Buscar

Exercise-MAD-SV-Chap1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Discrete Mathematics 
and Its Applications 
 
 
 
 
Đặng Thu Huyền 
 
6/2022 
 
 
1 
 
Chapter 1: The Foundations: Logic and Proofs 
1.1 Propositional Logic
1. Which of these are propositions? What are the truth values of those that are 
propositions? 
a) Do not pass go. 
b) What time is it? 
c) There are no black flies in Maine. 
d) 4 + x = 5. 
e) The moon is made of green cheese. 
f) 2n ≥ 100. 
 
2. What is the negation of each of these propositions? 
a) Mei has an MP3 player. 
b) There is no pollution in New Jersey. 
c) 2 + 1 = 3. 
d) The summer in Maine is hot and sunny. 
 
3. Suppose that during the most recent fiscal year, the annual revenue of Acme Computer 
was 138 billion dollars and its net profit was 8 billion dollars, the annual revenue of Nadir 
Software was 87 billion dollars and its net profit was 5 billion dollars, and the annual 
revenue of Quixote Media was 111 billion dollars and its net profit was 13 billion dollars. 
Determine the truth value of each of these propositions for the most recent fiscal year. 
a) Quixote Media had the largest annual revenue. 
b) Nadir Software had the lowest net profit and Acme Computer had the largest annual 
revenue. 
c) Acme Computer had the largest net profit or Quixote Media had the largest net profit. 
d) If Quixote Media had the smallest net profit, then Acme Computer had the largest 
annual revenue. 
e) Nadir Software had the smallest net profit if and only if Acme Computer had the 
largest annual revenue. 
 
 
 
2 
 
4. Let p and q be the propositions 
p: It is below freezing. 
q: It is snowing. 
Write these propositions using p and q and logical connectives (including negations). 
a) It is below freezing and snowing. 
b) It is below freezing but not snowing. 
c) It is not below freezing and it is not snowing. 
d) It is either snowing or below freezing (or both). 
e) If it is below freezing, it is also snowing. 
f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing. 
g) That it is below freezing is necessary and sufficient for it to be snowing. 
 
5. Let p and q be the propositions 
p: I bought a lottery ticket this week. 
q: I won the million dollar jackpot. 
Express each of these propositions as an English sentence. 
a) ¬p 
b) p ∨ q 
c) p → q 
d) p ∧ q 
e) p ↔ q 
f) ¬p → ¬q 
g) ¬p ∧ ¬q 
h) ¬p ∨ (p ∧ q) 
 
6.Determine whether these biconditionals are true or false. 
a) 2 + 2 = 4 if and only if 1 + 1 = 2. 
b) 1 + 1 = 2 if and only if 2 + 3 = 4. 
c) If 1 + 1 = 3, then dogs can fly. 
d) If 1 + 1 = 2, then 2 + 2 = 5. 
e) If monkeys can fly, then 1 + 1 = 3. 
 
3 
 
7. Write each of these statements in the form “if p, then q” in English. 
a) It is necessary to wash the boss’s car to get promoted. 
b) Winds from the south imply a spring thaw. 
c) A sufficient condition for the warranty to be good is that you bought the computer less 
than a year ago. 
d) Willy gets caught whenever he cheats. 
e) You can access the website only if you pay a subscription fee. 
f) Getting elected follows from knowing the right people. 
g) Carol gets seasick whenever she is on a boat. 
 
8. How many rows appear in a truth table for each of these compound propositions? 
a) (q → ¬p) ∨ (¬p → ¬q) 
b) (p ∨ ¬t) ∧ (p ∨ ¬s) 
c) (p → r) ∨ (¬s → ¬t) ∨ (¬u → v) 
d) (p ∧ r ∧ s) ∨ (q ∧ t) ∨ (r ∧ ¬t) 
 
9. Construct a truth table for each of these compound propositions. 
a) p ∨ ¬p 
b) (p ∨ q) → (p ∧ q) 
c) (q → ¬p) ↔ (p ↔ q) 
d) (p ⊕ q) → (p ∧ q) 
 
10. Evaluate each of these expressions. 
a) 1 1000 ∧ (0 1011 ∨ 1 1011) 
b) (0 1111 ∧ 1 0101) ∨ 0 1000 
c) (0 1010 ⊕ 1 1011) ⊕ 0 1000 
d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011) 
4 
 
1.2. Propositional Equivalences 
1. Show that each of these conditional statements is a tautology by using truth tables. 
a) (p ∧ q) → p 
b) p → (p ∨ q) 
c) ¬p → (p → q) 
d) (p ∧ q) → (p → q) 
e) ¬(p → q) → p 
f) ¬(p → q) → ¬q 
 
2. Show that each of these conditional statements is a tautology by using truth tables. 
a) [p ∧ (p → q)] → q 
b) [(p → q) ∧ (q → r)] → (p → r) 
c) [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r 
 
3. Show [(p ∨ q) ∧ (p → r) ∧ (q → r)] → r is a tautology without using truth tables. 
 
4. Determine whether (¬p ∧ (p → q)) → ¬q is a tautology. 
 
5. Show that p → q and ¬q → ¬p are logically equivalent. 
 
6. Show that (p → q) → r and p → (q → r) are not logically equivalent. 
 
7. The dual of a compound proposition that contains only the logical operators ∨, ∧, and 
¬ is the compound proposition obtained by replacing each ∨ by ∧, each ∧ by ∨, each T by 
F, and each F by T. Find the dual of each of these compound propositions. 
a) p ∧ ¬q ∧ ¬r b) (p ∧ q ∧ r) ∨ s c) (p ∨ F) ∧ (q ∨ T) 
 
1.4 Predicates and Quantifier 
1. Let P (x) denote the statement “x ≤ 4.” What are these truth values? 
a) P(0) b) P(4) c) P(6) 
5 
 
2. Let P (x) be the statement “the word x contains the letter a.” What are these truth 
values? 
a) P (orange) 
b) P (lemon) 
c) P (true) 
d) P (false) 
 
3. Let Q(x, y) denote the statement “x is the capital of y.” What are these truth values? 
a) Q(Ha Noi, Vietnam) 
b) Q(Pattaya, Thailand) 
c) Q(Busan, Korea) 
 
4. State the value of x after the statement if P (x) then x:= 1 is executed, where P (x) is 
the statement “x > 1,” if the value of x when this statement is reached is 
a) x = 0. b) x = 1. c) x = 2. 
 
5. Let P (x) be the statement “x spends more than five hours every weekday in class,” 
where the domain for x consists of all students. Express each of these quantifications in 
English. 
a) ∃xP (x) 
b) ∀xP (x) 
c) ∃x ¬P (x) 
d) ∀x ¬P (x) 
 
6. Translate these statements into English, where C(x) is “x is a comedian” and F(x) is “x 
is funny” and the domain consists of all people. 
a) ∀x(C(x) → F(x)) 
b) ∀x(C(x) ∧ F(x)) 
c) ∃x(C(x) → F(x)) 
d) ∃x(C(x) ∧ F(x)) 
 
7. Let P(x) be the statement “x can speak Russian” and let Q(x) be the statement “x 
knows the computer language C++.” Express each of these sentences in terms of P(x), 
Q(x), quantifiers, and logical connectives. The domain for quantifiers consists of all 
students at your school. 
6 
 
a) There is a student at your school who can speak Russian and who knows C++. 
b) There is a student at your school who can speak Russian but who doesn’t know C++. 
c) Every student at your school either can speak Russian or knows C++. 
d) No student at your school can speak Russian or knows C++. 
 
8. Let P(x) be the statement “
2x x= .” If the domain consists of the integers, what are 
these truth values? 
a) P(0) 
b) P(1) 
c) P(2) 
d) P(−1) 
e) ∃xP(x) 
f) ∀xP(x) 
 
9. Determine the truth value of each of these statements if the domain consists of all 
integers. 
a) ∀n(n + 1 > n) 
b) ∃n(2n = 3n) 
c) ∃n(n = −n) 
d) ∀n(3n ≤ 4n)
 
10. Determine the truth value of each of these statements if the domain consists of all real 
numbers. 
a) ∃x(𝑥3 = −1) 
b) ∃x(𝑥4 < 𝑥2) 
c) ∀x((−x)2 = 𝑥2) 
d) ∀x(2x > x)
 
11. Suppose that the domain of the propositional function P(x) consists of the integers 0, 
1, 2, 3, and 4. Write out each of these propositions using disjunctions, conjunctions, and 
negations. 
a) ∃xP(x) 
b) ∀xP(x) 
c) ∃x¬P(x) 
d) ∀x¬P(x) 
e) ¬∃xP(x) 
f) ¬∀xP(x) 
 
 
 
7 
 
1.5 Rules of Inference 
1. Find the argument form for the following argument and determine whether it is valid. 
Can we conclude that the conclusion is true if the premises are true? 
If George does not have eight legs, then he is not a spider. 
George is a spider. 
∴ George has eight legs. 
 
2. What rule of inference is used in each of these arguments? 
a) Alice is a mathematics major. Therefore, Alice is either amathematicsmajor or a 
computer sciencemajor. 
b) Jerry is a mathematics major and a computer science major. Therefore, Jerry is a 
mathematics major. 
c) If it is rainy, then the poolwill be closed. It is rainy. Therefore, the pool is closed. 
d) If it snows today, the university will close. The university is not closed today. 
Therefore, it did not snow today. 
e) If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then 
I will sunburn. Therefore, if I go swimming, then I will sunburn. 
 
3. Use rules of inference to show that the hypotheses “Randy works hard,” “If Randy 
works hard, then he is a dull boy,” and “If Randy is a dull boy, then he will not get the 
job” imply the conclusion “Randy will not get the job.” 
 
4. For each of these collections of premises, what relevant conclusion or conclusions can 
be drawn? Explain the rules of inference used to obtain each conclusion from the 
premises. 
a) “If I eat spicy foods, then I have strange dreams.” “I have strange dreams if there is 
thunder while I sleep.” “I did not have strange dreams.” 
b) “I am either clever or lucky.” “I am not lucky.” “If I am lucky, then I will win the 
lottery.” 
8 
 
c) “All rodents gnaw their food.” “Mice are rodents.” “Rabbits do not gnaw their food.” 
“Bats are not rodents.” 
 
5. For each of these arguments determine whether the argument is correct or incorrect 
and explain why. 
a) All students in this class understand logic. Xavier is a student in this class. Therefore, 
Xavier understands logic. 
b) Every computer science major takes discrete mathematics. Natasha is taking discrete 
mathematics. Therefore, Natasha is a computer science major. 
c) All parrots like fruit. My pet bird is not a parrot. Therefore, my pet bird does not like 
fruit. 
d) Everyone who eats granola every day is healthy. Linda is not healthy. Therefore, Linda 
does not eat granola every day.

Continue navegando