pH = –log [H+], podemos encontrar el valor de [H+] al tomar el antilogaritmo del pH; es decir, [H+] = 10–pH, como se mostró en la ecuación (15.5). (continúa) EjEmplo 15.4 En cada caso, el pH tiene sólo dos cifras significativas. Los dos dígitos a la derecha del decimal en 3.49 nos dicen que hay dos cifras significativas en el número original (vea el apéndice 4). Problemas similares: 15.17 y 15.18. 15_CHAPTER 15.indd 665 12/20/09 7:05:30 PM 666 CAPíTULO 15 Ácidos y bases 15.4 Fuerza de los ácidos y las bases Los ácidos fuertes son electrólitos fuertes que, para fines prácticos, se supone que se ionizan completamente en el agua (figura 15.3). La mayoría de los ácidos fuertes son ácidos inorgá- nicos como el ácido clorhídrico (HCl), el ácido nítrico (HNO3), el ácido perclórico (HClO4) y el ácido sulfúrico (H2SO4): HCl(ac) + H2O(l) h H3O +(ac) + Cl–(ac) HNO3(ac) + H2O(l) h H3O +(ac) + NO3(ac) HClO4(ac) + H2O(l) h H3O +(ac) + ClO4(ac) H2SO4(ac) + H2O(l) h H3O +(ac) + HSO4(ac) En una disolución de NaOH, [OH–] es de 2.9 × 10–4 M. Calcule el pH de la disolución. Estrategia Este problema se puede resolver en dos pasos. Primero, necesitamos calcular el pOH utilizando la ecuación (15.7). Después, utilizamos la ecuación (15.9) para calcular el pH de la disolución. Solución Utilizamos la ecuación (15.7) pOH = –log [OH–] = –log [2.9 × 10 – 4] = 3.54 Ahora utilizamos la ecuación (15.9): pH + pOH = 14.00 pH = 14.00 – pOH = 14.00 – 3.54 = Como alternativa, podemos utilizar la constante del producto iónico del agua, Kw = [H+][OH – ], para calcular [H+] y después calculamos el pH a partir de [H+]. Inténtelo. Verificación La respuesta muestra que la disolución es básica (pH > 7), de conformidad con una disolución de NaOH. Ejercicio de práctica La concentración del ion OH– de una muestra de sangre es de 2.5 × 10–7 M. ¿Cuál es el pH de la sangre? Solución A partir de la ecuación (15.4) pH = –log [H+] = 4.82 Por tanto, log [H+] = – 4.82 Para calcular [H+], necesitamos tomar el antilogaritmo de –4.82 [H+] = 10–4.82 = Verificación Como el pH está entre 4 y 5, podemos esperar que [H+] esté entre 1 × 10–4 M y 1 × 10–5 M. Por tanto, la respuesta es razonable. Ejercicio de práctica El pH de cierto jugo de naranja es de 3.33. Calcule la concentración del ion H+. EjEmplo 15.5 10.46 Las calculadoras científicas tienen una función antilogarítmica que algunas veces está señalada como INV log o 10x. En realidad, no se conocen ácidos que se ionicen completamente en el agua. Problema similar: 15.19. 1.5 × 10–5 M Problema similar: 15.18. – – – 15_CHAPTER 15.indd 666 12/20/09 7:05:31 PM 66715.4 Fuerza de los ácidos y las bases HCl H+ Cl– Antes de la ionización HF Antes de la ionización Al equilibro HF Al equilibro H+ F– Cl– HF F– H2O H3O+ Observe que el H2SO4 es un ácido diprótico; aquí sólo mostramos la primera etapa de ioni- zación. En el equilibrio, las disoluciones de los ácidos fuertes carecen de moléculas de ácido sin ionizar. La mayor parte de los ácidos son ácidos débiles, los cuales se ionizan, sólo en forma limi- tada, en el agua. En el equilibrio, las disoluciones acuosas de los ácidos débiles contienen una mezcla de moléculas del ácido sin ionizar, iones H3O + y la base conjugada. Como ejemplos de ácidos débiles están el ácido fluorhídrico (HF), el ácido acético (CH3COOH) y el ion amonio (NH4 +). La ionización limitada de los ácidos débiles se relaciona mediante su constante de equilibrio de ionización, la cual estudiaremos en la siguiente sección. Igual que los ácidos fuertes, las bases fuertes son electrólitos fuertes que se ionizan com- pletamente en agua. Los hidróxidos de los metales alcalinos y los de algunos metales alca- linotérreos son bases fuertes. [Todos los hidróxidos de los metales alcalinos son solubles. En el caso de los hidróxidos de los metales alcalinotérreos, el Be(OH)2 y el Mg(OH)2 son insolubles; Ca(OH)2y Sr(OH)2 son ligeramente solubles, y el Ba(OH)2 es soluble.] Algunos ejemplos de bases fuertes son: NaOH(s) h Na+(ac) + OH–(ac) KOH(s) h K+(ac) + OH–(ac) Ba(OH)2(s) h Ba2+(ac) + 2OH–(ac) En sentido estricto, los hidróxidos de estos metales no son bases de Brønsted porque son in- capaces de aceptar un protón. Sin embargo, el ion hidróxido (OH–), que se forma cuando se ionizan, es una base de Brønsted porque puede aceptar un protón: H3O +(ac) + OH–(ac) h 2H2O(l) Figura 15.3 Avance de la ioni- zación de un ácido fuerte como el HCl (izquierda) y uno débil como el HF (derecha). Inicialmente esta- ban presentes 6 moléculas de HCl y 6 de HF. Se supone que el ácido fuerte se ioniza comple- tamente en disolución. El protón existe en disolución como el ion hidronio (H3O +). H2O H2O H2O El Zn reacciona más vigorosamente con un ácido fuerte como el HCl (izquierda) que con un ácido débil como el CH3COOH (derecha) de la misma concentración debido a que hay más iones H+ en la primera disolución. 15_CHAPTER 15.indd 667 12/20/09 7:05:40 PM 668 CAPíTULO 15 Ácidos y bases Entonces, cuando decimos que el NaOH o cualquier otro hidróxido metálico es una base, en realidad hacemos referencia a la especie OH – que se deriva del hidróxido. Las bases débiles, igual que los ácidos débiles, son electrólitos débiles. El amoniaco es una base débil. En agua se ioniza en forma muy limitada: NH3(ac) + H2O(l) m NH4(ac) + OH–(ac) Observe que, a diferencia de los ácidos, el NH3 no dona un protón al agua, sino que se com- porta como una base al aceptar un protón de ésta para formar los iones NH4 y OH–. En la tabla 15.2 se muestran algunos pares conjugados ácido-base importantes, en orden de sus fuerzas relativas. Los pares conjugados ácido-base tienen las siguientes propiedades: 1. Si un ácido es fuerte, la fuerza de su base conjugada no puede medirse. Así, el ion Cl–, que es la base conjugada del HCl, un ácido fuerte, es una base muy débil. 2. El H3O + es el ácido más fuerte que puede existir en disolución acuosa. Los ácidos más fuertes que el H3O + reaccionan con el agua para producir H3O + y sus bases conjugadas correspondientes. Así, el HCl, que es un ácido más fuerte que el H3O +, reacciona comple- tamente con el agua para formar H3O + y Cl–: HCl(ac) + H2O(l) h H3O +(ac) + Cl –(ac) Los ácidos más débiles que el H3O + reaccionan con el agua en una proporción mucho me- nor para formar H3O + y sus bases conjugadas correspondientes. Por ejemplo, el siguiente equilibrio, en principio, se encuentra desplazado hacia la izquierda: HF(ac) + H2O(l) m H3O +(ac) + F –(ac) 3. El ion OH– es la base más fuerte que puede existir en disolución acuosa. Las bases más fuertes que el OH– reaccionan con agua para producir OH– y sus ácidos conjugados corres- TABlA 15.2 Fuerzas relativas de pares conjugados ácido-base Ácido Base conjugada HClO4 (ácido perclórico) ClO– 4 (ion perclorato) HI (ácido yodhídrico) I– (ion yoduro) HBr (ácido bromhídrico) Br– (ion bromuro) HCl (ácido clorhídrico) Cl– (ion cloruro) H2SO4 (ácido sulfúrico) HSO– 4 (ion hidrogenosulfato) HNO3 (ácido nítrico) NO– 3 (ion nitrato) H3O + (ion hidronio) H2O (agua) HSO– 4 (ion hidrogenosulfato) SO2– 4 (ion sulfato) HF (ácido fluorhídrico) F – (ion fluoruro) HNO2 (ácido nitroso) NO– 2 (ion nitrito) HCOOH (ácido fórmico) HCOO– (ion formato) CH3COOH (ácido acético) CH3COO– (ion acetato) NH+ 4 (ion amonio) NH3 (amoniaco) HCN (ácido cianhídrico) CN – (ion cianuro) H2O (agua) OH – (ion hidróxido) NH3 (amoniaco) NH –2 (ion amiduro) A um en ta l a fu er za d el á ci do A um en ta l a fu er za d e la b as e Á ci do s fu er te s Á ci do s dé bi le s + + 15_CHAPTER 15.indd 668 12/20/09 7:05:41 PM 66915.4 Fuerza de los ácidos y las bases pondientes. Por ejemplo, el ion óxido (O2–) es una base más fuerte que el OH–, por lo que reacciona completamente con el agua como sigue: O2–(ac) + H2O(l) h 2OH –(ac) Por esta razón el ion óxido no existe en disoluciones acuosas. En el ejemplo 15.6 se muestra cómo se hacen los cálculos del pH para una disolución que contiene un ácido fuerte y para una disolución de una base fuerte. Recuerde que H+(ac) es lo mismo que H3O +(ac). Usamos el método ICE para resolver las disoluciones de equilibrio como se muestra en la sección 14.4 (p. 634). Calcule el pH de: a) una disolución de HCl de 1.0 × 10–3 M y b) una disolución de Ba(OH)2 0.020 M. Estrategia Recuerde que HCl es un ácido fuerte y Ba(OH)2 es una base fuerte. Por tanto, estas especies se ionizan completamente y nada de HCl o Ba(OH)2 quedará en las disoluciones. Solución a) La ionización del HCl es HCl(ac) h H+(ac) + Cl–(ac) Las concentraciones de todas las especies (HCl, H+ y Cl –) antes y después de la ionización se pueden representar de la siguiente forma: HCl(ac) h H+(ac) + Cl–(ac) Inicial (M): 1.0 × 10–3 0.0 0.0 Cambio (M): –1.0 × 10–3 +1.0 × 10–3 +1.0 × 10–3 Final (M): 0.0 1.0 × 10–3 1.0 × 10–3 Un cambio positivo (+) representa un incremento y un cambio negativo (−) indica una disminución en la concentración. Por tanto, [H+] = 1.0 × 10–3 M pH = –log (1.0 × 10–3) = b) Ba(OH)2 es una base fuerte; cada unidad de Ba(OH)2 produce dos iones OH−: Ba(OH)2(ac) h Ba2+(ac) + 2OH –(ac) Los cambios en las concentraciones de todas las especies se pueden representar así: Ba(OH)2(ac) h Ba2+(ac) + 2OH –(ac) Inicial (M ): 0.020 0.00 0.00 Cambio (M ): –0.020 +0.020 +2(0.020) Final (M ): 0.00 0.020 0.040 Así, [OH – ] = 0.040 M pOH = –log 0.040 = 1.40 Por tanto, con base en la ecuación (15.8), pH = 14.00 – pOH = 14.00 – 1.40 = (continúa) EjEmplo 15.6 3.00 12.60 15_CHAPTER 15.indd 669 12/20/09 7:05:41 PM 670 CAPíTULO 15 Ácidos y bases Si conocemos las fuerzas relativas de dos ácidos, podemos predecir la posición del equili- brio entre uno de los ácidos y la base conjugada del otro, como se ilustra en el ejemplo 15.7. Verificación Observe que, como el valor de 1.0 × 10–7 M es muy pequeño comparado con 1.0 × 10–3 M y 0.040 M, se ha ignorado la contribución de la autoionización del agua para [H+] y [OH –], tanto en a) como en b). Ejercicio de práctica Calcule el pH de una disolución de Ba(OH)2 1.8 × 10–2 M. Problema similar: 15.18. Prediga la dirección de la siguiente reacción en disolución acuosa: HNO2(ac) + CN –(ac) m HCN(ac) + NO– 2 (ac) Estrategia El problema es determinar si, en el equilibrio, la reacción se desplazará hacia la derecha, favoreciendo a HCN y NO– 2 o hacia la izquierda, favoreciendo a HNO2 y CN –. ¿Cuál de los dos es un ácido más fuerte y por tanto un donador de protones más fuerte: HNO2 o HCN? ¿Cuál de los dos es una base más fuerte y por tanto un aceptor de protones más fuerte: CN – o NO– 2? Recuerde que cuanto más fuerte sea el ácido, más débil será la base conjugada. Solución En la tabla 15.2 podemos observar que HNO2 es un ácido más fuerte que HCN. Así, CN – es una base más fuerte que NO– 2. La reacción neta procederá de izquierda a derecha como está escrita, debido a que HNO2 es un mejor donador de protones que HCN (y CN – es mejor aceptor de protones que NO– 2 ). Ejercicio de práctica Prediga si la constante de equilibrio para la siguiente reacción es mayor o menor que 1: CH3COOH(ac) + HCOO–(ac) m CH3COO–(ac) + HCOOH(ac) EjEmplo 15.7 15.5 Ácidos débiles y la constante de ionización de un ácido Como hemos visto, existen relativamente pocos ácidos fuertes. La mayoría de los ácidos son débiles. Considere un ácido monoprótico débil, HA. Su ionización en agua se representa como HA(ac) + H2O(l) m H3O +(ac) + A–(ac) o en forma simple HA(ac) m H+(ac) + A–(ac) Revisión de conceptos a) Mencione en orden de concentración decreciente todas las especies iónicas y moleculares en las siguientes disoluciones ácidas: i) HNO3 y ii) HF. b) Mencione en orden de concentración decreciente todas las especies iónicas y moleculares en las siguientesdisoluciones básicas: i) NH3 y ii) KOH. Problema similar: 15.37. 15_CHAPTER 15.indd 670 12/20/09 7:05:42 PM 67115.5 Ácidos débiles y la constante de ionización de un ácido La expresión del equilibrio para esta ionización es o (15.10) donde Ka, la constante de ionización de un ácido, es la constante de equilibrio para la ioniza- ción de un ácido. A cierta temperatura, la fuerza del ácido HA se mide cuantitativamente me- diante la magnitud de Ka. Cuanto mayor sea el valor de Ka, el ácido será más fuerte, es decir, mayor será la concentración de iones H+ en el equilibrio, debido a su ionización. Sin embargo, debemos recordar que sólo los ácidos débiles tienen valores de Ka asociados con ellos. En la tabla 15.3 se presentan los valores de Ka, a 25°C, de algunos ácidos débiles, en orden decreciente de fuerza de acidez. Aunque todos son ácidos débiles, en el grupo hay una gran variación en su fuerza. Por ejemplo, la Ka para HF (7.1 × 10–4) es casi 1.5 millones de veces mayor que la del HCN (4.9 × 10–10). Por lo general podemos calcular la concentración de ion hidrógeno o el pH de una diso- lución ácida en equilibrio a partir de la concentración inicial del ácido y del valor de su Ka. Todas las concentraciones en esta ecuación son concentraciones al equilibrio. Al final del libro se proporciona un índice de todas las tablas y figuras útiles de este texto. Ka = [H3O +][A– ] [HA] Ka = [H+][A– ] [HA] TABlA 15.3 Constantes de ionización de algunos ácidos débiles y sus bases conjugadas a 25ºC Nombre del ácido Fórmula Estructura Ka Base conjugada Kb † Ácido fluorhídrico HF HOF 7.1 × 10–4 F – 1.4 × 10–11 Ácido nitroso HNO2 O PNOOOH 4.5 × 10–4 NO2 – 2.2 × 10–11 Ácido acetilsalicílico C9H8O4 3.0 × 10–4 C9H7O4 – 3.3 × 10–11 (aspirina) Ácido fórmico HCOOH 1.7 × 10–4 HCOO– 5.9 × 10–11 Ácido ascórbico* C6H8O6 8.0 × 10–5 C6H7O6 – 1.3 × 10–10 Ácido benzoico C6H5COOH 6.5 × 10–5 C6H5COO– 1.5 × 10–10 Ácido acético CH3COOH 1.8 × 10–5 CH3COO– 5.6 × 10–10 Ácido cianhídrico HCN HOCqN 4.9 × 10–10 CN– 2.0 × 10–5 Fenol C6H5OH 1.3 × 10–10 C6H5O –– 7.7 × 10–5 B O O B OCOOOH OOOCOCH3 O B HOCOOOH CHOH A CH2OH CPO O C H G D HOOH C PPP C EOH O B OCOOOH O B CH3OCOOOH OOOH * Para el ácido ascórbico, es el grupo hidroxilo del extremo superior izquierdo el que está asociado con la constante de ionización. † La constante de ionización básica Kb se analiza en la sección 15.6. 15_CHAPTER 15.indd 671 12/20/09 7:05:48 PM 672 CAPíTULO 15 Ácidos y bases O bien, si conocemos el pH de una disolución de un ácido débil así como su concentración inicial, podemos determinar su Ka. El procedimiento principal para resolver estos problemas, que se relacionan con las concentraciones en el equilibrio, es el mismo que estudiamos en el capítulo 14. Sin embargo, debido a que la ionización ácida representa una clase importante de equilibrio químico en disolución acuosa, plantearemos un procedimiento sistemático para resolver este tipo de problemas, que también ayudará a entender la química implicada. Suponga que desea calcular el pH de una disolución de HF 0.50 M a 25°C. La ionización del HF está dada por HF(ac) m H+(ac) + F –(ac) A partir de la tabla 15.3 escribimos El primer paso consiste en identificar todas las especies presentes en la disolución que pueden afectar el pH. Debido a que la ionización de los ácidos débiles es pequeña, las prin- cipales especies presentes en el equilibrio son HF sin ionizar y algunos iones H+ y F–. Otra especie importante es H2O, pero su pequeño valor de Kw (1.0 × 10–14) significa que el agua no contribuye de manera importante a la concentración del ion H+. Por tanto, a menos que expresemos lo contrario, siempre ignoraremos los iones producidos por la autoionización del agua. Observe que aquí no nos interesa conocer la concentración de los iones OH– también presentes en la disolución. La concentración de OH– se determina a partir de la ecuación (15.3), después de haber calculado [H+]. De acuerdo con los pasos mostrados en la página 635, los cambios en las concentraciones de HF, H+ y F– se resumen como sigue: HF(ac) m H+(ac) + F –(ac) Inicial (M ): 0.50 0.00 0.00 Cambio (M ): –x +x +x Equilibrio (M ): 0.50 – x x x Las concentraciones de HF, H+ y F – en el equilibrio, expresadas en función de la incógni- ta x, se sustituyen en la expresión de la constante de ionización para obtener Al reordenar esta expresión, tenemos x2 + 7.1 × 10–4x – 3.6 × 10–4 = 0 Ésta es una ecuación cuadrática que resolvemos utilizando la fórmula para las ecuaciones de segundo grado (véase el apéndice 4). A veces conviene hacer una simplificación para obtener el valor de x. Debido a que el HF es un ácido débil y los ácidos débiles están poco ionizados, suponemos que x debe ser muy pequeño en comparación con 0.50. Por tanto, hacemos la siguiente aproximación 0.50 – x ≈ 0.50 Ahora la expresión de la constante de ionización queda Ka = [H+][F – ] = 7.1 × 10–4 [HF] Ka = (x)(x) = 7.1 × 10–4 0.50 – x x2 ≈ x2 = 7.1 × 10–4 0.50 – x 0.50 El signo ≈ significa “aproximadamente igual a”. Una analogía de la aproximación es un camión cargado con carbón. Si en el trayecto hubiera perdido unos cuantos trozos de carbón, esto no significaría un cambio apreciable en la masa general de la carga. 15_CHAPTER 15.indd 672 12/20/09 7:05:49 PM 67315.5 Ácidos débiles y la constante de ionización de un ácido Al reordenar, obtenemos x2 = (0.50)(7.1 × 10–4) = 3.55 × 10–4 x = "3.55 × 10–4 = 0.019 M Así obtenemos el valor de x sin necesidad de utilizar la ecuación cuadrática. En el equilibrio tenemos: [HF] = (0.50 – 0.019) M = 0.48 M [H+] = 0.019 M [F–] = 0.019 M y el pH de la disolución es pH = –log (0.019) = 1.72 ¿Qué tan buena es esta aproximación? Debido a que los valores de Ka de los ácidos dé- biles se conocen con una exactitud de sólo ±5%, es razonable que x sea menor que 5% de 0.50, el número al cual se le resta. En otras palabras, la aproximación es válida si la expresión siguiente es igual o menor que 5%: Por tanto, la aproximación que hicimos es aceptable. Ahora considere una situación diferente. Si la concentración inicial de HF es de 0.050 M y utilizamos el procedimiento anterior, obtenemos un valor para x de 6.0 × 10–3 M. Sin em- bargo, la siguiente comprobación demuestra que esta respuesta no es una aproximación válida porque es mayor que 5% de 0.050 M: En este caso, podemos obtener un valor aproximado de x resolviendo la ecuación cuadrática. La ecuación cuadrática Empezamos por escribir la expresión de la ionización en términos de la incógnita x: x2 + 7.1 × 10–4x – 3.6 × 10–5 = 0 Esta expresión es una ecuación de segundo grado del tipo ax2 + bx + c = 0. Al utilizar la fórmula de las ecuaciones cuadráticas, escribimos 0.019 M × 100% = 3.8% 0.50 M 6.0 × 10–3 M × 100% = 12% 0.50 M x2 = 7.1 × 10–4 0.050 – x x = = = = 5.6 × 10–3 M o – 6.4 × 10–3 M –b ± "b2 – 4ac 2a –7.1 × 10–4 ± "(7.1 × 10–4)2 – 4(1)(–3.6 × 10–5) 2(1) –7.1 × 10–4 ± 0.012 2 15_CHAPTER 15.indd 673 12/20/09 7:05:50 PM 674 CAPíTULO 15 Ácidos y bases La segunda solución (x = –6.4 × 10–3 M) es físicamente imposible puesto que la concentra- ción de los iones producidos como resultado de la ionización no puede ser negativa. Al selec- cionar x = 5.6 × 10–3 M, podemos obtener [HF], [H+] y [F – ] como sigue: [HF] = (0.050 – 5.6 × 10–3) M = 0.044 M [H+] = 5.6 × 10–3 M [F – ] = 5.6 × 10–3 M Entonces, el pH de la disolución es pH = –log (5.6 × 10–3) = 2.25 En resumen, los pasos principales para resolver problemas de ionización de ácidos débi- les son: 1. Identificar las especies principales que pueden afectar el pH de la disolución. En la mayo- ría de los casos podemos ignorar la ionización del agua. Omitimos el ion hidroxilo porque su concentración se determina mediante la del ion H+. 2. Expresar las concentraciones de equilibrio de dichas especies en funciónde la concentra- ción inicial del ácido y una sola incógnita, x, que representa el cambio en la concentración. 3. Escribir la ionización del ácido débil y expresar la constante de ionización Ka en función de las concentraciones de equilibrio de H+, la base conjugada y el ácido sin ionizar. Pri- mero obtenemos el valor de x por el método de aproximación. Si el método de aproxima- ción no es válido, utilizamos la ecuación cuadrática para obtener x. 4. Después de obtener el valor de x, calculamos las concentraciones de equilibrio de todas las especies y el pH de la disolución. En el ejemplo 15.8 proporcionamos otra muestra de este procedimiento. HNO2 Calcule el pH de una disolución de ácido nitroso (HNO2) 0.036 M: HNO2(ac) m H+(ac) + NO– 2(ac) Estrategia Recuerde que un ácido débil sólo se ioniza parcialmente en el agua. Se nos proporciona la concentración inicial de un ácido débil y se nos pide calcular el pH de la disolución en el equilibrio. Es útil realizar un diagrama para llevar el conteo de las especies pertinentes. Como en el ejemplo 15.6, despreciamos la ionización del agua, de manera que la fuente principal de iones H+ es el ácido. La concentración de iones OH– es muy pequeña, como se esperaría de una disolución ácida, así que está presente como una especie menor. (continúa) EjEmplo 15.8 15_CHAPTER 15.indd 674 12/20/09 7:05:51 PM 67515.5 Ácidos débiles y la constante de ionización de un ácido Solución Seguimos el procedimiento que ya se señaló. Paso 1: Las especies que pueden afectar el pH de la disolución son HNO2, H +, y la base conjugada NO– 2. Despreciamos la contribución del agua a [H+]. Paso 2: Establecemos x como la concentración en el equilibrio de los iones H+ y NO– 2 en mol/L, y resumimos: HNO2(ac) m H+(ac) + NO2(ac) Inicial (M ): 0.036 0.00 0.00 Cambio (M ): –x +x +x Equilibrio (M ): 0.036 – x x x Paso 3: Con base en la tabla 15.3 escribimos Una vez que aplicamos la aproximación 0.036 – x ≈ 0.036, obtenemos Para comprobar la aproximación Como esto es mayor que 5%, la aproximación que realizamos no es válida y debemos resolver la ecuación cuadrática como sigue: x2 + 4.5 × 10–4x – 1.62 × 10–5 = 0 La segunda respuesta es físicamente imposible, debido a que la concentración de los iones producidos como resultado de la ionización no puede ser negativa. Por consiguiente, la respuesta está dada por la raíz positiva, x = 3.8 × 10–3 M. Paso 4: En el equilibrio [H+] = 3.8 × 10–3 M pH = –log (3.8 × 10–3) = Verificación Observe que el pH calculado indica que la disolución es ácida, lo que esperaríamos de una disolución de un ácido débil. Compare el pH calculado con el de la disolución de un ácido fuerte 0.036 M como el HCl para que se percate de la diferencia entre un ácido débil y uno fuerte. Ejercicio de práctica ¿Cuál es el pH de un ácido monoprótico 0.122 M cuya Ka es de 5.7 × 10–4? – Ka = [H+][NO2] [HNO2] 4.5 × 10–4 = x2 0.036 – x – 4.5 × 10–4 = x2 ≈ x2 0.036 – x 0.036 x2 = 1.62 × 10–5 x = 4.0 × 10–3 M 4.0 × 10–4 M × 100% = 11% 0.036 M x = = 3.8 × 10–3 M o –4.3 × 10–3 M –4.5 × 10–4 ± "(4.5 × 10–4)2 – 4(1)(–1.62 × 10–5) 2(1) 2.42 Problema similar: 15.43. 15_CHAPTER 15.indd 675 12/20/09 7:05:52 PM 676 CAPíTULO 15 Ácidos y bases Una forma de determinar el valor de la Ka de un ácido consiste en medir el pH en el equi- librio de una disolución del ácido de concentración conocida. En el ejemplo 15.9 aplicamos este método. HCOOH El pH de una disolución de ácido fórmico (HCOOH) 0.10 M es de 2.39. ¿Cuál es la Ka del ácido? Estrategia El ácido fórmico es un ácido débil. Sólo se ioniza parcialmente en el agua. Observe que la concentración del ácido fórmico se refiere a la concentración inicial, antes de haber iniciado la ionización. Por otra parte, el pH de la disolución se refiere al estado de equilibrio. Para calcular Ka, necesitamos saber las concentraciones de las tres especies: [H+], [HCOO – ] y [HCOOH] en el equilibrio. Como siempre, ignoramos la ionización del agua. El siguiente diagrama resume la situación. Solución Procedemos como sigue. Paso 1: Las principales especies en disolución son HCOOH, H+ y la base conjugada HCOO–. Paso 2: Primero necesitamos calcular la concentración de ion hidrógeno a partir del valor del pH pH = –log [H+] 2.39 = –log [H+] Si tomamos el antilogaritmo de ambos lados, obtenemos [H+] = 10–2.39 = 4.1 × 10–3 M A continuación resumimos los cambios: HCOOH(ac) m H+(ac) + HCOO–(ac) Inicial (M): 0.10 0.00 0.00 Cambio (M): –4.1 × 10–3 +4.1 × 10–3 +4.1 × 10–3 Equilibrio (M): (0.10 – 4.1 × 10–3) 4.1 × 10–3 4.1 × 10–3 Observe que debido a que conocemos el valor del pH, y por consiguiente la concentración del ion H+, también conocemos las concentraciones de HCOOH y HCOO– en el equilibrio. Paso 3: La constante de ionización del ácido fórmico está dada por (continúa) EjEmplo 15.9 Ka = [H+][HCOO – ] [HCOOH] = (4.1 × 10–3)(4.1 × 10–3) (0.10 – 4.1 × 10–3) = 1.8 × 10 – 4 15_CHAPTER 15.indd 676 12/20/09 7:05:54 PM 67715.5 Ácidos débiles y la constante de ionización de un ácido Porcentaje de ionización Como hemos visto, la magnitud de Ka indica la fuerza de un ácido. Otra forma de medir la fuerza de un ácido es mediante su porcentaje de ionización, que se define como concentración del ácido ionizado en el equilibrio porcentaje de ionización = × 100% (15.11) concentración inicial del ácido Cuanto más fuerte es un ácido, mayor será su porcentaje de ionización. Para un ácido mono- prótico HA, la concentración del ácido que se ioniza es igual a la concentración de iones H+ o a la concentración de iones A– en el equilibrio. Por tanto, podemos definir el porcentaje de ionización como [H+] porcentaje de ionización = × 100% [HA]0 donde [H+] es la concentración en el equilibrio y [HA]0 es la concentración inicial. Refiriéndonos al ejemplo 15.8, observe que el porcentaje de ionización de una disolución de HNO2 0.036 M es 3.8 × 10–3 M porcentaje de ionización = × 100% = 11% 0.036 M Así, sólo una de cada 9 moléculas de HNO2 está ionizada, lo cual concuerda con el hecho de que el HNO2 es un ácido débil. La proporción en la que se ioniza un ácido débil depende de su concentración inicial. Cuanto más diluida sea la disolución, mayor será el porcentaje de ionización (figura 15.4). En términos cualitativos, cuando se diluye un ácido, la concentración de “partículas” en la disolución es reducida. De acuerdo con el principio de Le Châtelier (véase sección 14.5), esta reducción en la concentración de partículas (la tensión) es contrarrestada por el desplazamien- to de la reacción hacia el lado con más partículas; es decir, el equilibrio se desplaza del lado del ácido no ionizado (una partícula) al lado que contiene iones H+ y la base conjugada (dos partículas): HA m H+ + A–. En consecuencia, la concentración de “partículas” aumenta en la disolución. La dependencia del porcentaje de ionización en función de la concentración inicial se ilustra mediante el caso del HF, que analizamos en la página 672: HF 0.50 M 0.019 M porcentaje de ionización = × 100% = 3.8% 0.50 M HF 0.050 M 5.6 × 10–3 M porcentaje de ionización = × 100% = 11% 0.050 M Como esperábamos, observamos que cuanto más diluida es una disolución de HF, mayor será el porcentaje de ionización del ácido. Problema similar: 15.45. Verificación El valor de Ka difiere ligeramente del que aparece en la tabla 15.3 debido al método de redondeo que utilizamos en el cálculo. Ejercicio de práctica El pH de un ácido monoprótico débil 0.060 M es de 3.44. Calcule la Ka del ácido. Podemos comparar las fuerzas de los ácidos en términos del porcentaje de ionización sólo si las concentraciones de los ácidos son las mismas. Figura 15.4 Dependencia de la concentración inicial del ácido en función del porcentaje de ionización. Observe que, a con- centraciones muybajas, todos los ácidos (fuertes y débiles) están casi completamente ionizados. 0 % d e io ni za ci ón 100 Concentración inicial del ácido Ácido débil Ácido fuerte 15_CHAPTER 15.indd 677 12/20/09 7:05:56 PM 678 CAPíTULO 15 Ácidos y bases 15.6 Bases débiles y la constante de ionización de una base La ionización de las bases débiles puede analizarse de la misma manera que la ionización de los ácidos débiles. Cuando el amoniaco se disuelve en agua, se lleva a cabo la reacción NH3(ac) + H2O(l) m NH4(ac) + OH–(ac) La constante de equilibrio está dada por En comparación con la concentración total de agua, en esta reacción se consumen muy pocas moléculas de ésta, por lo que [H2O] puede tratarse como una constante. Entonces, la constante de ionización de una base (Kb), que es la constante de equilibrio para la reacción de ioniza- ción, puede escribirse como La tabla 15.4 incluye algunas bases débiles comunes y sus constantes de ionización. Observe que la basicidad de todos esos compuestos se atribuye al par electrónico libre del átomo de nitrógeno. La capacidad del par libre para aceptar un ion H+ convierte a estas sustancias en bases de Brønsted. Para la solución de problemas que incluyen bases débiles seguimos el mismo procedi- miento que utilizamos para los ácidos débiles. La diferencia principal es que ahora calculamos primero [OH–], en lugar de [H+]. En el ejemplo 15.10 aplicamos este procedimiento. El par de electrones libres (color rojo) en el átomo de N da lugar a la basicidad del amoniaco. + K = [NH4][OH–] [NH3][H2O] + Kb = K[H2O] = [NH4][OH–] [NH3] = 1.8 × 10–5 + ¿Cuál es el pH de una disolución de amoniaco 0.40 M? Estrategia El procedimiento aquí es similar al que utilizamos para un ácido débil (vea el ejemplo 15.8). A partir de la ionización del amoniaco, podemos observar que las especies principales en una disolución en el equilibrio son NH3, NH4 y OH–. La concentración del ion hidrógeno es muy pequeña, como esperaríamos en una disolución básica, así que se presenta como una especie menor. Como antes, ignoramos la ionización del agua. Elaboramos un diagrama para llevar el conteo de las especies pertinentes como sigue: Solución Procedemos de acuerdo con los siguientes pasos. Paso 1: Las principales especies en una disolución de amoniaco son NH3, NH4 y OH–. Ignoramos la muy pequeña contribución del OH– debida al agua. (continúa) EjEmplo 15.10 + + 15_CHAPTER 15.indd 678 12/20/09 7:05:58 PM 67915.6 Bases débiles y la constante de ionización de una base Paso 2: Asumimos que x sea la concentración en el equilibrio de los iones NH4 y OH– en mol/L, y resumimos NH3(ac) + H2O(l) m NH4(ac) + OH–(ac) Inicial (M ): 0.40 0.00 0.00 Cambio (M ): –x +x +x Equilibrio (M ): 0.40 – x x x Paso 3: En la tabla 15.4 aparece el valor de Kb: (continúa) TABlA 15.4 Constantes de ionización de algunas bases débiles y sus ácidos conjugados a 25ºC Nombre de la base Fórmula Estructura Kb* Ácido conjugado Ka Etilamina C2H5NH2 5.6 × 10–4 C2H5NH3 1.8 × 10–11 Metilamina CH3NH2 4.4 × 10–4 CH3NH3 2.3 × 10–11 Amoniaco NH3 1.8 × 10–5 NH4 5.6 × 10–10 Piridina C5H5N 1.7 × 10–9 C5H5NH 5.9 × 10–6 Anilina C6H5NH2 3.8 × 10–10 C6H5NH3 2.6 × 10–5 Cafeína C8H10N4O2 5.3 × 10–14 C8H11N4O2 0.19 Urea (NH2)2CO 1.5 × 10–14 H2NCONH3 0.67 * El átomo de nitrógeno con el par libre explica la basicidad de cada compuesto. En el caso de la urea, Kb se puede asociar con cualquier átomo de nitrógeno. N A H CH3OCH2ONOHO A H CH3ONOHO N COH N Q O B A CH3 N ECH C B A CHNEC O K H3CH N ECH3 A H HONOHO NS ONOH A H O A H O B HONOCONOHO A H O + + + + + + + + + Kb = [NH+ 4 ][OH – ] [NH3] 1.8 × 10–5 = x2 0.40 – x 15_CHAPTER 15.indd 679 12/20/09 7:06:03 PM 680 CAPíTULO 15 Ácidos y bases 15.7 Relación entre las constantes de ionización de los ácidos y sus bases conjugadas Se puede encontrar una relación importante entre la constante de ionización de un ácido y la constante de ionización de su base conjugada, con el ácido acético como ejemplo: CH3COOH(ac) m H+(ac) + CH3COO–(ac) La base conjugada, CH3COO–, suministrada por una disolución de acetato de sodio (CH3COONa), reacciona con el agua de acuerdo con la ecuación CH3COO–(ac) + H2O(l) m CH3COOH(ac) + OH–(ac) y la constante de ionización de la base la escribimos como El producto de estas dos constantes de ionización está dado por La regla del 5% (página 673) también se aplica a las bases. Problema similar: 15.53. Al aplicar la aproximación 0.40 – x ≈ 0.40, obtenemos Para probar la aproximación, escribimos Por tanto, la aproximación es válida. Paso 4: Al equilibrio, [OH–] = 2.7 × 10–3 M. Así, pOH = –log (2.7 × 10–3) = 2.57 pH = 14.00 – 2.57 = Verificación Observe que el pH calculado es básico, lo que esperaríamos de una disolución de una base débil. Compare el pH calculado con el de una disolución de una base fuerte 0.40 M, como KOH, para que se percate de la diferencia entre una base fuerte y una débil. Ejercicio de práctica Calcule el pH de una disolución de metilamina 0.26 M (vea la tabla 15.4). 1.8 × 10–5 = x2 ≈ x2 0.40 – x 0.40 x2 = 7.2 × 10–6 x = 2.7 × 10–3 M 2.7 × 10–3 M × 100% = 0.68% 0.40 M 11.43 Ka = [H+][CH3COO–] [CH3COOH] Ka Kb = [H+][CH3COO–] × [CH3COOH][OH–] [CH3COOH] [CH3COO–] = [H+][OH–] = Kw Kb = [CH3COOH][OH–] [CH3COO–] 15_CHAPTER 15.indd 680 12/20/09 7:06:04 PM 68115.8 Ácidos dipróticos y polipróticos Tal vez este resultado parezca extraño a primera vista, pero al adicionar las dos ecuaciones observamos que la suma corresponde a la autoionización del agua. 1) CH3COOH(ac) m H+(ac) + CH3COO–(ac) Ka 2) CH3COO–(ac) + H2O(l) m CH3COOH(ac) + OH–(ac) Kb 3) H2O(l) m H+(ac) + OH–(ac) Kw Este ejemplo ilustra una de las reglas de los equilibrios químicos: cuando dos reacciones se suman para originar una tercera reacción, la constante de equilibrio de la tercera reacción es el producto de las constantes de equilibrio de las dos reacciones que se han adicionado (vea la sección 14.2). Así, para cualquier par conjugado ácido-base siempre se cumple que KaKb = Kw (15.12) Al expresar la ecuación (15.12) como llegamos a una conclusión importante: cuanto más fuerte es un ácido (mayor Ka), su base conjugada será más débil (menor Kb), y viceversa (vea las tablas 15.3 y 15.4). Podemos utilizar la ecuación (15.12) para calcular la Kb de la base conjugada (CH3COO–) del CH3COOH como sigue. Tomamos el valor de Ka del CH3COOH de la tabla 15.3 y escri- bimos Ka = Kw Kb Kb = Kw Ka Kb = Kw Ka = 1.0 × 10–14 1.8 × 10–5 = 5.6 × 10–10 Revisión de conceptos Considere los siguientes dos ácidos y sus constantes de ionización: HCOOH Ka = 1.7 × 10–4 HCN Ka = 4.9 × 10–10 Cuál base conjugada es más fuerte? (HCOO− o CN−) 15.8 Ácidos dipróticos y polipróticos El tratamiento de los ácidos dipróticos y polipróticos es más complicado que el de los ácidos monopróticos porque dichas sustancias pueden ceder más de un ion hidrógeno por molécula. Estos ácidos se ionizan por etapas, es decir, pierden un protón cada vez. Se puede escribir una expresión de la constante de ionización para cada etapa de ionización. Como consecuencia, a menudo deben utilizarse dos o más expresiones de la constante de equilibrio para calcular las concentraciones de las especies en la disolución del ácido. Por ejemplo, para el ácido carbó- nico, H2CO3, escribimos H2CO3(ac) m H+(ac) + HCO3(ac) HCO– 3(ac) m H+(ac) + CO3 (ac) Ka1 = [H+][HCO3] [H2CO3] Ka2 = [H+][CO3 ] [HCO– 3] 2– 2– – – De arriba abajo: H2CO3, HCO– 3 y CO3 2–. 15_CHAPTER 15.indd 681 12/20/09 7:06:05 PM 682 CAPíTULO 15 Ácidos y bases Observe que la base conjugada de la primera etapa de ionización se convierte en el ácido de la segunda etapa de ionización. En la tabla 15.5 de la página 683 se señalan las constantes de ionización de algunos áci- dosdipróticos y de un ácido poliprótico. Para un ácido en particular, la primera constante de ionización es mucho mayor que la segunda, y así sucesivamente. Esta tendencia resulta lógica ya que es más sencillo remover un ion H+ de una molécula neutra que otro ion H+ de un ion cargado negativamente derivado de la misma molécula. En el ejemplo 15.11 calculamos las concentraciones de equilibrio de todas las especies de un ácido diprótico en disolución acuosa. H2C2O4 El ácido oxálico (H2C2O4) es una sustancia venenosa que se utiliza principalmente como agente blanqueador y limpiador (por ejemplo, para eliminar el sarro de los baños). Calcule las concentraciones de todas las especies presentes en el equilibrio de una disolución 0.10 M. Estrategia La determinación de las concentraciones en el equilibrio de las especies de un ácido diprótico en una disolución acuosa es más complicada que para un ácido monoprótico. Como en el ejemplo 15.8, seguimos el mismo procedimiento utilizado para un ácido monoprótico en cada etapa. Observe que la base conjugada de la primera etapa de ionización se convierte en el ácido para la segunda etapa de ionización. Solución Procedemos de acuerdo con los siguientes pasos. Paso 1: Las principales especies en la disolución en esta etapa son el ácido no ionizado, los iones H+, y la base conjugada, HC2O4. Paso 2: Establecemos que x sea la concentración en el equilibrio de los iones H+ y HC2O4 en mol/L, y resumimos H2C2O4(ac) m H+(ac) + HC2O4(ac) Inicial (M ): 0.10 0.00 0.00 Cambio (M ): –x +x +x Equilibrio (M ): 0.10 – x x x Paso 3: La tabla 15.5 nos da Una vez que aplicamos la aproximación 0.10 – x ≈ 0.10, obtenemos Para comprobar la aproximación (continúa) EjEmplo 15.11 6.5 × 10–2 = x2 ≈ x2 0.10 – x 0.10 x2 = 6.5 × 10–3 x = 8.1 × 10–2 M 8.1 × 10–2 M × 100% = 81% 0.10 M Ka = [H+][HC2O4] [H2C2O4] 6.5 × 10–2 = x2 0.10 – x – – – – 15_CHAPTER 15.indd 682 12/20/09 7:06:06 PM 683 TABlA 15.5 Constantes de ionización de algunos ácidos dipróticos y un ácido poliprótico y sus bases conjugadas a 25ºC Nombre del ácido Fórmula Estructura Ka Base conjugada Kb Ácido sulfúrico H2SO4 Muy grande HSO– 4 Muy pequeño Ion hidrogenosulfato HSO– 4 1.3 × 10–2 SO2– 4 7.7 × 10–13 Ácido oxálico H2C2O4 6.5 × 10–2 HC2O – 4 1.5 × 10–13 Ion hidrogenooxalato HC2O – 4 6.1 × 10–5 C2O 2– 4 1.6 × 10–10 Ácido sulfuroso* H2SO3 1.3 × 10–2 HSO– 3 7.7 × 10–13 Ion hidrogenosulfito HSO– 3 6.3 × 10–8 SO2– 3 1.6 × 10–7 Ácido carbónico H2CO3 4.2 × 10–7 HCO– 3 2.4 × 10–8 Ion hidrogenocarbonato HCO– 3 4.8 × 10–11 CO2– 3 2.1 × 10–4 Ácido sulfhídrico H2S H—S—H 9.5 × 10–8 HS– 1.1 × 10–7 Ion hidrogenosulfuro** HS– H—S– 1 × 10–19 S2– 1 × 105 Ácido fosfórico H3PO4 7.5 × 10–3 H2PO– 4 1.3 × 10–12 Ion dihidrogenofosfato H2PO– 4 6.2 × 10–8 HPO2– 4 1.6 × 10–7 Ion hidrogenofosfato HPO2– 4 4.8 × 10–13 PO3– 4 2.1 × 10–2 O B B O HOOOSOOOH O B B O HOOOSOO� O B O B HOOOCOCOOOH O B O B HOOOCOCOO� O B HOOOSOOOH O B HOOOSOO� O B HOOOCOOOH O B HOOOCOO� O B A O A H HOOOPOOOH O B A O A H HOOOPOO� O B A O HOOOPOO� � * El H2SO3 nunca ha sido aislado y existe sólo en una concentración mínima en una disolución acuosa de SO2. El valor de Ka aquí se refiere al proceso SO2(g) + H2O(l) m H+(ac) + HSO3(ac) ** La constante de ionización del HS– es muy baja y difícil de medir. El valor presentado aquí sólo es una estimación. – 15_CHAPTER 15.indd 683 12/20/09 7:06:15 PM 684 CAPíTULO 15 Ácidos y bases Es evidente que la aproximación no es válida. Por tanto debemos resolver la ecuación cuadrática x2 + 6.5 × 10–2x – 6.5 × 10–3 = 0 El resultado es x = 0.054 M. Paso 4: Cuando se alcanza el equilibrio de la primera etapa de ionización, las concentraciones son [H+] = 0.054 M [HC2O – 4 ] = 0.054 M [H2C2O4] = (0.10 – 0.054) M = 0.046 M A continuación consideramos la segunda etapa de ionización. Paso 1: En esta etapa, las principales especies son HC2O – 4, que actúa como el ácido en la segunda etapa de ionización, H+, y la base conjugada C2O 2– 4. Paso 2: Establecemos que y sea la concentración en el equilibrio de los iones H+ y C2O 2– 4 en mol/L, y resumimos: HC2O – 4(ac) m H+(ac) + C2O 2– 4 (ac) Inicial (M): 0.054 0.054 0.00 Cambio (M): –y +y +y Equilibrio (M): 0.054 – y 0.054 + y y Paso 3: A partir de la tabla 15.5 tenemos que Al aplicar la aproximación 0.054 + y ≈ 0.054 y 0.054 – y ≈ 0.054, obtenemos y comprobamos la aproximación La aproximación es válida. Paso 4: En el equilibrio: [H2C2O4] = [HC2O – 4 ] = (0.054 – 6.1 × 10–5) M = [H+] = (0.054 + 6.1 × 10–5) M = [C2O 2– 4 ] = [OH – ] = 1.0 × 10–14/0.054 = Ejercicio de práctica Calcule las concentraciones de los iones H2C2O4, HC2O4, C2O 2– y H+ en una disolución de ácido oxálico 0.20 M. Ka = [H+][C2O 2– 4 ] [HC2O – 4 ] 6.1 × 10–5 = (0.054 + y)(y) (0.054 – y) (0.054)(y) = y = 6.1 × 10–5 M (0.054) 6.1 × 10–5 M × 100% = 0.11% 0.054 M 0.046 M 0.054 M 0.054 M 6.1 × 10–5 M 1.9 × 10–13 M – 4 Problema similar: 15.64. 15_CHAPTER 15.indd 684 12/20/09 7:06:16 PM 68515.9 Estructura molecular y fuerza de los ácidos En el ejemplo 15.11 se muestra que para los ácidos dipróticos, si Ka1 @ Ka2 , entonces la concentración de iones H+ sólo provendrá de la primera etapa de ionización. Además, la con- centración de la base conjugada para la segunda etapa de ionización es numéricamente igual a Ka2 . El ácido fosfórico (H3PO4) es un ácido poliprótico con tres átomos de hidrógeno ionizables: Revisión de conceptos ¿Cuál de los diagramas siguientes representa una disolución de ácido sulfúrico? Para fines de claridad, se omitieron las moléculas de agua. a) b) c) � HSO� 4 � H3O�� SO2 4 � � H2SO4 Ka1 = [H+][H2PO4] = 7.5 × 10–3 [H3PO4] Ka2 = [H+][HPO2–] = 6.2 × 10–8 [H2PO4] Ka3 = [H+][PO3–] = 4.8 × 10–13 [HPO2–] – 4 4 4 – H3PO4(ac) m H+(ac) + H2PO4(ac) H2PO4(ac) m H+(ac) + HPO2– 4 (ac) HPO4 (ac) m H+(ac) + PO4 (ac)2– 3– – – Vemos que el ácido fosfórico es un ácido poliprótico débil y que sus constantes de ionización disminuyen marcadamente para la segunda y tercera etapas. Por tanto, podemos predecir que en una disolución de ácido fosfórico la concentración de ácido no ionizado es la más grande y que las únicas otras especies presentes también en concentraciones significativas son los iones H+ y H2PO– 4. 15.9 Estructura molecular y fuerza de los ácidos La fuerza de un ácido depende de algunos factores, como las propiedades del disolvente, la temperatura y, por supuesto, la estructura molecular del ácido. Cuando comparamos la fuerza entre dos ácidos, podemos eliminar algunas variables considerando sus propiedades en el mis- mo disolvente, a la misma temperatura y concentración. Entonces, nuestra atención se enfoca en la estructura de los ácidos. Consideremos cierto ácido HX. La fuerza del ácido se mide por su tendencia a ionizarse: HX h H+ + X– H3PO4 15_CHAPTER 15.indd 685 12/20/09 7:06:20 PM 686 CAPíTULO 15 Ácidos y bases Hay dos factores que determinan el grado de ionización del ácido. Uno es la fuerza del enlace HOX; cuanto más fuerte sea el enlace, será más difícil que la molécula de HX se rompa y, por tanto, el ácido será más débil. El otro factor es la polaridad del enlace HOX. La diferencia de electronegatividades entre H y X tiene como resultado un enlace polar del tipo d+ d– HOX Si el enlace es muy polar, es decir, si hay una acumulación grande de las cargas positiva y ne- gativa en los átomos de H y de X, respectivamente, HX tenderá a romperse para formar iones H+ y X–. Por tanto, una gran polaridad es característica de un ácido fuerte. A continuación consideramos algunos ejemplos en los que tanto la fuerza del enlace como la polaridad del mismo desempeñan un papel importante en la determinación de la fuerza del ácido. Ácidos halogenhídricos Los halógenos formanuna serie de ácidos binarios denominados ácidos halogenhídricos (HF, HCl, HBr y HI). De esta serie, ¿qué factor (fuerza del enlace o polaridad del enlace) es el predominante para determinar la fuerza de los ácidos binarios? Considere en primer lugar la fuerza del enlace HOX en cada uno de estos ácidos. En la tabla 15.6 se muestra que HF tiene la entalpía de enlace más alta de los cuatro halogenuros de hidrógeno y que HI tiene la entalpía de enlace más baja. Se requieren 568.2 kJ/mol para romper el enlace HOF y sólo 298.3 kJ/ mol para romper el enlace HOI. Con base en la entalpía de enlace, HI debe ser el ácido más fuerte debido a que su enlace es el más fácil de romper y de formar iones H+ y I –. En segundo lugar, considere la polaridad del enlace HOX. En esta serie de ácidos, la polaridad del enlace disminuye desde HF hacia HI porque F es el más electronegativo de los halógenos (vea la figura 9.5). Con base en la polaridad de enlace, HF debe ser el ácido más fuerte debido a la mayor acumulación de cargas positivas y negativas en los átomos de H y F. Por tanto, tenemos dos factores en competencia a considerar para determinar la fuerza de los ácidos binarios. El hecho de que HI sea un ácido fuerte y que HF sea un ácido débil indica que la entalpía de enla- ce es el factor predominante en la determinación de la fuerza del ácido en los ácidos binarios. En esta serie de ácidos binarios, cuanto más débil sea el enlace, más fuerte será el ácido, de manera que la fuerza de los ácidos se incrementa como sigue: HF ! HCl < HBr < HI Oxiácidos Ahora consideremos los oxiácidos. Éstos, como estudiamos en el capítulo 2, contienen hi- drógeno, oxígeno y algún otro elemento Z, que ocupa una posición central. En la figura 15.5 se ilustran las estructuras de Lewis de algunos oxiácidos comunes. Como podemos ver, estos TABlA 15.6 Entalpías de enlace para halogenuros de hidrógeno y fuerzas ácidas para ácidos halogenhídricos Enlace Entalpía de enlace (kj/mol) Fuerza del ácido HOF 568.2 débil HOCl 431.9 fuerte HOBr 366.1 fuerte HOI 298.3 fuerte La fuerza de los ácidos halogenhídricos incrementa de HF a HI. Para un repaso de la nomenclatura de los ácidos inorgánicos, vea la sección 2.8 (p. 66). Cl F Br I 1A 3A 4A 5A 6A 7A 8A 2A 15_CHAPTER 15.indd 686 12/20/09 7:06:21 PM 68715.9 Estructura molecular y fuerza de los ácidos ácidos se caracterizan por la presencia de uno o más enlaces OOH. El átomo central Z a su vez también puede estar ligado a otros grupos: G OZOOOH D Si Z es un elemento electronegativo o está en un estado de oxidación alto, atraerá los electrones, haciendo que el enlace ZOO sea más covalente y el enlace OOH sea más polar. Como consecuencia, aumenta la tendencia a donar el hidrógeno como ion H+: G �� �� G OZOOOH 88n OZOO� � H� D D Al comparar la fuerza de los oxiácidos, conviene dividirlos en dos grupos. 1. Oxiácidos que tienen diferentes átomos centrales que pertenecen al mismo grupo de la tabla periódica y que tienen el mismo número de oxidación. Dentro de este grupo, au- menta la fuerza de los ácidos a medida que se incrementa la electronegatividad del átomo central, como ejemplifican HClO3 y HBrO3: OSOS A HOOOClOOSOQOQ Q OSOS A HOOOBrOOSOQOQ Q Cl y Br tienen el mismo número de oxidación, +5. Sin embargo, como Cl es más elec- tronegativo que Br, atrae el par electrónico que comparte con el oxígeno (en el grupo ClOOOH) en mayor medida que el Br. En consecuencia, el enlace OOH es más polar en el ácido clórico que en el ácido brómico y se ioniza más fácilmente. Así, la fuerza relativa de los ácidos es HClO3 > HBrO3 2. Oxiácidos que tienen el mismo átomo central pero diferente número de grupos unidos a él. Dentro de este grupo, la fuerza del ácido se incrementa a medida que aumenta el número de oxidación del átomo central. Considere los oxiácidos del cloro que se in- cluyen en la figura 15.6. En esta serie, la capacidad del cloro para atraer electrones del grupo OH (haciendo más polar el enlace OOH) aumenta con el número de átomos de O Figura 15.5 Estructuras de Lewis de algunos oxiácidos comunes. Por simplicidad, las cargas formales se han omitido. HSO OO O B H A HPO OO H O B H B O SNO OH O B O PNOH Ácido carbónico Ácido nitroso Ácido nítrico Ácido fosforoso Ácido fosfórico Ácido sulfúrico HCO OO QO O QO O QO O QO O QO O QO O QO O QO O QO O QO O QO O QOOH O B S SO S SO S SO S SO S SOS SO S SO A HPO O O H O B H A O A medida que el número de oxidación de un átomo crece, aumenta su capacidad para atraer los electrones en un enlace. La fuerza de los oxiácidos que contienen halógeno y que tienen el mismo número de átomos de O se incrementa de manera ascendente. Cl Br I 1A 3A 4A 5A 6A 7A 8A 2A 15_CHAPTER 15.indd 687 12/20/09 7:06:25 PM 688 CAPíTULO 15 Ácidos y bases electronegativos unidos al Cl. Así, el HClO4 es el ácido más fuerte porque tiene el mayor número de átomos de O unidos al Cl, y la fuerza de los ácidos disminuye como sigue: HClO4 > HClO3 > HClO2 > HClO En el ejemplo 15.12 comparamos la fuerza de los ácidos a partir de sus estructuras mo- leculares. Figura 15.6 Estructuras de Lewis de los oxiácidos del cloro. El número de oxidación del átomo de Cl se muestra entre paréntesis. Por simplicidad, las cargas formales se han omitido. Observe que aunque el ácido hipocloroso se escribe como HClO, el átomo de H está enla- zado al átomo de O. ClOO OH Ácido cloroso (�3) A ClOO O O H Ácido perclórico (�7) A A ClOO OH Ácido clórico (�5) ClO OH Ácido hipocloroso (�1) O QO O QO Q O QO O QO O QO O QO O Q OO O QO S S OO O S S S S S O QS S S Problema similar: 15.68. Ácidos carboxílicos Hasta aquí el análisis se ha centrado en los ácidos inorgánicos. Sin embargo, los ácidos car- boxílicos son un grupo de ácidos orgánicos que también son dignos de analizarse. Podemos representar las estructuras de Lewis de estos ácidos de la siguiente manera: Prediga las fuerzas relativas de los oxiácidos en cada uno de los siguientes grupos a) HClO, HBrO y HIO; b) HNO3 y HNO2. Estrategia Examine la estructura molecular. En a) los dos ácidos tienen estructura similar pero diferente átomo central (Cl, Br y I). ¿Cuál átomo central es el más electronegativo? En b) los ácidos tienen el mismo átomo central (N) pero difieren en el número de átomos de O. ¿Cuál es el número de oxidación del N en cada uno de estos dos ácidos? Solución a) Todos estos ácidos tienen la misma estructura, y todos los halógenos tienen el mismo número de oxidación (+1). Como la electronegatividad disminuye de Cl a I, el átomo de Cl atrae en mayor medida al par de electrones que comparte con el átomo de O. En consecuencia, el enlace OOH es el más polar en HClO y el menos polar en HIO. Por tanto, la fortaleza del ácido disminuye de la siguiente manera: HClO > HBrO > HIO b) Las estructuras de HNO3 y HNO2 se muestran en la figura 15.5. Como el número de oxidación de N es +5 en HNO3 y +3 en HNO2, el HNO3 es un ácido más fuerte que el HNO2. Ejercicio de práctica ¿Cuál de los siguientes ácidos es más débil: HClO2 o HClO3? EjEmplo 15.12 ROCOOOH O B OQ S S 15_CHAPTER 15.indd 688 12/20/09 7:06:27 PM 68915.10 Propiedades ácido-base de las sales donde R es parte de la molécula del ácido y la porción sombreada representa el grupo carboxi- lo, OCOOH. La fuerza de estos ácidos depende de la naturaleza del grupo R. Considere, por ejemplo, el ácido acético y el ácido cloroacético: La presencia del átomo electronegativo Cl en el ácido cloroacético desplaza la densidad elec- trónica hacia el grupo R, lo que hace al enlace OOH más polar. En consecuencia, este ácido tiene mayor tendencia a ionizarse: CH2ClCOOH(ac) m CH2ClCOO– (ac) + H+(ac) La base conjugada del ácido carboxílico, denominada anión carboxilato (RCOO–), pre- senta resonancia: En el lenguaje de la teoría de orbitales moleculares, se atribuye la estabilidad del anión a su capacidad de dispersar o deslocalizarla densidad electrónica sobre varios átomos. Cuanto mayor sea el alcance de la deslocalización electrónica, más estable será el anión y mayor será la tendencia del ácido a experimentar ionización. Así, el ácido benzoico (C6H5COOH, Ka = 6.5 × 10–5) es un ácido más fuerte que el ácido acético debido a que el anillo de benceno (vea la página 449) facilita la deslocalización de los electrones; por ello, el anión benzoato (C6H5COO–) es más estable que el anión acetato (CH3COO–). 15.10 Propiedades ácido-base de las sales Como se definió en la sección 4.3, una sal es un compuesto iónico formado a partir de la reac- ción entre un ácido y una base. Las sales son electrólitos fuertes que se disocian por completo para formar iones en agua. El término hidrólisis de una sal describe la reacción de un anión o un catión de una sal, o de ambos, con el agua. Por lo general, la hidrólisis de una sal afecta el pH de una disolución. Sales que producen disoluciones neutras En general se cumple el hecho de que las sales que contienen un ion de un metal alcalino o de un metal alcalinotérreo (excepto Be2+) y la base conjugada de un ácido fuerte (por ejemplo, Cl–, Br– y NO3) no se hidrolizan en una medida apreciable y sus disoluciones se consideran neutras. Por ejemplo, cuando se disuelve en agua el NaNO3, una sal formada por la reacción entre el NaOH y el HNO3, se disocia por completo como sigue: NaNO3(s) h Na+(ac) + NO3(ac) El ion Na+ hidratado no dona ni acepta iones H+. El ion NO3 es la base conjugada del ácido fuerte HNO3 y no tiene afinidad por los iones H+. Como consecuencia, una disolución que contenga iones Na+ y NO3 es neutra, con un pH cercano a 7. Sales que producen disoluciones básicas La disolución de una sal derivada de una base fuerte y un ácido débil es básica. Por ejemplo, la disociación del acetato de sodio (CH3COONa) en agua está dada por CH3COONa(s) h Na+(ac) + CH3COO–(ac) HOCOCOOOH O B OQ S SH A A H HOCOCOOOH O B OQ S SCl A A H ácido acético (Ka � 1.8 � 10�5) ácido cloroacético (K a � 1.4 � 10�3) ROCOO O B OQ S S S� ROCPO O A OQ S S�O m8n Mapa del potencial electrostático del ion acetato. La densidad electrónica está distribuida de manera uniforme entre los dos átomos de O. La palabra “hidrólisis” se deriva de las palabras griegas hydro, que significa “agua”, y lysis, que significa “separar o romper”. En realidad, todos los iones positivos producen disoluciones ácidas en agua. – – – – H2O H2O 15_CHAPTER 15.indd 689 12/20/09 7:06:30 PM 690 CAPíTULO 15 Ácidos y bases El ion Na+ hidratado no tiene propiedades ácidas ni básicas. Sin embargo, el ion acetato CH3COO– es la base conjugada del ácido débil CH3COOH y, por tanto, tiene afinidad por los iones H+. La reacción de hidrólisis está dada por CH3COO–(ac) + H2O(l) m CH3COOH(ac) + OH–(ac) Debido a que esta reacción produce iones OH–, la disolución de acetato de sodio debe ser básica. La constante de equilibrio para esta reacción de hidrólisis es la constante de ionización de una base del CH3COO–, por lo que escribimos (vea la página 681) Debido a que cada ion CH3COO– que se hidroliza produce un ion OH–, la concentración de OH– en el equilibrio es la misma que la concentración de CH3COO– hidrolizado. El porcentaje de hidrólisis se define como El mecanismo por el cual los iones metálicos producen disoluciones ácidas se analiza en la página 692. Calcule el pH de una disolución de acetato de sodio (CH3COONa) 0.15 M. ¿Cuál es el porcentaje de hidrólisis? Estrategia ¿Qué es una sal? En disolución, el CH3COONa se disocia completamente en iones Na+ y CH3COO–. El ion Na+, como vimos antes, no reacciona con el agua y no tiene efecto sobre el pH de la disolución. El ion CH3COO– es la base conjugada del ácido débil CH3COOH. Por tanto, esperamos que reaccione en cierto grado con agua para producir CH3COOH y OH–, en consecuencia la disolución será básica. Solución Paso 1: Debido a que iniciamos con una disolución de acetato de sodio 0.15 M, las concentraciones de los iones también son iguales a 0.15 M después de la disociación: CH3COONa(ac) h Na+(ac) + CH3COO–(ac) Inicial (M): 0.15 0 0 Cambio (M): –0.15 +0.15 +0.15 Final (M): 0 0.15 0.15 De estos iones, sólo el ion acetato reaccionará con agua CH3COO–(ac) + H2O(l) m CH3COOH(ac) + OH–(ac) En equilibrio, las especies principales en disolución son CH3COOH, CH3COO– y OH–. La concentración del ion H+ es muy pequeña, como esperaríamos de una disolución básica, así que se trata como una especie menor. La ionización del agua se ignora. (continúa) EjEmplo 15.13 Kb = [CH3COOH][OH–] = 5.6 × 10–10 [CH3COO–] % de hidrólisis = [CH3COO–]hidrolizado × 100% [CH3COO–]inicial = [OH–]equilibrio × 100% [CH3COO–]inicial En el ejemplo 15.13 realizamos un cálculo basado en la hidrólisis del CH3COONa. Para resolver problemas de hidrólisis de sales seguimos el mismo procedimiento que utilizamos con los ácidos y bases débiles. 15_CHAPTER 15.indd 690 12/20/09 7:06:31 PM 69115.10 Propiedades ácido-base de las sales Problema similar: 15.79. Paso 2: Si tomamos x como la concentración de equilibrio de los iones OH– y del CH3COOH en mol/L, resumimos: CH3COO–(ac) + H2O(l) m CH3COOH(ac) + OH–(ac) Inicial (M ): 0.15 0.00 0.00 Cambio (M ): –x +x +x Equilibrio (M ): 0.15 – x x x Paso 3: Con base en el análisis anterior y en la tabla 15.3, escribimos la constante de equilibrio de la hidrólisis, o la constante de ionización de la base, como Dado que el valor de Kb es muy pequeño y la concentración inicial de la base es grande, podemos aplicar la aproximación 0.15 – x ≈ 0.15: Paso 4: En el equilibrio: [OH – ] = 9.2 × 10–6 M pOH = –log (9.2 × 10–6) = 5.04 pH = 14.00 – 5.04 = 8.96 Por tanto, la disolución es básica, como esperábamos. El porcentaje de hidrólisis está dado por % de hidrólisis = = Verificación El resultado muestra que sólo una muy pequeña cantidad del anión experimenta la hidrólisis. Observe que el cálculo del porcentaje de hidrólisis tiene la misma forma que la comprobación de la aproximación, que es válida en este caso. Ejercicio de práctica Calcule el pH de una disolución de formato de sodio (HCOONa) 0.24 M. Kb = [CH3COOH][OH – ] [CH3COO – ] 5.6 × 10–10 = x2 0.15 – x 5.6 × 10–10 = x2 ≈ x2 0.15 – x 0.15 x = 9.2 × 10–6 M 9.2 × 10–6 M × 100% 0.15 M 0.0061% Sales que producen disoluciones ácidas Cuando se disuelve en agua una sal derivada de un ácido fuerte, como HCl, y una base débil, como NH3, la disolución resulta ácida. Por ejemplo, considere el proceso NH4Cl(s) h NH4(ac) + Cl–(ac) El ion Cl–, por ser la base conjugada de un ácido fuerte, no tiene afinidad por el H+ y no mues- tra tendencia a hidrolizarse. El ion amonio, NH4, es el ácido conjugado débil de la base débil NH3 y se ioniza como sigue: NH4(ac) + H2O(l) m NH3(ac) + H3O +(ac) H2O + + + 15_CHAPTER 15.indd 691 12/20/09 7:06:32 PM 692 CAPíTULO 15 Ácidos y bases o simplemente NH4(ac) m NH3(ac) + H+(ac) Observe que esta reacción también representa la hidrólisis del ion NH4 +. Debido a que se pro- ducen iones H+, el pH de la disolución disminuye. La constante de equilibrio (o constante de ionización) para este proceso está dada por y podemos calcular el pH de una disolución de cloruro de amonio siguiendo el mismo proce- dimiento utilizado en el ejemplo 15.13. En principio, todos los iones metálicos reaccionan con el agua para producir una disolu- ción ácida. Sin embargo, debido a que la proporción de hidrólisis es mayor para los cationes metálicos pequeños y con carga elevada, como Al3+, Cr3+, Fe3+, Bi3+ y Be2+, por lo general despreciamos la interacción con el agua de los iones de los metales alcalinos y de la mayoría de los metales alcalinotérreos, ya que es relativamente pequeña. Cuando se disuelve en agua el cloruro de aluminio (AlCl3), los iones Al3+ toman la forma hidratada Al(H2O)6 3+ (figura 15.7). Considere un enlaceentre el ion metálico y un átomo de oxígeno de una de las seis moléculas de agua en el Al(H2O)6 3+: El ion Al3+ cargado positivamente atrae la densidad electrónica hacia él, aumentando la po- laridad de los enlaces OOH. Como consecuencia, los átomos de H tienen mayor tendencia a ionizarse que los de las moléculas de agua que no están implicadas en la hidratación. Podemos escribir el proceso de ionización resultante como Al(H2O)3+(ac) + H2O(l) m Al(OH)(H2O)2+(ac) + H3O +(ac) o simplemente Al(H2O)3+(ac) m Al(OH)(H2O)2+(ac) + H+(ac) Figura 15.7 Las seis moléculas de H2O que rodean de manera octaédrica al ion Al3+. La atracción que el pequeño ion Al3+ ejerce sobre los pares libres en los átomos de oxígeno es tan grande que se debilitan los enlaces OOH en una molécula de H2O adherida al catión metálico, lo que permite la pérdida de un protón (H+) a expensas de una molécula de H2O que se aproxima. Esta hidrólisis del catión metálico vuelve ácida a la disolución. Al(H2O)3+ Al(OH)(H2O)2+ +– 6 5H2O+ H3O++ Por coincidencia, el valor numérico de Ka en NH+ 4 es el mismo que el de Kb en CH3COO–. El Al3+ hidratado tiene las características de un donador de protones y, por tanto, de un ácido de Brønsted en esta reacción. + Ka = [NH3][H +] = Kw = 1.0 × 10–14 = 5.6 × 10–10 [NH+ 4] Kb 1.8 × 10–5 O H Al H m88 m 88 m 88 56 56 15_CHAPTER 15.indd 692 12/20/09 7:06:42 PM 69315.10 Propiedades ácido-base de las sales La constante de equilibrio para la hidrólisis del catión metálico está dada por Observe que Al(OH)(H2O)5 2+ puede ionizarse también Al(OH)(H2O)5 2+(ac) m Al(OH)2(H2O)4 +(ac) + H+(ac) y así sucesivamente. Sin embargo, por lo general basta considerar sólo la primera etapa de hidrólisis. La proporción de hidrólisis es mayor para los iones más pequeños y con carga más alta porque un ion “compacto” con carga elevada es más eficaz en la polarización del enlace OOH y facilita la ionización. Ésta es la razón por la cual los iones relativamente grandes y de carga pequeña, como el Na+ y el K+, no se hidrolizan de manera notable. Sales en las que se hidrolizan tanto el catión como el anión Hasta ahora hemos considerado sales en las que sólo un ion se hidroliza. En las sales derivadas de un ácido débil y una base débil se hidrolizan tanto el catión como el anión. Sin embargo, una disolución que contenga una sal de este tipo puede ser ácida, básica o neutra, dependiendo de las fuerzas relativas del ácido débil y de la base débil. Como las matemáticas asociadas con este tipo de sistemas son más complicadas, el análisis se limitará a la elaboración de prediccio- nes cualitativas con relación a este tipo de disoluciones, a partir de las siguientes guías: • Kb + Ka. Si la Kb del anión es mayor que la Ka del catión, la disolución debe ser básica porque el anión se hidrolizará en mayor proporción que el catión. En el equilibrio, habrá más iones OH– que H+. • Kb * Ka. Por el contrario, si la Kb del anión es menor que la Ka del catión, la disolución será ácida porque la hidrólisis del catión será mayor que la hidrólisis del anión. • Kb ? Ka. Si la Ka es aproximadamente igual que la Kb, la disolución será esencialmente neutra. En la tabla 15.7 se resume el comportamiento de las sales en disolución acuosa que estudia- mos en esta sección. En el ejemplo 15.14 se muestra cómo predecir las propiedades ácido-base de las disolu- ciones de sales. Observe que, en términos generales, Al(H2O)6 3+ es un ácido tan fuerte como el CH3COOH. Ka = [Al(OH)(H2O)2+][H+] = 1.3 × 10–5 [Al(H2O)3+]6 5 TABlA 15.7 propiedades ácido-base de las sales Iones que sufren pH de la Tipo de sal Ejemplos hidrólisis disolución Catión de una base fuerte; anión de un ácido fuerte NaCl, KI, KNO3, RbBr, BaCl2 Ninguno ≈ 7 Catión de una base fuerte; anión de un ácido débil CH3COONa, KNO2 Anión > 7 Catión de una base débil; anión de un ácido fuerte NH4Cl, NH4NO3 Catión < 7 Catión de una base débil, anión de un ácido débil NH4NO2, CH3COONH4, NH4CN Anión y catión < 7 si Kb < Ka ≈ 7 si Kb ≈ Ka > 7 si Kb > Ka Catión pequeño y altamente cargado; anión de un AlCl3, Fe(NO3)3 Catión hidratado < 7 ácido fuerte 15_CHAPTER 15.indd 693 12/20/09 7:06:43 PM 694 CAPíTULO 15 Ácidos y bases Por último, observamos que algunos aniones pueden actuar como un ácido o como una base. Por ejemplo, el ion bicarbonato (HCO– 3 ) puede ionizarse o hidrolizarse como sigue (vea la tabla 15.5): HCO3(ac) + H2O(l) m H3O +(ac) + CO2–(ac) Ka = 4.8 × 10–11 HCO3(ac) + H2O(l) m H2CO3(ac) + OH–(ac) Kb = 2.4 × 10–8 Debido a que Kb > Ka, predecimos que la reacción de hidrólisis excederá al proceso de ioniza- ción. Por tanto, una disolución de bicarbonato de sodio (NaHCO3) será básica. Prediga si las siguientes disoluciones serán ácidas, básicas o esencialmente neutras: a) NH4I, b) NaNO2, c) FeCl3, d ) NH4F. Estrategia Al decidir si una sal se hidrolizará, hágase las siguientes preguntas: ¿El catión es un ion metálico altamente cargado o un ion amonio? ¿El anión es la base conjugada de un ácido débil? Si responde afirmativamente a cualquiera de estas preguntas, entonces se presentará la hidrólisis. En casos donde tanto el catión como el anión reaccionan con el agua, el pH de la disolución dependerá de las magnitudes relativas de Ka para el catión y Kb para el anión (vea la tabla 15.7). Solución En primer lugar descomponemos la sal en su catión y anión componentes y después examinamos la posible reacción de cada ion con el agua. a) El catión es NH+ 4 , el cual se hidrolizará para producir NH3 y H+. El anión I – es la base conjugada del ácido fuerte HI. Por tanto, I – no se hidrolizará y la disolución será ácida. b) El catión Na+ no se hidroliza. El NO– 2 es la base conjugada del ácido débil HNO2 y se hidrolizará para producir HNO2 y OH–. La disolución será básica. c) El Fe3+ es un ion metálico pequeño con una carga alta y se hidroliza para producir iones H+. El Cl – no se hidroliza. En consecuencia, la disolución será ácida. d ) Tanto los iones de NH+ 4 como de F – se hidrolizarán. A partir de las tablas 15.3 y 15.4 vemos que el valor de Ka para NH+ 4 (5.6 × 10–10) es mayor que Kb para F – (1.4 × 10–11). Por tanto, la disolución será ácida. Ejercicio de práctica Prediga si las siguientes disoluciones serán ácidas, básicas o esencialmente neutras: a) LiClO4, b) Na3PO4, c) Bi(NO3)3, d ) NH4CN. EjEmplo 15.4 Problemas similares: 15.75, 15.76. Revisión de conceptos Los diagramas que se muestran aquí representan las disoluciones de tres sales NaX (X = A, B o C). a) ¿Cuál X – tiene el ácido conjugado más débil? b) Ordene los tres aniones X – en orden de incremento de fortaleza de bases. El ion Na+ y las moléculas de agua se omitieron con fines de claridad. NaA NaB NaC � A�, B� o C� � OH�� HA, HB o HC – – 3 15_CHAPTER 15.indd 694 12/20/09 7:06:46 PM 69515.11 Propiedades ácido-base de los óxidos y los hidróxidos 15.11 Propiedades ácido-base de los óxidos y los hidróxidos Como vimos en el capítulo 8, los óxidos se clasifican como ácidos, básicos o anfóteros. Por tanto, un estudio de las reacciones ácido-base sin examinar las propiedades de estos compues- tos quedaría incompleto. En la figura 15.8 se muestran las fórmulas de numerosos óxidos de los elementos repre- sentativos en su estado de oxidación más alto. Observe que todos los óxidos de los metales alcalinos y alcalinotérreos, con excepción del BeO, son básicos. El óxido de berilio y algunos óxidos metálicos de los grupos 3A y 4A son anfóteros. Los óxidos no metálicos de los ele- mentos representativos con número de oxidación alto son ácidos (por ejemplo, N2O5, SO3 y Cl2O7), pero los óxidos de estos mismos elementos representativos con número de oxidación bajo (por ejemplo, CO y NO) no muestran propiedades ácidas cuantificables. No se conocen óxidos no metálicos que tengan propiedades básicas. Los óxidos metálicos básicos reaccionan con el agua para formar hidróxidos metálicos:Na2O(s) h 2NaOH(ac) BaO(s) h Ba(OH)2(ac) Las reacciones entre los óxidos ácidos y el agua son: CO2(g) + H2O(l) m H2CO3(ac) SO3(g) + H2O(l) m H2SO4(ac) N2O5(g) + H2O(l) m 2HNO3(ac) P4O10(s) + 6H2O(l) m 4H3PO4(ac) Cl2O7(l) + H2O(l) m 2HClO4(ac) La reacción entre el CO2 y el H2O explica por qué cuando el agua pura se deja en contacto con el aire (que contiene CO2) alcanza en forma gradual un pH de alrededor de 5.5 (figura 15.9). La reacción entre el SO3 y el H2O es en gran medida responsable de la lluvia ácida (figura 15.10). H2O H2O Óxido básico Óxido ácido Óxido anfóteroLi2O K2O CaO Na2O MgO Rb2O SrO Cs2O BaO Al2O3 Ga2O3 In2O3 Tl2O3 SnO2 PbO2 BeO B2O3 CO2 N2O5 OF2 SiO2 P4O10 SO3 Cl2O7 GeO2 As2O5 SeO3 Br2O7 Sb2O5 TeO3 I2O7 Bi2O5 PoO3 At2O7 1 1A 2 2A 3 3B 4 4B 5 5B 6 6B 8 107 7B 9 8B 11 1B 12 2B 13 3A 14 4A 15 5A 16 6A 17 7A 18 8A Las causas y los efectos de la lluvia ácida las estudiaremos en el capítulo 17. Figura 15.8 Óxidos de los elementos representativos en sus estados de oxidación más altos. 15_CHAPTER 15.indd 695 12/20/09 7:06:48 PM 696 CAPíTULO 15 Ácidos y bases Las reacciones que ocurren entre los óxidos ácidos y las bases, así como las que se pre- sentan entre los óxidos básicos y los ácidos, se parecen a las reacciones ácido-base ordinarias en las que los productos son una sal y agua: CO2(g) + 2NaOH(ac) h Na2CO3(ac) + H2O(l) óxido ácido base sal agua BaO(s) + 2HNO3(ac) h Ba(NO3)2(ac) + H2O(l) óxido básico ácido sal agua Como vemos en la figura 15.8, el óxido de aluminio (Al2O3) es anfótero. Dependiendo de las condiciones de reacción, puede comportarse como un óxido ácido o como un óxido básico. Por ejemplo, el Al2O3 actúa como base con el ácido clorhídrico para producir una sal (AlCl3) y agua: Al2O3(s) + 6HCl(ac) h 2AlCl3(ac) + 3H2O(l) y actúa como ácido con el hidróxido de sodio: Al2O3(s) + 2NaOH(ac) h 2NaAlO2(ac) + H2O(l) Algunos óxidos de los metales de transición en los que el metal tiene un número de oxida- ción alto actúan como óxidos ácidos. Dos ejemplos comunes son el óxido de manganeso(VII) (Mn2O7) y el óxido de cromo(VI) (CrO3); ambos reaccionan con el agua para producir ácidos: Mn2O7(l) + H2O(l) h 2HMnO4(ac) ácido permangánico CrO3(s) + H2O(l) h H2CrO4(ac) ácido crómico Hidróxidos básicos y anfóteros Hemos visto que los hidróxidos de los metales alcalinos y alcalinotérreos [excepto el Be(OH)2] tienen propiedades básicas. Los siguientes hidróxidos son anfóteros: Be(OH)2, Al(OH)3, Figura 15.9 (Izquierda) Vaso de precipitados con agua a la que se han añadido algunas gotas de indicador de azul de bromotimol. (Derecha) A medida que el hielo seco se agrega al agua, el CO2 reacciona para formar ácido car- bónico, el cual acidifica la disolu- ción y cambia el color de azul a amarillo. Figura 15.10 Estragos cau- sados en un bosque por la lluvia ácida. Cuanto más alto sea el número de oxidación del metal, más covalente será el compuesto; cuanto más bajo sea el número de oxidación, más iónico será el compuesto. 15_CHAPTER 15.indd 696 12/20/09 7:06:54 PM 69715.12 Ácidos y bases de Lewis Sn(OH)2, Pb(OH)2, Cr(OH)3, Cu(OH)2, Zn(OH)2 y Cd(OH)2. Por ejemplo, el hidróxido de aluminio reacciona tanto con ácidos como con bases: Al(OH)3(s) + 3H+(ac) h Al3+(ac) + 3H2O(l) Al(OH)3(s) + OH–(ac) m Al(OH)– 4 (ac) Todos los hidróxidos anfóteros son insolubles. Es interesante hacer notar que el hidróxido de berilio, igual que el hidróxido de aluminio, es anfótero: Be(OH)2(s) + 2H+(ac) h Be2+(ac) + 2H2O(l) Be(OH)2(s) + 2OH – (ac) m Be(OH)4 2– (ac) Éste es otro ejemplo de las relaciones diagonales que hay entre el berilio y el aluminio (vea la página 344). 15.12 Ácidos y bases de Lewis Hasta aquí hemos analizado las propiedades ácido-base en función de la teoría de Brønsted. Así pues, para que una sustancia se comporte como una base de Brønsted debe tener la ca- pacidad de aceptar protones. Según esta definición, tanto el ion hidróxido como el amoniaco son bases: En cada caso, el átomo al cual se une el protón tiene al menos un par de electrones libres. Esta propiedad característica del OH –, del NH3 y de otras bases de Brønsted, sugiere una definición más general de los ácidos y las bases. En 1932, el químico norteamericano G. N. Lewis formuló una definición. Postuló lo que actualmente se denomina una base de Lewis como una sustancia que puede donar un par de electrones. Un ácido de Lewis es una sustancia capaz de aceptar un par de electrones. Por ejemplo, en la protonación del amoniaco, el NH3 actúa como una base de Lewis porque dona un par de electrones al protón H+, que a su vez actúa como un ácido de Lewis porque acepta el par de electrones. Por tanto, una reacción ácido-base de Lewis es aquella que implica la dona- ción de un par de electrones de una especie a otra. Dicha reacción no produce una sal y agua. La importancia del concepto de Lewis es que es mucho más general que otras definicio- nes. Las reacciones ácido-base de Lewis incluyen muchas reacciones en las que no participan ácidos de Brønsted. Considere, por ejemplo, la reacción entre el trifluoruro de boro (BF3) y el amoniaco para formar un compuesto aducto (figura 15.11): En la sección 10.4 vimos que el átomo de B en BF3 tiene una hibridación sp2. El orbital 2pz vacío que no participó en la hibridación acepta el par de electrones del NH3. Por tanto, el BF3 funciona como un ácido de acuerdo con la definición de Lewis, aunque no contenga un protón � H� � SNOH 88n H A A H H A A H H� � �SOOH 88n HOOOHOQ OQ HONOH Los ácidos de Lewis son deficientes en electrones (cationes), o el átomo central tiene un orbital de valencia vacante. Figura 15.11 Reacción ácido- base de Lewis entre el BF3 y el NH3. Un enlace covalente coordinado (vea la página 390) siempre se forma en una reacción ácido-base de Lewis. FOB � SNOH 88n FOBONOH H A A H H A A H F A A F F A A F baseácido 15_CHAPTER 15.indd 697 12/20/09 7:06:58 PM 698 ionizable. Observe que entre los átomos de B y de N se forma un enlace covalente coordinado, como sucede en todas las reacciones ácido–base de Lewis. El ácido bórico es otro ácido de Lewis que contiene boro. El ácido bórico (un ácido débil que se utiliza para el lavado de los ojos) es un oxiácido con la siguiente estructura: q u í m i c a en acción Alimento Plasma sanguíneo Hacia los intestinos Cl– H+ (transporte activo) Plasma sanguíneo HCl(ac) Membrana mucosa Diagrama simplificado del estómago humano. Antiácidos y el balance del pH en el estómago Un adulto promedio produce diariamente entre 2 y 3 L de jugo gástrico. El jugo gástrico es un fluido digestivo poco denso y ácido, secretado por las glándulas de la membrana mu- cosa que envuelve al estómago. Entre otras sustancias, contiene ácido clorhídrico. El pH del jugo gástrico es aproximadamente de 1.5, que corresponde a una concentración de ácido clorhí- drico de 0.03 M, ¡una concentración tan alta como para disolver zinc metálico! ¿Cuál es el propósito de este medio tan ácido? ¿De dónde provienen los iones H+? ¿Qué sucede cuando hay un exceso de iones H+ en el estómago? La figura que aparece a la derecha es un diagrama sim- plificado del estómago. La envoltura interior está formada por células parietales que, en conjunto, forman uniones compactas. El interior de las células está protegido en los alrededores por las membranas celulares. Estas membranas permiten el paso de agua y de moléculas neutras hacia afuera y hacia adentro del estómago, pero por lo común impiden el movimiento de iones como H+, Na+, K+ y Cl–. Los iones H+ provienen del ácido car- bónico (H2CO3) que se forma como resultado de la hidratación del CO2, un producto final del metabolismo: CO2(g) + H2O(l) m H2CO3(ac) H2CO2(ac) m H+(ac) + HCO– 3(ac) Estas reacciones ocurren en el plasma sanguíneo que irriga las células en la mucosa. Mediante un proceso conocido como transporte activo, los iones H+ se muevena través de la mem- brana hacia el interior del estómago. (Las enzimas ayudan a los procesos del transporte activo.) Para mantener el balance eléc- trico, una cantidad igual de iones Cl– también se mueve desde el plasma sanguíneo hacia el estómago. Una vez en el estómago, a la mayoría de estos iones les resulta imposible regresar por difu- sión al plasma sanguíneo a través de las membranas celulares. El propósito de un medio tan ácido dentro del estómago es digerir los alimentos y activar ciertas enzimas digestivas. Al co- mer se estimula la secreción de iones H+. Una pequeña fracción de estos iones los reabsorbe la mucosa, lo que provoca diminu- tas hemorragias. Cada minuto, aproximadamente medio millón de células son repuestas por el recubrimiento y un estómago sano se recubre por completo cada tres días, más o menos. Sin embargo, si el contenido de ácido es demasiado alto, la afluen- cia constante de los iones H+ a través de la membrana de re- greso al plasma sanguíneo puede causar contracción muscular, dolor, hinchazón, inflamación y sangrado. Con un antiácido se reduce temporalmente la concentración de los iones H+ en el estómago. La función principal de los antiácidos es neutralizar el exceso de HCl en el jugo gástrico. En la tabla de la página 699 se muestran los ingredientes activos de algunos antiácidos populares. Las reacciones por medio de las cuales los antiácidos neutralizan el ácido estomacal son las siguientes: NaHCO3(ac) + HCl(ac) h NaCl(ac) + H2O(l) + CO2(g) CaCO3(s) + 2HCl(ac) h CaCl2(ac) + H2O(l) + CO2(g) MgCO3(s) + 2HCl(ac) h MgCl2(ac) + H2O(l) + CO2(g) Mg(OH)2(s) + 2HCl(ac) h MgCl2(ac) + 2H2O(l) Al(OH)2 NaCO3 (s) + 4HCl(ac) h AlCl3(ac) + NaCl(ac) + 3H2O(l) + CO2(g) H3BO3 HOOOBOOOH H A SOS A OQ OQ 15_CHAPTER 15.indd 698 12/20/09 7:07:01 PM 699 El ácido bórico no se ioniza en agua para producir un ion H+. Su reacción con el agua es: B(OH)3(ac) + H2O(l) m B(OH)– 4 (ac) + H+(ac) En esta reacción ácido-base de Lewis, el ácido bórico acepta un par de electrones del ion hi- dróxido que se deriva de la molécula de H2O. La hidratación del dióxido de carbono para producir ácido carbónico CO2(g) + H2O(l) m H2CO3(ac) Algunas preparaciones antiácidas comerciales comunes Nombre comercial Ingredientes activos Alka-2 Carbonato de calcio Alka-Seltzer Aspirina, bicarbonato de sodio, ácido cítrico Bufferin Aspirina, carbonato de magnesio, glicinato de aluminio Aspirina bufferin Aspirina, carbonato de magnesio, hidróxido de aluminio-glicina Leche de magnesia Hidróxido de magnesio Rolaids Carbonato de dihidroxialuminio y sodio Tums Carbonato de calcio El CO2 liberado en la mayoría de estas reacciones aumenta la presión gaseosa del estómago, provocando que la persona eructe. La efervescencia que ocurre cuando se disuelve en agua una tableta de Alka-Seltzer la causa el dióxido de carbono, que se libera por la reacción entre el ácido cítrico y el bicarbonato de sodio: C4H7O5(COOH)(ac) + NaHCO3(ac) h ácido cítrico C4H7O5COONa(ac) + H2O(l) + CO2(g) citrato de sodio Esto ayuda a la dispersión de los ingredientes y también mejora el sabor de la disolución. La mucosa del estómago también se daña por la acción de la aspirina, cuyo nombre químico es ácido acetilsalicílico. La aspirina es un ácido moderadamente débil: En presencia de una gran concentración de iones H+ en el estó- mago, este ácido permanece casi sin ionizar. El ácido acetilsali- cílico es una molécula relativamente no polar y, como tal, tiene la capacidad de penetrar las barreras de las membranas, que también están hechas de moléculas no polares. Sin embargo, dentro de la membrana hay muchas pequeñas cavidades de agua y cuando una molécula de ácido acetilsalicílico entra a una de esas cavidades, se ioniza formando iones H+ y acetilsalicilato. Estas especies iónicas quedan atrapadas en las regiones inter- nas de la membrana. El almacenamiento continuo de iones por esta vía debilita la estructura de la membrana y puede causar sangrado. Por cada tableta de aspirina que se toma, se pierden alrededor de 2 mL de sangre, que es una cantidad que por lo general no se considera dañina. Sin embargo, la acción de la aspirina puede desencadenar sangrados importantes en algunos individuos. Es interesante observar que la presencia de alcohol hace que el ácido acetilsalicílico sea todavía más soluble en la membrana y, por consiguiente, favorece el sangrado. Cuando una tableta de Alka-Seltzer se disuelve en agua, los iones de bicar- bonato contenidos en ella reaccionan con el componente ácido de la tableta para producir dióxido de carbono gaseoso. B O O B O B OOOCOCH3 OCOOH ion acetilsalicilato B O OOOCOCH3 OCOO H ácido acetilsalicílico 3:4 15_CHAPTER 15.indd 699 12/20/09 7:07:04 PM 700 CAPíTULO 15 Ácidos y bases se entiende en términos del modelo de Lewis como sigue: la primera etapa implica la dona- ción de uno de los pares electrónicos libres del átomo de oxígeno en el H2O al átomo de car- bono del CO2. Un orbital del átomo de carbono es evacuado para acomodar el par electrónico libre, desplazando el par de electrones del enlace pi COO. Estos desplazamientos de electro- nes se indican por medio de flechas curvas. Por tanto, el H2O es una base de Lewis y el CO2 es un ácido de Lewis. A continuación, se transfiere un protón al átomo de oxígeno que soporta una carga negativa, para formar el H2CO3. Otros ejemplos de reacciones ácido-base de Lewis son Ag+(ac) + 2NH3(ac) m Ag(NH3) + 2(ac) ácido base Cd2+(ac) + 4I – (ac) m CdI4 2– (ac) ácido base NI(s) + 4CO(g) m Ni(CO)4(g) ácido base Es importante advertir que la hidratación de los iones metálicos en disolución es, en sí misma, una reacción ácido-base de Lewis (vea la figura 15.7). De este modo, cuando el sulfato de cobre(II) (CuSO4) se disuelve en agua, cada ion Cu2+ se asocia a seis moléculas de agua, como Cu(H2O)6 2+. En este caso, el ion Cu2+ actúa como el ácido y las moléculas de H2O actúan como la base. Aunque la definición de Lewis de ácidos y bases tiene una gran importancia por su ge- neralidad, se habla comúnmente de “un ácido” y de “una base” en términos de la definición de Brønsted. En general, la expresión “ácido de Lewis” se utiliza para sustancias que pueden aceptar un par de electrones pero que no contienen átomos de hidrógeno ionizables. La clasificación de ácidos y bases de Lewis se ilustra en el ejemplo 15.15. OS B B SOS SOS A B SOS A H SSO �O O H G H D C 888n HOOOC�O A H OS A B SOS OSOS A B SOS A H �O HOOOC 888n SOOC �O O HO Identifique el ácido de Lewis y la base de Lewis en cada una de las siguientes reacciones: a) C2H5OC2H5 + AlCl3 m (C2H5)2OAlCl3 b) Hg2+(ac) + 4CN –(ac) m Hg(CN)4 2–(ac) Estrategia En las reacciones ácido-base de Lewis, el ácido por lo general es un catión o una molécula deficiente en electrones, en tanto que la base es un anión o una molécula que contiene un átomo con pares de electrones sin compartir. a) Dibuje la estructura molecular del C2H5OC2H5. ¿Cuál es el estado de hibridación del Al en AlCl3? b) ¿Qué ion es probable que sea un aceptor de electrones?, ¿y un donador de electrones? Solución a) El Al tiene hibridación sp2 en AlCl3 con un orbital vacío 2pz. Es deficiente en electrones y comparte sólo seis de ellos. Por tanto, el átomo de Al tiende a ganar dos (continúa) EjEmplo 15.15 15_CHAPTER 15.indd 700 12/20/09 7:07:06 PM 701Resumen de conceptos electrones para completar su octeto. Esta propiedad convierte al AlCl3 en un ácido de Lewis. Por otro lado, los pares libres del átomo de oxígeno en C2H5OC2H5 convierten el compuesto en una base de Lewis. b) Aquí el ion Hg2+ acepta cuatro pares de electrones de los iones CN –. Por tanto, Hg2+ es el ácido de Lewis y CN – es la base de Lewis. Ejercicio de práctica Identifique el ácido de Lewis y la base de Lewis en la reacción CO3+(ac) + 6NH3 (ac) m Co(NH3)6 3+(ac) ¿Cuáles son las cargas formales en Al y O en el producto?Problema similar: 15.92. 1. Los ácidos de Brønsted donan protones, y las bases de Brønsted aceptan protones. Éstas son las definiciones a las que normalmente se refieren los términos “ácido” y “base”. 2. La acidez de una disolución acuosa se expresa como su pH, que se define como el logaritmo negativo de la concentra- ción de ion hidrógeno (en mol/L). 3. A 25°C, una disolución ácida tiene un pH < 7, una disolu- ción básica tiene un pH > 7, y una disolución neutra tiene un pH = 7. 4. Los siguientes ácidos se clasifican como ácidos fuertes en disolución acuosa: HClO4, HI, HBr, HCl, H2SO4 (primera etapa de ionización) y HNO3. Las bases fuertes en disolu- ción acuosa incluyen los hidróxidos de los metales alcalinos y alcalinotérreos (excepto el berilio). 5. La constante de ionización de un ácido Ka aumenta al incre- mentarse la fuerza del ácido. De forma semejante, la Kb expresa la fuerza de las bases. Resumen de conceptos 6. El porcentaje de ionización es otra forma de medir la fuerza de los ácidos. Cuanto más diluida es una disolución de un ácido débil, mayor será su porcentaje de ionización. 7. El producto de la constante de ionización de un ácido y la constante de ionización de su base conjugada es igual a la constante del producto iónico del agua. 8. Las fuerzas relativas de los ácidos se explican cualitativa- mente en términos de su estructura molecular. 9. La mayoría de las sales son electrólitos fuertes que se diso- cian por completo en sus iones cuando se disuelven. La reac- ción de estos iones con el agua, denominada hidrólisis de la sal, puede producir disoluciones ácidas o básicas. En la hi- drólisis de una sal, las bases conjugadas de los ácidos débiles forman disoluciones básicas en tanto que los ácidos conjuga- dos de las bases débiles producen disoluciones ácidas. 10. Los iones metálicos pequeños con cargas elevadas, como el Al3+ y el Fe3+, se hidrolizan para formar disoluciones ácidas. Kw = [H+][OH–] (15.3) Constante del producto iónico del agua. pH = –log [H+] (15.4) Definición del pH de una disolución. [H+] = 10–pH (15.5) Cálculo de la concentración del ion H+ a partir del pH. pOH = –log [OH–] (15.7) Definición del pOH de una disolución. [OH–] = 10–pOH (15.8) Cálculo de la concentración de ion OH– a partir del pOH. pH + pOH = 14.00 (15.9) Otra forma de la ecuación (15.3). KaKb = Kw (15.12) Relación entre las constantes de ionización ácida y básica de un par conjugado ácido-base. Ecuaciones básicas concentración de ácido ionizado en el equilibrioporcentaje de ionización = × 100% (15.11) concentración inicial de ácido 15_CHAPTER 15.indd 701 12/20/09 7:07:08 PM 15 Ácidos y bases