Buscar

PROBLEMAS PROPOSTOS LEI DA VISCOSIDADE DE NEWTON, MANOMETRÍA, CINEMÁTICA DOS FLUIDOS , CONCEITOS DE PRESSÃO

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Mecânica dos Fluidos 
 
PUCRS C-20 
1.4 PROBLEMAS PROPOSTOS – Lei da Viscosidade de Newton (Cap.2) 
 
[1] A Fig. mostra duas placas planas paralelas a distância de 2 mm. A placa superior move-se com velocidade de 4 m/s, enquanto a 
inferior é fixa. Se o espaço entre as duas placas for preenchido com óleo de viscosidade 0,1x10-4 m2/s e massa específica 830 
kg/m3, Determine: (a) O gradiente de velocidade; (b) A tensão de cisalhamento (N/m2) na superfície da placa móvel em contato com 
o fluido (c) A tensão de cisalhamento (N/m2) na superfície da placa fixa em contato com o fluido. (d) A força que deve ser vencida 
para puxar a placa superior com área de 0,5m2. R: (a) 2000 s-1 (b) 16,6 N/m2 (c) 16,6 N/m2 (d) 8,3 N 
 [2] um canal é formado por duas placas paralelas separadas h=6mm 
tendo entre elas glicerina a 200C com massa específica é igual a 1260 
kg/m3 e a viscosidade dinâmica igual a 1,5 Pa.s. 
 
Determinar: (a) a tensão requerida para mover a placa superior com 
uma velocidade V=6,0m/s. (b) a força necessária para puxar a placa 
superior considerando esta com superfície igual a 1,0m2. 
R: (a) 1500 N/m2 (b) 1500 N 
 
 
[3] Uma placa deslocando-se sobre uma pequena lâmina de 
óleo sob a ação de uma força F, conforme a figura. O óleo tem 
densidade 0,750 e viscosidade 3.10-3Pa.s. (a) Qual a tensão de 
cisalhamento produzida pelo fluido sobre a placa? (b) Qual a 
velocidade da placa móvel? 
R: (a) 4,33 N/m2 (b) 2,88 m/s 
 
[4] A correia da Fig. move-se a uma velocidade constante V e desliza no topo de um tanque de óleo. A corria apresenta um 
comprimento L e uma largura b. O óleo apresenta uma profundidade h. Considerando a distribuição linear do perfil de velocidade no 
óleo, determine a potencia necessária para o acionamento da correia, considerando que esta a potencia é dada por FVW =& 
onde F é a força tangencial na correia e V a velocidade da correia. Dados: L=2,0m h=3cm V=2,5m/s b=60cm. Fluido: óleo 
SAE 30 

=
sm
kg
.
29,0µ R: 72,5 W. 
 
 [ 5 ] O escoamento laminar entre duas placas paralelas fixas é dado por: 


 

−=
2
max
2
1)(
h
y
uyu onde umax representa a velocidade 
máxima no canal, e h a separação das placas. (a) Determinar o gradiente 
de velocidades. (b) Determinar a expressão da tensão de cisalhamento. 
Considere a separação entre placas de 5mm, área superficial da placa 
superior igual a 0,3m2 e velocidade máxima umax=0,5 m/s Determine (c) A 
tensão de cisalhamento no centro do canal e na placa superior (d) A força 
de atrito na placa inferior. R: (c) 0,46 N/m2. (d) 0,138 N 
 Obs água massa especifica 1000 kg/m3 e viscosidade 
dinâmica e 1,15x10-3 Pa.s. 
 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-21 
[6] A distribuição de velocidades do escoamento de um fluido newtoniano num canal formado 
por duas placas paralelas e largas é dada pela equação dada ao lado: onde V é a velocidade 
média. O fluido apresenta uma viscosidade dinâmica igual a 1,92 Pa.s Considerando que 
V=0,6m/s e h=5mm determinar: (a) Tensão de cisalhamento na parede inferior do canal (b) 
Tensão de cisalhamento que atua no plano central do canal. (c) Desenhe a distribuição da 
velocidade e da tensão de cisalhamento no canal. R: (a) 691,2 (N/m2) 



 

−=
2
1
2
3
)(
h
yV
yu 
 
[ 7 ] Uma placa quadrada de 1 m de lado e 20 N de peso desliza sobre um plano inclinado de 30o, sobre uma película de óleo. A 
velocidade da placa é de 2 m/s. Determine viscosidade dinâmica do óleo, se a espessura da película é 2 mm. 
R: (a) 0,01 Pa.s 
 [8] O corpo cilíndrico da Fig. possui um peso igual a 15N, uma 
altura igual a 200mm e um diâmetro igual a 149,5mm. Este 
corpo se move com uma velocidade constante igual a 50mm/s 
dentro de um tubo de 150mm de diâmetro. Entre o tubo e o 
cilindro existe uma película de óleo. Determine (a) tensão de 
cisalhamento na parede interna do tubo externa (b) viscosidade 
dinâmica do óleo. R: (a) 160 (N/m2) (b) 0,8 Pa.s 
 
[9] Determine o torque resistente (Nm) originado pelo óleo 
lubrificante em contato com o eixo vertical da Fig. O eixo 
apresenta uma rotação constante de 3000 rpm. O Diâmetro do 
eixo é igual a De=200mm e o diâmetro da luva igual a 
Dm=200,1mm.L=500mm. Viscosidade do óleo 0,2x10-2 Pa.s 
R: (a) 1256,6 (N/m2) (b) 39,5 Nm 
 
 
[10] Uma barra cilíndrica de 30,4 cm de comprimento, diâmetro de 0,52 mm e massa de 1,36 kg, escorrega num tubo vertical com 
0,58mm de diâmetro, podendo cair livremente. Calcule a velocidade atingida pela barra se uma película de óleo de viscosidade 23,9 
Pa.s preenche o espaço entre o tubo e a barra. 
 
[11] Um eixo na posição horizontal de D=60mm e 400mm de comprimento é 
arrastado com uma velocidade de V=0,4m/s através de uma luva de 60,2mm. No 
espaço entre o eixo e a luva existe óleo altamente viscoso com densidade 0,88 e 
viscosidade cinemática igual a 0,003 m2/s. 
(a) Determinar uma expressão geral que permita determinar a força requerida 
para puxar o eixo em função das variáveis apresentadas. (b) Determinar a força 
requerida para puxar o eixo. R: (b) 796 N 
 
 
[12] Um eixo gira de 60mm de diâmetro e 400mm de comprimento gira dentro de 
uma luva com velocidade igual 1500 rpm. No espaço entre o eixo e a luva existe 
óleo altamente viscoso com densidade 0,88 e viscosidade cinemática igual a 
0,003 m2/s. A luva possui um diâmetro igual a 60,2mm. Determinar (a) torque e 
(b) potência originado nesta condições de operação. 
R: (a) 281 Nm (b) 44,2 kW 
 
 
 
 
Mecânica dos Fluidos 
 
PUCRS C-22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EEXXEEMMPPLLOOSS 
 
MMAANNOOMMEETTRRIIAA 
 
(( CCAAPP 33 )) 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-23 
1.5 PROBLEMAS RESOLVIDOS – Manometría. (Cap.3) 
 
[1] Qual será a máxima pressão relativa que poderá ser medido com o tubo piezometrico para uma altura de 1,5m. Considere a 
densidade do fluido igual a 8,5. 
 
B de acima líquido de coluna da Pressão = P(B)
) (/5,12
) (/12508
5,181,910006,8
 
2
2
2
2
kPaoumkN
PaoumN
xxx
hgd
ghp
águamercurio
B
=
=
=
=
=
ρ
ρ
 
 Manômetro piezométrico simples 
 
 
 
[2] Se utiliza uma manômetro tipo “U” para medir uma pressão 
de um fluido com massa especifica igual a 700kg/m3. O 
manômetro utiliza mercúrio com densidade igual a 13,6. 
Determinar: 
 
a) Pressão relativa em A quando h1=0,4m e h2=0,9m. 
b) Pressão relativa em A quando h1=0,4m e h2=-0,1m. 
 
 
 
p gh ghA = −ρ ρman 2 1 
 
a) pA = 13,6 x 1000 x 9,81 x 0,9 - 700 x 9.81 x 0.4 
 
 = 117 327 N (- 117,3 kN óu 1,17 bar) 
 
b) pA = 13,6 x 1000 x 9,81 x ( - 0,1) - 700 x 9,81 x 0,4 
 
 = -16 088,4 N ( -16,0 kN óu - 0,16 bar) 
 
A pressão negativa (-) indica que a pressão é menor que a pressão atmosférica. 
Mecânica dos Fluidos 
 
PUCRS C-24 
[3] Na figura mostra-se dois tubos com fluido de massa específica igual a 990kg/m3 conectados a um manômetro tipo U. Determinar 
a pressão entre os tubos considerando que o fluido manométrico é mercúrio com densidade igual a 13,6. 
 
pC = pD 
 
pC = pA + ρg hA 
 
pD = pB + ρg (hB - h) + ρman g h 
 
pA - pB = ρg (hB - hA) + hg(ρman - ρ) 
 
pA - pB = ρg (hB - hA) + hg(dhg - dfluido) ρH20 
 
 = 990 x9,81x(0,75 – 1,5) + 0,5x9,81 x(13,6 – 0,99) x 1000 
 
 = -7284 + 61852 
 
 = 54 568 N/m2 ou Pa ( 0,55 bar) 
 
[ 4 ] Um manômetro em U é fixado a um reservatório fechado contendo três fluidos diferentes como mostra a Fig.. A 
pressão (relativa) do ar no reservatório é igual a 30kPa. Determine qual será a elevação da coluna de mercúrio do 
manômetro. 
 
 
 
• Por definição um manômetro mede pressão em relação a pressão 
atmosférica. 
• Para determinar Y trabalhamos com pressões relativas a 
atmosférica. 
• Como o reservatório este fechado, a pressão do ar igual a 30kPa 
é uma pressão relativa a atmosfera. 
 
 
 
Desta forma utilizando pressões relativas:( ) ( ) ygdmgxEEgEEgdP aguaHgaguaaguaaguaoleoar 0,10225 ρρρρ =+−+−+
 
 ( ) ( ) yxxxxxxx 81,910006,130,181,910000281,910002581,9100082,030 =+−+−+ 
 
Resolvendo: 
 ( ) ( )
626mm0,626my
133416y83562,6
y 1334169810196206,2413230000
 81,910006,130,181,910000281,910002581,9100082,030000
==
=
=+++
=+−+−+ yxxxxxxx
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-25 
[ 5 ] Com base na figura ao lado, determine: 
A pressão absoluta no ponto A; 
 
 
PA (Rel) = ρH2O . g . hH2O 
 
PA (Rel) = 1000 kg/m
3 x 9,81 m/s2 x 5 m ≅ 49 kPa 
 
PA (Abs) = PAtm + Pman + PA(Rel) 
 
PA (Abs) = 101,33 kPa + 120 kPa + 49 kPa 
 
PA (Abs) ≅ 270 kPa 
 
 
[ 6 ] Baseado na figura ao lado, determine: 
a) A pressão absoluta e relativa na interface gasolina-água; 
b) A pressão absoluta e relativa no fundo do reservatório. 
 
 
 
a) 
PA (Abs) = PAtm + PA (Rel) 
 
PA (Abs) = 101,33 kPa + 33, 354 kPa ≅ 134,68 kPa 
 
PA (Rel) = ρGas. g . hgas = 680 kg/m3 x 9,81 m/s2 x 5 m = 33,354 kPa 
 
ρGas = d x ρágua à 4°C = 0,68 x 1000 kg/m3 = 680 kg/m3 
 
 
b) 
PB (Abs) = PA (Abs) + PB (Rel) = PA (Abs) + ρágua. g . hágua 
 
 
PB (Abs) = 134,68 kPa + 1000 kg/m
3 x 9,81 m/s2 x 1 m = (134,68 + 9,81) kPa ≅ 144,5 kPa 
Mecânica dos Fluidos 
 
PUCRS C-26 
[ 7] Observando a figura e os dados seguintes, determine: 
 
a) a massa específica do azeite de oliva; 
b) a densidade do azeite de oliva. 
 
Dados: d óleo = 0,89 , d mercúrio = 13,6 e a pressão absoluta no ponto F é igual a 231,3 kPa. 
 
 a) 
 PA (Abs) = PAtm + Póleo + Págua + Paz.oliva + PHg 
 
 PA (Abs)=PAtm +ρóleo.g.hóleo +ρH2O.g.hH2O +ρaz.oliva.g.haz.oliva +ρHg.g.hHg 
 
 
olivaaz
HgHgOHOHóleoóleoATMF
olivaaz hg
hghghgPP
.
. .
......
22
ρρρ
ρ
−−−−
= 
( ) ( ) ( )[ ]{ }
m
s
m
Pa
oa
9,2.81,9
4,0.136005,2.10005,1.890.81,9101330231300
2
.
++−−
=ρ 
 3
2
2
. /1370
9,2.81,9
.
38982
mkg
m
s
m
sm
kg
olivaaz ≅≅ρ 
 
 
 
 
 
 
3
34
4
/890000189,0 mkg
m
kg
xxdd
Càáguaóleoóleo
Càágua
óleo
óleo ===⇒= °
°
ρρ
ρ
ρ b) 
 
37,1
/1000
/1370
.3
3
4
.
. =⇒==
°
olivaaz
Càágua
olivaaz
olivaaz dmkg
mkg
d
ρ
ρ
 
 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-27 
[8] Um manômetro diferencial é conectado a dois tanques como mostrado na figura. (a) Determine a pressão entre as câmaras A e 
B. (b) indicando em que câmara a pressão é maior. 
 
 
 
kPaPP
PghghghP
BA
BtetraHgóleoA
28,37
321
−=−
=−++ ρρρ
 
 
Obs: A pressão em B é maior que a pressão em A 
 
 
[ 9 ] Numa tubulação industrial é utilizado um tubo de Venturi 
conectado a um manômetro diferencial como mostrado na figura. A 
deflexão do mercúrio no manômetro diferencial é de 360mm e a 
velocidade da água no ponto B é de 9,73m/s. Determine a variação de 
pressão entre os pontos A e B. Obs. Densidade do mercúrio: 13,6. 
 
 
 
 
 
( ) kPaxPP
Pgg
x
gx
x
gP
BA
BaaaaA
52
1000
81,9)7503696,13360(
1000
750
1000
360
6,13
1000
360
1000
≈+−=−
=−

 −−

−

+ ρρρρ
 
Mecânica dos Fluidos 
 
PUCRS C-28 
1.6 PROBLEMAS PROPOSTOS - Conceitos de Pressão (Cap3) 
[ 1 ] O sistema da Fig. encontra-se aberto a atmosfera. Se a 
pressão atmosférica é 101,03 KPa e pressão absoluta no fundo 
do tanque é 231,3 kPa determine a pressão relativa entre a 
água e o aceite de oliva. Obs: Densidade do óleo SAE 0,89. 
Densidade do mercúrio 13,6. 
 
[ 2 ] A Fig. mostra o efeito da infiltração de água num tanque 
subterrâneo de gasolina. (a) Se a densidade da gasolina é 0,68 
determine (a) pressão absoluta e relativa na interfase gasolina-
água e (b) pressão abs. e relativa no fundo do tanque. 
R: (a) P(abs) 135 kPa P(rel) 33,67 kPa 
 (b) P(bas) 144,8 kPa P(rel) 43,48 kPa 
 
 
 
 
[3] Numa tubulação que escoa água se utiliza um manômetro 
em U conectado como mostrado na figura. O manômetro utiliza 
benzeno com massa específica igual 879 kg/m3. Determinar: 
 
(a) A diferença de pressão entre as duas tomadas de pressão. 
(b) O sentido do escoamento da água dentro da tubulação. 
R: PA - PB = 463 Pa (de A para B ) 
 
 
[4] Os recipiente A e B da figura contém água sob pressão de 
294,3 kPa e 147 kPa respectivamente. Determine a deflexão do 
mercúrio (h) no manômetro diferencial. Na Fig. x + y = 2,0 m. 
Massa específica da água: 1000 kg/m3; 
Massa específica do mercúrio: 13600 kg/m3 
[5] Determinar a altura h2 (mm) no manômetro da Fig. 
considerando que a diferença de pressão pB-pA=97kPa. 
Considere água com massa especifica igual a 1000 kg/m3. A 
densidade do óleo e do mercúrio é dada na Fig. 
R: 22cm 
 
 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-29 
 
 
 
[ 6 ] Seja a água contida na câmara pressurizada mostrada na 
Fig. Massa específica da água 1000 kg/m3. Massa especifica do 
mercúrio 13550 kg/m3. Determine a pressão manométrica no 
ponto A. R: 20,92 kPa. 
 
[ 7 ] Um manômetro em U é fixado a um reservatório fechado 
contendo três fluidos diferentes como mostra a Fig. A pressão 
(relativa) do ar no reservatório é igual a 30kPa. Determine qual 
será a elevação da coluna de mercúrio do manômetro. 
R: y=626mm 
 
[8] Um manômetro diferencial é usado para a medição da 
pressão causada por uma diminuição da seção reta ao longo 
do escoamento. Massa específica da água = 1000kg/m³. Massa 
específica do mercúrio = 13600kg/m³. 
(a) Determine diferença de pressão entre os pontos A e B 
(b) Quanto corresponde essa diferença de pressão em metros 
de coluna de água ? 
R: (a) (PA - PB) =375,72 kPa (b) 38,2 mH20 
 [9] Um manômetro diferencial é conectado a dois tanques fechados como mostrado na Fig. Determine a diferença de pressão entre 
as câmaras A e B indicando em que câmara a pressão é maior. R: (PA - PB) = -37, 28 kPa (PB > PA) 
 
Mecânica dos Fluidos 
 
PUCRS C-30 
 
[10] Determine a pressão na tubulação com água (A) 
considerando que o manômetro em U esta aberto para a 
atmosfera. O fluido manométrico apresenta um peso especifico 
igual a 30 KN/m3. Considere que h1=30cm e h2=10cm. 
R: 8,0 kPa 
 
[ 11 ] Determinar a deflexão h do manômetro da figura abaixo, 
quando a variação de pressão p1 - p2 = 870Pa. Considere as 
densidades dos fluidos dA=0,88 e dB=2,95.R: 42,84mm 
 
[ 12 ] Para o reservatório mostrado determinar a pressão manométrica lida no instrumento. (Obs. Densidade do mercúrio: d=13,6). 
R: (a) 2,75 kPa 
 [ 13 ] Um reservatório de grande porte (Fig.) contém água, 
tendo uma região ocupada por mercúrio com densidade igual 
13,6. O reservatório é fechado e pressurizado tendo uma 
pressão absoluta igual a 180 kPa. A pressão absoluta em A é 
igual a 350 kPa. Determinar ( a ) A altura h2 em (metros) da 
coluna de água. ( b ) Determine a pressão absoluta em B. 
Obs: água a 200C: Massa especifica 1000 kg/m3. 
R: (a) 6,45m (b) 251,12 kPa 
 
[14] Dado o esquema da figura: a) Qual a leitura no manômetro (Pa) ; b) Qual a força (N) que age no interior do reservatório sobre 
o topo. R: (a) 200 Pa (b) 2000 N. 
 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EEXXEEMMPPLLOOSS 
 
CCIINNEEMMÁÁTTIICCAA DDOOSS FFLLUUIIDDOOSS 
 
((CCaapp.. 44 )) 
 
Mecânica dos Fluidos 
 
PUCRS C-32 
1.7 PROBLEMAS RESOLVIDOS - Cinemática dos Fluidos (Cap4) 
 
[ 1] Dado o vetor velocidade: ( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r Onde x e y em metros 
 
1. Escoamento é uni bi ou tridimensional ? 
2. Regime permanente ou não permanente ? 
3. Determinar o ponto de estagnação 
4. Avaliar o vetor velocidade em x=2m e y=3m 
5. Determinar a magnitude da velocidade em x=2 e y=3m 
 
[ 2 ] Verifique se o vetor velocidade corresponde ao escoamento de um fluido compressível ou incompressível. 
 ( ) jxyiyxV ˆ)2(ˆ4 432 −=r 
 
[ 3 ] Verifique se o vetor velocidade corresponde ao escoamento de um fluido compressível ou incompressível. 
 
( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r 
 
[ 4 ]Dado o vetor velocidade: ( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r 
 
(1) Determinar o vetor da aceleração total. 
(2) Avaliar a aceleração em (x,y,z)=(2,3,0) 
(3) Determinar o modulo da aceleração em (2,3,0) 
 
[ 5 ] Verifique se o escoamento é rotacional ou irrotacional ( ) ( )kjxiyxV ˆ10ˆ)3(ˆ12 43 ++=r 
 
[ 6 ] Verifique se o escoamento é rotacional ou irrotacional ( ) ( )kzjzxiyxV ˆ12ˆ)44(ˆ6 22 +−−=r 
 
[ 7 ] Considere um escoamento em regime permanente através de um bocal convergente considerando um perfil de velocidades 
dada pela equação: 
( ) 

 +=→
L
x
utzyxV
2
1,,, 0 . 
Determinar: a) a aceleração da partícula do fluido; b) a aceleração na entrada e 
na saída do bocal, considerando u0 = 3,0m/s e L = 0,3m; c) a velocidade na 
saída do bocal; d) a aceleração local na entrada e na saída. 
 
[ 9 ] Dado o vetor velocidade ( ) ( )kzyjzyV ˆ3ˆ4 23 +−−=r 
 
(a) Verifique se o escoamento é uni bi ou tridimensional. 
(b) Verificar se o escoamento é em regime permanente ou não permanente. 
(c) Determinar a aceleração da partícula observando a contribuição da aceleração local e da convectiva. 
(d) Verificar se o escoamento é compressível ou incompressível. 
(e) Verificar se o escoamento é rotacional ou irrotacional. 
 
[ 10 ] Um campo de velocidade de uma partícula de fluido é dada por: 
 
jyxiyxV ˆ)8,21,298,0(ˆ)65,08,21( −−−+++=
r
 
 
(a) Determine a velocidade da partícula de fluido para o ponto (x,y)= (-2,3) 
(b) Determine a expressão geral do vetor de aceleração da partícula de fluido. 
(c) Avalia a aceleração da partícula de fluido para o ponto (x,y)= (-2,3) 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-33 
Exemplo 1 Dado o vetor velocidade: ( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r 
Onde x e y em metros 
6. Escoamento é uni bi ou tridimensional ? 
7. Regime permanente ou não permanente ? 
8. Determinar o ponto de estagnação 
9. Avaliar o vetor velocidade em x=2m e y=3m 
10. Determinar a magnitude da velocidade em x=2 e y=3m 
 
(1) Escoamento é uni bi ou tridimensional ? 
 
0
8,05,1
 
8,05,0
=
−=
+=
w
yv
xu
 Desta forma jviuyxV ˆˆ),( +=
r
 Resposta: Escoamento bidimensional 
 
(2) Regime permanente ou não permanente ? 
 
Consideramos o vetor velocidades: jviuyxV ˆˆ),( +=
r
 
 
Tomando a derivada parcial no tempo: 0
),( =
∂
∂
t
yxV
r
 Resposta: Regime permanente 
 
(3) Determinar o ponto de estagnação: 
 
Ponto de estagnação: Ponto onde V=0 
 
625,0
8,0
5,0
08,05,0
−=
−
=
=+=
x
xu
 
875,1
8,0
5,1
08,05,1
==
=−=
y
yv
 
 
 Resposta: Ponto de estagnação em x=-0,625m y=1,875m 
 
(4) Avaliar o vetor velocidade em x=2m e y=3m 
 
( )
jiV
jiV
jxixV
ˆ)9,0(ˆ)1,2(
ˆ)4,25,1(ˆ)6,15,0(
ˆ)38,05,1(ˆ28,05,0
−+=
−++=
−++=
r
r
r
 
Resposta: Vetor velocidade: jiV ˆ)9,0(ˆ)1,2( −+=
r
 
 
(5) Determinar a magnitude da velocidade em x=2 e y=3m 
 smvuV /28,29,01,2 2222 =+=+= 
 
Resposta: Magnitude da velocidade em x=2 e y=3m V=2,28m/s 
 
 
Mecânica dos Fluidos 
 
PUCRS C-34 
Exemplo 2: Verifique se o vetor velocidade corresponde ao escoamento de um fluido compressível ou incompressível. ( ) jxyiyxV ˆ)2(ˆ4 432 −=r 
Solução: 
 
Será fluido incompressível se: 
0=•∇ V
r
 ou 0=
∂
∂+
∂
∂+
∂
∂
z
w
y
v
x
u 
Será fluido compressível 
0≠•∇ V
r
 ou 0≠
∂
∂+
∂
∂+
∂
∂
z
w
y
v
x
u 
 
 
0
2
4
4
32
=
−=
=
w
xyv
yxu
 Derivando 
0
8
8
3
3
=
∂
∂
−=
∂
∂
=
∂
∂
z
w
xy
y
v
xy
x
u
 e somando obtemos 088 33 =−=
∂
∂+
∂
∂
xyxy
y
v
x
u 
 
Portanto o escoamento é incompressível – Resposta: fluido incompressível 
 
Exemplo 3: Verifique se o vetor velocidade corresponde ao escoamento de um fluido compressível ou incompressível. 
 
( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r 
 
0
8,05,1
8,05,0
=
−=
+=
w
yv
xu
 
0
8,0
8,0
=
∂
∂
−=
∂
∂
=
∂
∂
z
w
y
v
x
u
 008,08,0 =+−=
∂
∂+
∂
∂+
∂
∂
z
w
y
v
x
u 
 
 
Resposta: fluido incompressível 
 
Atividade: Dado o vetor velocidade 
 
 ( ) ( ) ( )kzxjxyzizyV ˆ3ˆ2ˆ 3222 ++=r 
 
(a) Determine se o escoamento é em regime permanente ou não-permanente 
(b) Determine a magnitude da velocidade da partícula no ponto (x,y,z)=(2,3,1). 
(c) Determine a aceleração local da partícula. 
(d) Verifique se o escoamento é compressível ou incompressível 
(e) Determine de o escoamento é rotacional ou irrotacional. 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-35 
Exemplo 4: Dado o vetor velocidade: ( ) jyixV ˆ)8,05,1(ˆ8,05,0 −++=r 
 
(1) Determinar o vetor da aceleração total. 
(2) Avaliar a aceleração em (x,y,z)=(2,3,0) 
(3) Determinar o modulo da aceleração em (2,3,0) 
 
 
(1) Determinar o vetor da aceleração total. 
 
z
V
w
y
V
v
x
V
u
t
V
Dt
VD
ap ∂
∂+
∂
∂+
∂
∂+
∂
∂==
rrrrr
r observamos que é regime permanente: 0=
∂
∂
t
V
r
 
 
0
8,05,1
 
8,05,0
=
−=
+=
w
yv
xu
 
0
ˆ8,0
ˆ8,0
=
∂
∂
−=
∂
∂
=
∂
∂
z
V
j
y
V
i
x
V
r
r
r
 
( )
0
ˆ)64,02,1()ˆ8,0)(8,05,1(
ˆ)64,04,0()ˆ8,0(8,05,0
=
∂
∂
+−=−−=
∂
∂
+=+=
∂
∂
z
V
w
jyjy
y
V
v
ixix
x
V
u
r
r
r
 
 
jyix
Dt
VD ˆ)64,02,1(ˆ)64,04,0( +−++=
r
 
 
Resposta: jyixap ˆ)64,02,1(ˆ)64,04,0( +−++=
r 
 
(2) Avaliar a aceleração em (x,y,z)=(2,3,0) 
 
ji
Dt
VD
ji
Dt
VD
jxix
Dt
VD
ˆ)72,0(ˆ)68,1(
ˆ)92,12,1(ˆ)28,14,0(
ˆ)364,02,1(ˆ)264,04,0(
+=
+−++=
+−++=
r
r
r
 
 
Resposta: jiap ˆ)72,0(ˆ)68,1()0,3,2( +=
r 
 
(3) Determinar o módulo da aceleração em (2,3,0) 
 
22222 /83,172,068,1)0,3,2( smaaaa yxpp =+=+==
r 
 
Resposta: 2/83,1)0,3,2( smap = 
Mecânica dos Fluidos 
 
PUCRS C-36 
Exemplo 5: Verifique se o escoamento é rotacional ou irrotacional 
 ( ) ( )kjxiyxV ˆ10ˆ)3(ˆ12 43 ++=r 
 
Rotacional 0
2
1 ≠∇= Vx
r
r
ω Irrotacional 
 
k
y
u
x
v
j
x
w
z
u
i
z
v
y
w ˆ
2
1ˆ
2
1ˆ
2
1 


∂
∂−∂
∂+


∂
∂−∂
∂+


∂
∂−∂
∂=ωv 
 
( )
( )kw
jxv
yxu
ˆ10
ˆ)3(
12
4
3
=
=
=
 
( )
( )
( ) 01212
2
1
2
1
000
2
1
2
1
00
2
1
33 =−=



∂
∂−∂
∂=
=−=



∂
∂−∂
∂=
−=
xx
y
u
x
v
x
w
z
u
z
z
y
y
x
ω
ω
ω
ω
ω
 
 
Resposta: Irrotacional 
 
Exemplo 6: Verifique se o escoamento é rotacional ou irrotacional 
 ( ) ( )kzjzxiyxV ˆ12ˆ)44(ˆ6 22 +−−=r 
 
 
( )
( )2
2
12
)44(
6
zw
zxv
yxu
=
−−=
=
 
( ) 240
2
1
2
1
−=−=



∂
∂−∂
∂=
x
x z
v
y
w
ω
ω
 
( ) 000
2
1
2
1
=−=



∂
∂−∂
∂=
y
y x
w
z
u
ω
ω
 
( ) ( )22 3264
2
1
2
1
xx
y
u
x
v
z
z
+−=−−=



∂
∂−∂
∂=
ω
ω
 
 
 
 
 
Resposta: Rotacional 
 
0=xω
0=yω
0=zω
0=ω
r
0≠xω 0=yω 0≠zω
0≠ω
r
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-37 
 Exemplo 7: Considere um escoamento em regime permanente através de um bocal convergente considerando um perfil de 
velocidades dada pela equação: 
( ) 

 +=→
L
x
utzyxV
2
1,,, 0 . 
Determinar: a) a aceleração da partícula do fluido; b) a aceleração na entrada 
e na saída do bocal, considerando u0 = 3,0m/s e L = 0,3m; c) a velocidade na 
saída do bocal; d) a aceleração local na entrada e na saída. 
 
a) Unidimensional ( ) i
L
x
uutzyxV ˆ
2
1,,, 0 

 +==→ 
t
V
z
V
w
y
V
v
x
V
u
Dt
VD
ap ∂
∂+
∂
∂+
∂
∂+
∂
∂==
→→→→→
→
... 
Como 0
t
V =
∂
∂
→
 , então, o escoamento é em Regime Permanente; 


 +

=









 +=∂
∂==
→→
→
L
x
L
u
L
u
L
x
u
x
V
u
Dt
VD
ap
2
1.
.2.2
.
2
1.
2
00
0 (aceleração da partícula do fluido) 
 
b) 
( ) ( ) 

 +



=

 +

==
→
→
mm
sm
L
x
L
u
Dt
VD
ap 3,0
0.2
1.
3,0
/3.22
1.
.2
22
0 
2/60 smap =
→
 (aceleração na entrada do bocal) 
( ) ( )

 +


=

 +

==
→
→
m
m
msm
L
x
L
u
Dt
VD
ap 3,0
3,0.2
1.
3,0
/3.22
1.
.2
22
0 
2
p s/m180a =
→
 (aceleração na saída do bocal) 
 
c) 
( )
s
m
m
m
s
m
L
x
uuV 9
3,0
3,0.2
1.3
2
10 =

 +=

 +==→ (velocidade na saída do bocal) 
 
 
c) Neste exercício, a aceleração local é zero porque a equação não varia em função do tempo. 
 
( ) i
L
x
uutzyxV ˆ
2
1,,, 0 

 +==→ 
( ) 

 +

=∂
∂=⇒=
→
→
→
→
L
x
L
u
x
V
ua
Dt
VD
tzyxa pp
2
1.
.2
.,,,
2
0 
0=
∂
∂
→
t
V
 
Mecânica dos Fluidos 
 
PUCRS C-38 
Exemplo 8: O vetor velocidade (m/s) de uma partícula de fluido é dado por: 
 ( ) ( ) ( )kzxjxyzizyV ˆ3ˆ2ˆ 3222 ++=r 
 
(a) Determine a magnitude velocidade da partícula no ponto (x,y,z)=(2,3,1). 
(b) Determine a aceleração local da partícula. 
(c) Verifique se o escoamento é compressível ou incompressível 
(d) Determine de o escoamento é rotacional ou irrotacional. 
 
Solução 
 
(1) Velocidade na partícula no ponto (x,y,z)=(2,3,1). 
 
(a) 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
smV
kjiV
kjiV
kzxjxyzizyV
/3,28
ˆ24ˆ12ˆ9
ˆ1.2.3ˆ1.3.2.2ˆ1.3
ˆ3ˆ2ˆ
3222
3222
=
++=
++=
++=
r
r
r
 
 
 
(2) Aceleração local da partícula. 
 
(b) 
z
V
w
y
V
v
x
V
u
t
V
Dt
VD
∂
∂+
∂
∂+
∂
∂+
∂
∂=
rrrrr
 
 
Resposta : Aceleração local da partícula: 0=
∂
∂
t
V
r
 (a aceleração local da partícula é nula) 
 
(c)Verifique se o escoamento é compressível ou incompressível 
 
z
w
y
v
x
u
V
∂
∂+
∂
∂+
∂
∂=∇
r
 
 0320 32 ≠++=∇ xxzV
r
 Por tanto se trata de fluido compressível. 
 
(d) Escoamento é rotacional ou irrotacional. ? 
 
0)22(
2
1
2
1
)92(
2
1
2
1
)40(
2
1
2
1
22
22
=−=


∂
∂−∂
∂
≠−=


∂
∂−∂
∂
≠−=


∂
∂−∂
∂
yzzyz
y
u
x
v
zxzy
x
w
z
u
xyz
z
v
y
w
 
 
Resposta: Escoamento rotacional 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-39 
 
Exemplo 9: Dado o vetor velocidade ( ) ( )kzyjzyV ˆ3ˆ4 23 +−−=r 
 
(f) Verifique se o escoamento é uni bi ou tridimensional. 
(g) Verificar se o escoamento é em regime permanente ou não permanente. 
(h) Determinar a aceleração da partícula observando a contribuição da aceleração local e da convectiva. 
(i) Verificar se o escoamento é compressível ou incompressível. 
(j) Verificar se o escoamento é rotacional ou irrotacional. 
 
SOLUCAO 
 
(A) Verifique se o escoamento é uni bi ou tridimensional. 
Resposta: Trata-se de um escoamento bidimensional com componentes de velocidade somente em y e z 
(v,w). 
 kwjvV ˆˆ +=r 
(B) Verifique se o escoamento permanente ou não permanente. 
Para ser escoamento em 3D em regime permanente. ),,,( tzyxVV =r 
 
Neste caso: kzywjzyuV ˆ),(ˆ),( +=r 
 
Portanto o escoamento não é dependente do tempo (regime permanente) 
 
 ( C) Determinar a aceleração da partícula 
 
 
z
V
w
y
V
v
x
V
u
t
V
Dt
VD
∂
∂+
∂
∂+
∂
∂+
∂
∂=
rrrrr
 )()( ConvectivapLocalpp aaa
rrr
+= 
Como se trata de regime permanente a contribuição da aceleração local é nula: 0=∂
∂
t
V
r
 
 
z
V
w
y
V
v
x
V
u
Dt
VD
∂
∂+
∂
∂+
∂
∂=
rrrr
 
 
0=
∂
∂
x
V
u
r
 (escoamento bidimensional com u=0) 
 
kyzzyjyzy
y
V
v ˆ)6)(4(ˆ)3)(4( 323 −−+−−−=
∂
∂
r
 
 
kyzy
z
V
w ˆ)3)(3( 22=∂
∂ r 
 
 
( ) ( ) kzykyzzyjzyy
Dt
VD ˆ)9(ˆ246ˆ123 42425 ++−+=
r
 
 
 
( ) ( )kyzzyjzyy
Dt
VD ˆ243ˆ123 2425 +++=
r
 
Mecânica dos Fluidos 
 
PUCRS C-40 
 
 
( D ) Verificar se o escoamento é compressível ou incompressível. 
 
Para que o fluido seja incompressível deve satisfazer a equação: 
 
0=
∂
∂+
∂
∂+
∂
∂=∇
z
w
y
v
x
u
V
r 
 
 0=
∂
∂
x
u 23y
y
v −=∂
∂ 23y
z
w =
∂
∂ 
 
Desta forma verifica-se que o escoamento é incompressível. 
 
033 22 =+−=
∂
∂+
∂
∂=∇ yy
z
w
y
v
V
r 
 
(E ) Verificar se o escoamento é rotacional ou irrotacional. 
 
Lembrando que o vetor velocidade é dado por: ( ) ( )kzyjzyV ˆ3ˆ4 23 +−−=r 
 
Trata-se de um escoamento bidimensional com componentes de velocidade somente em y e z (v,w). 
 
kzywjzyvV ˆ),(ˆ),( +=
r P 
 
Desta forma o vetor rotacional pode ser simplificado: 
 
 
k
y
u
x
v
j
x
w
z
u
i
z
v
y
w ˆ
2
1ˆ
2
1ˆ
2
1 


∂
∂−∂
∂+


∂
∂−∂
∂+


∂
∂−∂
∂=ωv 
 
 
i
z
v
y
w ˆ
2
1 


∂
∂−∂
∂=ωv 
 
yz
y
w
6=
∂
∂ 
 
4−=
∂
∂
z
v 
 
Desta forma o escoamento é rotacional já que 0≠ωv 
 
ixz ˆ)46(
2
1
−=ω
v 
 
 
 
Anexo C: Problemas Resolvidos e Propostos 
 
Jorge A. Villar Alé C-41 
 
Exemplo 10: Um campo de velocidade de uma partícula de fluido é dada por: 
 
jyxiyxV ˆ)8,21,298,0(ˆ)65,08,21( −−−+++=
r
 
 
(d) Determine a velocidade da partícula de fluido para o ponto (x,y)= (-2,3) 
(e) Determine a expressão geral do vetor de aceleração da partícula de fluido. 
(f) Avalia a aceleração da partícula de fluido para o ponto (x,y)= (-2,3)

Continue navegando