Buscar

Pescademersalpelagica-Alves-2018

Esta é uma pré-visualização de arquivo. Entre para ver o arquivo original

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE 
PRÓ-REITORIA DE PÓS-GRADUAÇÃO 
PROGRAMA REGIONAL DE PÓS-GRADUAÇÃO EM 
DESENVOLVIMENTO E MEIO AMBIENTE/PRODEMA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PESCA DEMERSAL E PELÁGICA: COMPOSIÇÃO E 
PRODUÇÃO PESQUEIRA 
A BIOTECNOLOGIA VEGETAL COMO ALTERNATIVA PARA A COTONICULTURA FAMILIAR 
SUSTENTÁVEL 
 
A BIOTECNOLOGIA VEGETAL COMO ALTERNATIVA PARA A COTONICULTURA FAMILIAR 
SUSTENTÁVEL A BIOTECNOLOGIA VEGETAL COMO ALTER PARA A COTONICULTURA 
FAMILIAR SUSTENTÁVELAAA 
 
GEOVANINE ARAÚJO ALVES 
 
 
 
 
 
 
 
2018 
Natal – RN 
Brasil 
 
 
 
 
 
 
 
 
Geovanine Araújo Alves 
 
 
 
 
PESCA DEMERSAL E PELÁGICA: COMPOSIÇÃO E 
PRODUÇÃO PESQUEIRA 
A BIOTECNOLOGIA VEGETAL COMO ALTERNATIVA PARA A COTONICULTURA FAMILIAR 
SUSTENTÁVEL 
 
A BIOTECNOLOGIA VEGETAL COMO ALTERNATIVA PARA A COTONICULTURA FAMILIAR 
SUSTENTÁVEL A BIOTECNOLOGIA VEGETAL COMO ALTER PARA A COTONICULTURA 
FAMILIAR SUSTENTÁVELAAA 
Dissertação apresentada ao Programa Regional de 
Pós-Graduação em Desenvolvimento e Meio 
Ambiente, da Universidade Federal do Rio Grande do 
Norte (PRODEMA/UFRN), como parte dos 
requisitos necessários à obtenção do título de Mestre. 
 
 
 
 
 
Orientadora: Profª. Dra. Adriana Rosa Carvalho 
 
 
 
 
 
 
2018 
Natal – RN 
Brasil 
 
 
 
Alves, Geovanine Araújo.
 Pesca demersal e pelágica: composição e produção pesqueira /
Geovanine Araújo Alves. - Natal, 2018.
 49 f.: il.
 Dissertação (Mestrado) - Universidade Federal do Rio Grande
do Norte. Centro de Biociências. Programa de Pós-Graduação em
Desenvolvimento e Meio Ambiente/PRODEMA.
 Orientadora: Profa. Dra. Adriana Rosa Carvalho.
 1. Pesca artesanal - Dissertação. 2. Recursos pelágicos -
Dissertação. 3. Recursos demersais - Dissertação. 4. Peixe não
declarado - Dissertação. 5. Rotulagem incorreta - Dissertação.
I. Carvalho, Adriana Rosa. II. Universidade Federal do Rio
Grande do Norte. III. Título.
RN/UF/BSE-CB CDU 639.2
Universidade Federal do Rio Grande do Norte - UFRN
Sistema de Bibliotecas - SISBI
Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Leopoldo Nelson - -Centro de Biociências - CB
Elaborado por KATIA REJANE DA SILVA - CRB-15/351
GEOVANINE ARAÚJO ALVES 
 
 
 
 
 
 
 
 
 
Dissertação submetida ao Programa Regional de Pós-Graduação em Desenvolvimento e Meio 
Ambiente, da Universidade Federal do Rio Grande do Norte (PRODEMA/UFRN), como 
requisito para obtenção do título de Mestre em Desenvolvimento e Meio Ambiente. 
 
 
 
 
 
Aprovada em: 
BANCA EXAMINADORA: 
 
 
 
 
_______________________________________________ 
Prof(a). Dr(a). ADRIANA ROSA CARVALHO 
Universidade Federal do Rio Grande do Norte (PRODEMA/UFRN) 
 
______________________________________________ 
Prof(a). Dr(a). JOSÉ GARCIA JÚNIOR 
Instituto Federal do Rio Grande do Norte (IFRN) 
 
_______________________________________________ 
Prof(a). Dr(a). RONALDO ANGELINI 
Universidade Federal do Rio Grande do Norte (UFRN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
AGRADECIMENTOS 
 
À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da 
bolsa de estudos durante o curso de mestrado. 
À Profª Adriana Rosa, pelos ensinamentos que foram fundamentais para a realização desse 
trabalho. 
Ao Profº Dr. José Garcia Júnior, sou grata por sua ajuda, apoio e por todas as correções e ideias 
para o aprimoramento desta pesquisa. 
Aos Professores da Universidade Federal do Rio Grande do Norte por ser parte fundamental da 
minha formação acadêmica, em especial aos Professores do PRODEMA: Eliane Marinho 
Soriano, Jorge Eduardo Lins Oliveira, Marcelo Nóbrega, Priscila Fabiana Macedo Lopes, 
Ronaldo Angelini e Viviane Souza do Amaral. 
Aos funcionários do Centro de Biociências e do Departamento de Ecologia pela competência e 
boa vontade em auxiliar sempre que necessário. 
A todos os pescadores e funcionários das empresas por todas as facilidades e pelo 
compartilhamento das informações. 
A todos os amigos pelas conversas, apoio e conselhos. 
À minha família pelo apoio incondicional e precioso. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESUMO 
 
 
PESCA DEMERSAL E PELÁGICA: COMPOSIÇÃO E PRODUÇÃO PESQUEIRA 
 
Este estudo investigou os desembarques no principal porto da região ao longo de um ano no 
que diz respeito aos recursos marinhos explorados e aspectos econômicos como o valor de 
desembarque e os incentivos econômicos para explorar as espécies mais capturadas. Aqui, 
monitorando 35 desembarques no cais central de uma das principais capitais da costa nordeste 
do Brasil, descobrimos que a pesca de pequena escala alcançou mercados fora da região 
nordeste e no exterior, entregando as capturas em três empresas pesqueiras locais. A maior parte 
das capturas é constituída por peixes pelágicos explorados por uma frota específica que operam 
no mar e que se destinam ao atum e espécies afins. Os recursos pelágicos são compostos por 
apenas seis (a oito) espécies e são sempre desembarcados nas empresas de pesca que registam 
esses desembarques adequadamente (por impostos pagos e faturados) além de serem protegidos 
por quotas e comitês internacionais enquanto recursos demersais, em grande parte constituídos 
por arrecifes As espécies, em sua maioria, são direcionadas ao mercado local (70%), 
representando quase 320 toneladas de peixes não declarados, desembarcados anualmente 
apenas no porto de Natal. As espécies demersais adquiridas pelas empresas pesqueiras são S. 
axillare, C. fulva, P. maculatus e Acanthurus chirurgus, que abastecem diretamente o mercado 
dos EUA. Algumas espécies demersais são comercializadas em uma cesta de espécies mistas, 
e referidas como uma única espécie, induzindo à rotulagem incorreta. Prevemos que os peixes 
marinhos locais, especialmente peixes demersais, só possam ser protegidos para o futuro sob 
medidas de gestão que incluam a regulamentação das espécies de peixes permitidas aos 
varejistas e principalmente às empresas pesqueiras. Ao mudar a busca de espécies de peixes por 
empresas pesqueiras no solo, as regras provavelmente mudarão a busca por espécies no oceano. 
Este trabalho também ampliou o registro de nova ocorrência das espécies Batrachoides 
surinamensis e Canthidermis maculata na região aumentando a riqueza regional de peixes 
marinhos para 461 espécies. 
PALAVRAS-CHAVE: 
pesca artesanal; pesca de pequena escala; peixe não declarado; recursos pelágicos; 
recursos demersais; composição; rotulagem incorreta 
 
 
 
 
 
 
 
 
 
ABSTRACT 
 
 
 
DEMERSAL AND PELAGIC FISHERIES: COMPOSITIONAND FISHERY 
PRODUCTION 
This study investigated the landings in the main port at the region along one year with respect 
to the marine resources exploited and economic aspects such as the landing value and the 
economic incentives to exploit the most caught species. Here by monitoring 35 landings in the 
central wharf in one of the main capital in the northeastern coast of Brazil, we found out that 
the small-scale fishery has reached markets outside northeast region and abroad by delivering 
the catch into three local fishing companies. Most of the catches are made up of pelagic fishes 
exploited by a specific fleet operating offshore and targeting tuna and tuna-like species. Pelagic 
resources are comprised by only six (to eight) species and are always landed into the fishing 
companies making these landings suitably reported (by export taxes paid and invoice) beyond 
being protected by international committee and quota while demersal resources, largely made 
up of reef species, are mostly directed to local market (70%) representing nearly 320 tons of 
unreported fish annually landed just in Natal harbor. Demersal species acquired by fishing 
companies are S. axillare, C. fulva, P. maculatus, and Acanthurus chirurgus, which supply 
directly USA market.
Some dermesal species are traded in a basket of mixed species, and 
referred as one single species, inducing to the mislabeling. We envision that local marine fish, 
specially demersal fish, can only be protected for the future under management measures that 
include regulation of fish species allowed for retailers and mainly to fishing companies. By 
changing the pursuit of fish species by fishing companies in the ground, rules are likely to 
change the fishers search for species in the ocean. This study end expanded the record of the 
new occurrence of the species Batrachoide surinamensis and Canthidermis maculata in the 
region increasing the regional richness of marine fish for 461 species. 
 
 
KEYWORDS: 
 artisanal fishing; unreported fish; pelagic; demersal; composition; mislabeling 
 
 
 
 
 
 
 
 
LISTA DE FIGURAS 
 
 
1. CAPÍTULO 1: First record of Batrachoides surinamensis (Bloch & Schneider 
1801) and Canthidermis maculata (Bloch, 1786) (Pisces: Teleostei) from Rio 
Grande do Norte, northeastern coast of Brazil 
17 
 FIGURE 1: This is a caption for Figure 1 A: Geographical localization of the Rio 
Grande do Norte state (RN) in the South America. B: North coast of RN. Red star 
indicates the site where Batrachoides surinamensis was caught. Black star 
indicates the site where Canthidermis maculata was caught. 
 
17 
 FIGURE 2: This is a caption for Figure 2: Batrachoides surinamensis, 488 mm, 
LABIPE 1051. 
 
18 
 FIGURE 3: This is a caption for Figure 3: Canthidermis maculata, 400 mm, 
LABIPE 1101. 
 
18 
 FIGURE 4: Canthidermis maculata landed on 2nd March 2017 in the main port 
of Rio Grande do Norte state. The photo shows roughly 100 individuals. Total 
landings recorded in this date reached 600 kg of the species. 
 
19 
2 CAPÍTULO 2: The effect of market opportunities on the unreported fishing 
resources 
 
21 
 FIGURE 1: Fishing areas of the commercial oceanic and coastal fishing fleets of 
pelagic and demersal fish. 
28 
 FIGURE 2: – Biomass (kg) caught and profit (USD) reaped by the species 
comprising ≥ 70% of total catch landed in Natal harbor, northeastern of Brazil 
from 2016 to 2017. 
31 
 FIGURE 3: Relation between catch percentage, profit per unit of effort (PPUE) 
and costs per unit effort (GPUE) for pelagic fishing of the main target species. 
32 
 FIGURE 4: Relation between catch percentage, profit per unit of effort (PPUE) 
and costs per unit effort (GPUE) for demersal fishing of the main target species: 
(A) Mixture of species (Calamus penna, Bodianus rufus, Halichoeres 
brasiliensis and Halichoeres dimidiatus), (B) Sparisoma sp, (C) Ocyurus 
chrysurus and (D) Cephalopholis fulva. 
33 
 FIGURE. S1. Relation between catch percentage, profit per unit of effort (PPUE) 
and costs /expenses per unit effort (GPUE) for demersal fishing: (A) Ocyurus 
chrysurus, (B) Cephalopholis fulva, (C) Sparisoma axillare, (D) Lutjanus 
synagris, (E) Acanthurus chirurgus, (F) Lutjanus analis, (G) Mixture of five 
species (Balistes spp., Melichthys niger, Xanthichthys ringens, Aluterus spp. and 
Cantherhines spp. , (H) Haemulon plumierii, (I) Mixture of species (Calamus 
penna, Bodianus rufus, Halichoeres brasiliensis and Halichoeres dimidiatus) and 
(J) Pseudupeneus maculatus. 
 
41 
 
 
 
 
 
 
 
 
 
LISTA DE TABELAS 
 
 
1. CAPÍTULO 1: First record of Batrachoides surinamensis (Bloch & Schneider 
1801) and Canthidermis maculata (Bloch, 1786) (Pisces: Teleostei) from Rio 
Grande do Norte, northeastern coast of Brazil 
17 
 TABLE 1: This is a caption for Table 1: Morphometric and meristic characters 
of Batrachoides surinamensis (LABIPE 1051). 
 
 
18 
 TABLE 2: This is a caption for Table 2: Morphometric and meristic characters 
of Canthidermis maculata. 
 
 
19 
2 CAPÍTULO 2: The effect of market opportunities on the unreported fishing 
resources 
 
21 
 TABLE 1: Average values of annual biomass and economic returns from 
demersal and pelagic fishery operating in the South Atlantic (northeastern of 
Brazilian shoreline). 
 
28 
 
TABLE 2: Demersal and pelagic species caught from setembro 2016 to 
setembro 2017 in Natal harbor, northeast of Brazil ( 1 Species comprising the 
group known as mixture of species). % Total – inform the percentual using 
the total biomass landed, regardlees if coastal or oceanic. %FishC – refers to 
the percentual by fish species category, i.e. the percentual that each species 
represents from the total of pelagic or demersal species caught. 
 
29 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SUMÁRIO 
 
1 INTRODUÇÃO GERAL 10 
2 METODOLOGIA GERAL 13 
3 CAPÍTULO 1: First record of Batrachoides surinamensis (Bloch & Schneider 
1801) and Canthidermis maculata (Bloch, 1786) (Pisces: Teleostei) from Rio 
Grande do Norte, northeastern coast of Brazil 
 17 
 ABSTRACT 17 
 INTRODUCTION 17 
 MATERIALS AND METHODS 18 
 IDENTIFICATION 19 
 DISCUSSION 19 
 LITERATURE CITED 20 
 
 
4 CAPÍTULO 2 – The effect of market opportunities on the unreported fishing 
resources 
 21 
 ABSTRACT 22 
 INTRODUCTION 23 
 Study area 24 
 Data survey 25 
 
Estimating economic data 
 25 
 RESULTS 
Catches of demersal and pelagic species 
Biomass traded and economic returns 
 27 
27 
30 
 DISCUSSION 34 
 LITERATURE CITED 38 
 SUPLEMENTAR MATERIAL 41 
5 CONSIDERAÇÕES FINAIS 45 
6 REFERÊNCIAS GERAIS 46 
 
 
 
10 
 
 
1. INTRODUÇÃO 
A pesca é uma atividade rentável responsável por gerar cerca de 35 bilhões de empregos, 
diretos e indiretos. Em torno de 40,3 milhões de pessoas foram contratadas no setor primário 
em tempo integral, parcial ou ocasional. A geração de empregos no setor pesqueiro, 
principalmente nos países em desenvolvimento, contribuindo diretamente em sua economia 
(FAO, 2016; TEH et al.2011). Atualmente estima-se que somente a pesca artesanal de pequena 
escala é responsável por gerar mais de 500 milhões de empregos nos países em 
desenvolvimento. (BENÉ et al., 2007; VASCONCELOS, 2007; POMEROY e ANDREW, 
2011). 
A produção mundial de pescado, no ano de 2016, foi em torno de 90,9 milhões de 
toneladas com o primeiro valor de venda total da produção pesqueira estimado em U$130 
bilhões por ano. (ARNASON et al., 2009; FAO, 2018). Em resposta à demanda de consumo e 
à depleção de alguns estoques, tem havido um aumento da produção devido à ampliação da 
variedade de espécies exploradas (FAO, 2018). Enquanto na década de 60 o consumo era em 
torno de 9,0 kg, em 2016 passou para 20,3 kg, apresentando uma taxa média em cerca de 1,5% 
ao ano de aumento do consumo. Estima-se que alcance um valor médio de 20,5 kg até 2030 o 
que vai gerar uma demanda adicional de 100 milhões de toneladas de pescado (FAO, 2018). 
No Brasil, a atividade pesqueira de pequena escala é responsável pela metade da 
produção pesqueira e conta com 800 mil profissionais que mobilizam 3,5 milhões de empregos 
diretos (setor primário) e indiretos (setor secundário e auxiliar) (ACEB, 2014). Apesar da 
expressiva contribuição na produção e ao contrário da industrial, a pesca artesanal, possui uma 
infraestrutura inferior, com pouco investimento de capital e baixo uso de tecnologia. No 
entanto, a pesca artesanal apresenta uma frota com o maior número de embarcações, múltiplos 
petrechos de captura (covo, linha de mão, espinhel e rede), inúmeros pontos de desembarque e 
diversas cadeias produtivas, resultando em um número maior de empregos e, portanto, 
representando uma importante atividade econômica e de alternativa de renda às comunidades 
das regiões costeiras (VASCONCELOS, 2007; HAIMOVICI, 2009; FAO, 2012). 
No período de 1995 a 2005 houve no Brasil um aumento significativo nas capturas da 
pesca de pequena escala, que foi impulsionada não apenas pelo incentivo para a construção de 
embarcações, mas também por outros fatores, incluindo o uso de novas tecnologias, como o 
GPS e o espinhel multifilamento.
Assim a exploração de espécies de alto valor comercial como 
os atuns (Thunnus spp.), o camarão (Farfantepenaeus spp.), o pargo (Lutjanus purpureus), a 
lagosta (Panulirus spp.) e a sardinha (Sardinella brasiliensis) somou-se à de espécies-alvo 
como os vermelhos, família Lutjanídae, de alto valor comercial e que compreendem em especial 
11 
 
Lutjanus analis, Ocyurus chrysurus, e Lutjanus synagris (REZENDE et al., 2003; BRASIL, 
2006). 
Os incentivos (por exemplo fiscal) continuaram até 2009 quando a produção pesqueira 
aumentou cerca de 25%, devido as ações políticas públicas do governo, principalmente para 
retomar e aumentar a produção industrial. Atualmente a produção pesqueira no Brasil gera um 
PIB em torno de R$ 5 bilhões e com os incentivos do Ministério da Pesca e Aquicultura, espera-
se que, em 2030, ocorra um aumento da produção para 20 milhões de toneladas por ano (FAO, 
2016).Por outro lado, estes incentivos levaram alguns estoques de recursos pesqueiros ao 
declínio, com destaque às regiões Norte e Nordeste, que devido ao seu alto potencial de 
produção pesqueira e a maior frota da pesca artesanal produziram, juntas, entre os anos de 2000 
até 2007, 66,3% do total capturado da pesca artesanal do país (IBAMA, 2009; BRASIL, 2010). 
Na região Nordeste, o Rio Grande do Norte (RN), é o 4º Estado da região em produção 
pesqueira (11%) ficando abaixo dos estados Ceará (22%), Bahia (22%) e Maranhão (23%). Em 
2011, a produção pesqueira foi em torno de 554 mil toneladas e representa um aumento de 3,2% 
em relação ao ano anterior (IDEMA, 2014). 
Por outro lado, o RN, foi o líder na exportação de pescados gerando U$ 55,8 milhões e 
contribuindo com quase 1,8% da exportação mundial (IBAMA, 2008). Espécies como Ocyurus 
chrysurus (guaiúba), um recurso pesqueiro importante e um dos mais capturados na região 
nordeste, tem seus estoques sobre-explotados desde o ano de 1998, principalmente na costa do 
Ceará, região que teve um maior esforço pesqueiro nas capturas seguido do estado do Rio 
Grande do Norte (FERREIRA et al., 2004; NÓBREGA et al., 2009). 
Assim, a sobreexploração dos estoques pesqueiros, além de comprometer a renda e 
subsistência dos pescadores, afeta outros níveis da economia, pois além de gerar o peixe 
(produto), a pesca fornece serviços auxiliares nas comunidades pesqueiras que estabelecem 
uma cadeia de serviços e de valores. As relações comerciais de recursos pesqueiros e seus 
produtos (óleo e farinha de peixe) aumentaram consideravelmente em muitos países de regiões 
costeiras e tornaram-se fundamentais em suas economias, chegando a representar mais de 40% 
do valor total de mercadoria comercial e contribuindo com 78% do setor mundial de alimentos. 
(FAO, 2016). Portanto, a base da cadeia de serviços do setor pesqueiro é o pescador (produtor), 
e a partir dele outros atores sociais são incluídos nesta cadeia, como os compradores, os 
restaurantes e os consumidores finais (ROY et al., 2009; TEH, 2011). 
Estudos relacionados à cadeia de valores e de serviços da pesca artesanal, seus 
processos, mercado e atores principalmente nos países em desenvolvimento, são recentes porém 
vêm ganhando atenção devido à sua influência no setor socioeconômico (ALINSON, 
2001;BARNES-MAUTHE; OLESON; ZAFINDRASILIVONONA, 2013; BÉNÉ, 2007; 
12 
 
THYRESSON et al. 2013; BJØRNDAL, 2014; BJØRNDAL et al., 2015; BREWER, 2011; 
CHRISTENSEN, 2013). A compreensão da organização e dinâmica dos segmentos da cadeia, 
seus atores e da distribuição de produtos e valores ao longo da cadeia é essencial para se 
compreender o impacto da pesca sobre a segurança alimentar, renda e outras necessidades 
básicas das populações pesqueiras (RODRIGUES & VILLASANTE 2016), bem como para se 
projetar os efeitos da depleção de determinados estoques sobre a comunidade e a economia 
local. 
 No entanto, dados do setor pesqueiro em especial no Brasil, quase sempre são limitados 
à produção pesqueira e com ênfase nos recursos pesqueiros de alto valor comercial da pesca 
industrial, como é o caso dos atuns, que tem comissão própria para análise da composição dos 
estoques dessas espécies como é o caso do International Commission for the Conservation of 
Atlantic Tunas (ICCAT) e do Lutjanus purpureus (pargo) que também tem um grupo de 
estudos, o GPE do Pargo (HAZIN; BROADHURST; HAZIN, 2000; REZENDE & 
FERREIRA, 2000). 
Dados dos desembarques, como os custos, lucro e esforço de captura, tipos de 
embarcações, petrechos de pesca e dados ambientais são bons indicadores sociais, econômicos 
e ecológicos de pescarias em geral, mas se perdem quando não existe boa regulação e registro 
de capturas da atividade. Quando esses indicadores são conhecidos tornam-se uma importante 
ferramenta para a análise econômica na gestão pesqueira, do conhecimento da situação dos 
estoques pesqueiros e consequentemente para garantir a segurança alimentar (CHRISTENSEN 
et al., 2013; CHRISTENSEN; STEENBEEK; FAILLER, 2011; LAM et al., 2011). Contudo, 
há poucos dados disponíveis sobre a pesca artesanal e suas espécies-alvo e estas informações, 
quando existem são pouco ou nada avaliadas. A consequência disto é que a presença, real 
abundância e a disponibilidade de algumas espécies na pesca, bem como de seu status atual de 
conservação podem ser mal informadas ou mesmo desconhecidos entre pesquisadores, gestores 
e pescadores mais jovens antes mesmo que essas espécies sejam avaliadas pela primeira vez. O 
que parece ser o caso, da categoria conhecida como “pargo” espécie de peixe demersal que no 
litoral Nordeste é composta por cinco espécies. Em coletas de desembarques nos estados do 
Ceará, Rio Grande do Norte e Pernambuco os pescadores usaram apenas nomes comuns que 
poderiam agrupar várias espécies como Lutjanus purpureus, Lutjanus vivanus, L. bucanella, 
Etelis oculatus e Rhomboplites aurorubens (REZENDE, 2003). Assim, a atual falta de 
identificação correta das espécies e de bons dados de desembarques limita o entendimento da 
situação dos estoques pesqueiros como aconteceu com outras espécies de Lutjanídeos (Lutjanus 
analis, L.chrysurus e L. synagris) que já eram exploradas pelas frotas costeiras do litoral 
Nordeste mas pela falta de registro, eram agrupadas na categoria “cioba e afins” (REZENDE, 
13 
 
2003).. Com isso os consumidores encontram uma variedade de espécies de peixes 
comercializada com um mesmo nome comum. 
 Atualmente há uma preocupação na comercialização das espécies de peixes com 
algumas medidas comerciais com o intuito de evitar que peixes e produtos pesqueiros de origem 
de uma pesca ilegal, não declarada e não regulamentada (IUU) entrem no mercado 
internacional. Mundialmente estima-se que 25% das capturas se enquadram nas práticas IUU, 
sendo então uma importante ameaça global para a pesca sustentável (FAO, 2009). Por esta 
razão, neste trabalho foi feita uma amostragem sistemática dos desembarques ocorridos no 
porto de Natal com o objetivo de compreender a dinâmica econômica e social desta pesca, e 
determinar casos de não registro para fornecer dados que possam auxiliar na proposição de 
medidas de gestão que permitam que a atividade tenha maior sustentabilidade ecológica e 
econômica no longo prazo. 
 
2. METODOLOGIA GERAL 
A costa do Rio Grande do Norte é formada por dois tipos de litoral, o oriental e 
setentrional (Figura 1). Quinze municípios formam o Litoral Oriental em uma extensão de linha 
costeira de 166 km com orientação Norte-Sul limitado ao sul pela praia do Sagi e ao norte pelo 
Cabo Calcanhar (divisa do RN com PB). A morfologia do fundo é basicamente formada por 
recifes de coral e dunas encontradas à uma distância de 3,24 milhas náuticas da costa e 20 
metros de profundidade. Já o Litoral Setentrional é formado por treze municípios, é limitado a 
este pelo Cabo Calcanhar, município de Touros e a oeste pela praia de Tibau (divisa entre os 
estados do RN e CE) e tem uma linha costeira de 244 km
(VITAL, 2006). 
Estes diferentes setores possuem particularidades climáticas e tectônicas, que exercem 
influência no regime de direção dos ventos e padrão de circulação oceânica, elementos que 
modelam o litoral Norte-Riograndense e determinam a diversidade de ambientes que é 
importante para o estudo da sua ecologia, pois muitos desses ambientes são frágeis e estão em 
um acentuado processo de degradação devido ao aumento da ocupação do espaço, como por 
exemplo os recifes, corais e os estuários (WICANDER & MONROE, 2011). 
14 
 
 
Figura 1. Subdivisões do litoral do Rio Grande do Norte em dois setores, Litoral Setentrional e 
Oriental. Tibau (1), Grossos (2), Areia Branca (3), Porto do Mangue (4), Macau (5), Guamaré 
(6), Galinhos (7), Caiçara do Norte (8), São Bento do Norte (9), Pedra Grande (10), São Miguel 
do Gostoso (11), Touros (12), Rio do Fogo (13), Maxaranguape (14), Ceará-Mirim (15), 
Extremoz (16), Natal (17), Parnamirim (18), Nísia Floresta (19), Senador Georgino Avelino 
(20), Tibau do Sul (21), Canguaretama (22) e Baía Formosa (23). 
 
Devido à essas características, a proximidade com o ponto produtor de atum (Atlântico 
Sul) e a parceria política e econômica entre os empresários japoneses que subsidiam a pesca do 
atum com a inserção de barcos orientais operados por japoneses e brasileiros, o Rio Grande do 
Norte é um dos polos produtores e exportadores de atum, e a sua produção abastece diversos 
estados como São Paulo e Rio de Janeiro além de países como o Japão, Espanha e Estados 
Unidos. 
A maior parte da produção pesqueira é obtida através da pesca artesanal que opera nas 
regiões costeira e oceânica onde a frota pesqueira do Nordeste é a maior em número de 
embarcações e empregos diretos e indiretos. 
A frota artesanal tem atuação ao longo de todo litoral do Rio Grande do Norte e é 
caracterizada por embarcações de pequeno porte, segundo a legislação pesqueira (Lei Federal 
15 
 
11.959/2009), a pesca artesanal é aquela praticada por pescador profissional (registrado), de 
forma autônoma ou no modo de economia familiar, desembarcado ou com embarcações com 
tamanho total menor ou igual a 20 metros (BRASIL, 2009). As atividades de pesca na região 
da costa do Rio Grande do Norte (RN), estão dirigidas a dois tipos de recursos pesqueiros: 
demersais e pelágicos. A pesca demersal contempla a zona costeira do RN com distância média 
de 18 milhas náuticas, e a frota da pesca pelágica atua na região do atlântico sul distante 300 
milhas náuticas da costa do RN, ambas desembarcam no Terminal Pesqueiro de Natal. 
Um importante local de desembarque e comércio é o Terminal Pesqueiro de Natal, que 
abastece o estado e outros países. Está localizado as margens do Rio Potengi, e na principal rua 
de comércio de pescados do município. No terminal pesqueiro existem várias empresas que 
trabalham com recursos pesqueiros demersais e pelágicos, no entanto três delas tem o seu 
abastecimento realizado direto da embarcação para o setor de processamento dos peixes da 
empresa. Estas empresas estão localizadas às margens do Rio Potengi e trabalham em regime 
de parceria com os donos das embarcações fornecendo insumos como combustível e o gelo em 
troca da produção. Além das empresas de processamento de pescados, há um comércio local de 
pequenos comerciantes que vendem os pescados que não foram classificados para a exportação. 
Coletamos dados de duas frotas pesqueiras comerciais que tem como alvo os recursos 
pesqueiros demersais e pelágicos e que desembarcam no Terminal Pesqueiro do município de 
Natal. O Terminal Pesqueiro de Natal é um importante local de comércio de pescados tanto 
para o comércio local quanto para exportação. Lá também existem três empresas que recebem 
as embarcações e sua produção é transportada diretamente para suas fábricas no próprio local 
de desembarque. O comércio de pescados está dividido entre as empresas responsáveis pela 
exportação e comércio local, pequenos comerciantes que ficam no próprio terminal pesqueiro, 
além de compradores de outros municípios e feirantes. 
Para obter conhecimento da dinâmica das frotas utilizamos questionários que foram 
respondidos pelos mestres das embarcações com perguntas direcionadas aos recursos 
pesqueiros que eram desembarcados (nome comum e captura total), ao número de tripulantes, 
aos custos de cada viagem, valor da primeira venda dos peixes, a modalidade da pesca (tipo de 
petrecho), tipo de fundo, distância, profundidade e localização geográfica do local de captura. 
Durante o período de coleta de dados não foi possível entrevistar todos os pescadores, 
principalmente, porque algumas embarcações faziam seu desembarque dentro das empresas 
que compravam sua produção. 
16 
 
Ao todo, 35 desembarques foram registrados, destes 13 para a frota demersal e 22 para 
a frota pelágica. Informações sobre tempo de viagem, localização e características dos 
pesqueiros (profundidade/distância da costa/localização), sazonalidade, modalidade de pesca 
(tipo de apetrecho), espécies capturadas, espécies-alvo, gastos (com combustível, alimentação 
e gelo) e preço de primeira venda foram coletadas para identificar as espécies capturadas, o 
esforço de pesca, a renda e lucro por pescador e as características das áreas de pesca visitadas 
pelas frotas artesanais. Para a composição das espécies capturadas registramos três espécies de 
atum durante os desembarques, apesar do agrupamento realizado pelos pescadores na 
comercialização dessas espécies. 
A coleta de dados foi, inicialmente, programada para ser realizada diariamente, mas a 
dinâmica das frotas era diferente em número de dias de pesca (23 dias frota pelágica e 8 dias 
para frota demersal). Ao final da amostragem, havia sido realizada em 128 dias, de setembro 
de 2016 a setembro de 2017. 
 
 
 
 
 
 
 
 
 
 
 
Check List the journal of biodiversity data
1
First record of Batrachoides surinamensis (Bloch & Schneider, 1801) 
and Canthidermis maculata (Bloch, 1786) (Pisces: Teleostei) from Rio 
Grande do Norte, northeastern coast of Brazil
José Garcia Jr.1, Geovanine Araújo Alves2, 4, Jorge Eduardo Lins Oliveira3 & Adriana Rosa Carvalho2
1 Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus Macau, Rua das Margaridas, 300, CEP 59500-000, 
Macau, RN, Brazil
2 Universidade Federal do Rio Grande do Norte, Fishing Ecology Management and Economics, Department of Ecology, Campus Central, 
CEP 59.098-970 Natal, RN, Brazil
3 Universidade Federal do Rio Grande do Norte, Departamento de Oceanografia e Limnologia, Laboratório de Biologia Pesqueira, Praia de 
Mãe Luiza, s/n°, CEP 59014-100, Natal, RN, Brazil
4 Corresponding author. E-mail: geovaninealves@gmail.com 
Abstract. A new occurrence each of Batrachoides surinam­
ensis and Canthidermis maculata is reported in the northeast-
ern coast of Brazil. This report adds to the known records for 
both species and increases the regional marine fish richness to 
461 species. Following these records, 1.6 tons of C. maculata 
were landed from May 2016 to January 2017, representing more 
than 1,500 individuals caught monthly. While it sheds light on 
the importance of C. maculata, the economic and social role of 
B. surinamensis remains unknown. Likewise, their conserva-
tion status is currently uncertain and further investigation is 
warranted.
Key words. ichthyofauna; marine biodiversity; new record; 
Western Atlantic Ocean; Pacuma Toadfish; Rough Triggerfish
The fish family Batrachoididae is represented in Brazil by 6 
genera and 13 species (Menezes et al. 2003), including Pacu-
ma Toadfish, Batrachoides surinamensis (Bloch & Schneider, 
1801). Batrachoides surinamensis is typically found in shallow 
brackish waters of estuarine environments (Léopold 2004). 
It has been recorded from Central America (Honduras) to 
Brazil (Bahia state) (Collette & Russo 1981; Carvalho-
Filho 1999). The Rough Triggerfish, Canthidermis
maculata 
(Bloch, 1786), is a member of the family Balistidae, which is 
represented in Brazil by 4 genera and 6 species (Menezes et 
al. 2003). Canthidermis maculata is an oceanic pelagic fish 
that has a circumglobal distribution in tropical and temper-
ate seas. In the Western Atlantic, it occurs from New Jersey 
(USA) to Argentina (McEachran & Fechhelm 2005). Here, 
is reported the first record of both species on the coast of Rio 
Grande do Norte state (RN), northeastern Brazil (Fig. 1).
On 10 October 2015, 1 specimen of B. surinamensis (Fig. 2) 
was collected by researchers with trawl net at about 2 m deep 
in Rio das Conchas (05°03ʹ35ʺ S, 036°46ʹ10ʺ W), a river locat-
ed in the city of Porto do Mangue, northern coast of RN. The 
individual was identified as B. surinamensis based on diagnos-
Check List 13(3): 2119, 18 May 2017 https://doi.org/10.15560/13.3.2119
ISSN 1809-127X © 2017 Check List and Authors
3
13
2119
18 May 2017
Figure 1. A. Geographical localization of the Rio Grande do Norte state (RN) in the South America. B. North coast of RN. Red star indicates the site 
where Batrachoides surinamensis was caught. Black star indicates the site where Canthidermis maculata was caught.
Notes oN GeoGraphic DistributioN
mailto:geovaninealves%40gmail.com?subject=
Garcia Jr. et al. | First record of Batrachoides surinamensis and Canthidermis maculata 
 Check List | www.biotaxa.org/cl Volume 13 | Issue 3 | Article 2119 2
tic scheme proposed by Collette & Russo (1981). The main 
morphometric and meristic data (Table 1) observed agree with 
the description reported by these authors. On 19 May 2016, 2 
specimens of C. maculata (Fig. 3) were caught on the surface 
by an artisanal fishing boat with dip nets, at Urca da Conceição 
(04°55ʹ S, 036°05ʹ W), a 20 m deep reef located at 9 nautical 
miles northwest of the city of Caiçara do Norte, northern coast 
of RN. The individuals were identified as C. maculata based 
on characters reported by Moore (1967) and McEachran & 
Fechhelm (2005), with main morphometric and meristic data 
(Table 2) in agreement with the criteria given by these authors. 
All specimens were fixed in 10% formalin, transferred to 70% 
ethanol and deposited in the Fish Collection of Laboratory of 
Fisheries Biology at Federal University of Rio Grande do Norte 
(B. surinamensis, LABIPE 1051, and C. maculata, LABIPE 
1101 and 1102). All morphometric data were taken using digital 
calipers with 1 mm precision and total weight was measured to 
the nearest 1 g using an electronic weighing balance.
The specimen of B. surinamensis was identified based on 
following distinctive characteristics: body with embedded 
small scales with a scaled area on head extending to middle 
of orbit and opercular spine, opercular and subopercular bones 
with 2 spines, 3 dorsal fin spines, and supraorbital and interor-
bital region smooth, without any filament. 
The specimens of C. maculata were identified based on 
following main characteristics: absence of flexible tympanum, 
mouth terminal, 23 or 24 dorsal fin rays, 20 or 21 anal fin rays, 
gray-to-brown body, lighter ventrally and with some light spots 
on the sides and ventral surface of the body.
Batrachoides surinamensis is reported in literature as rang-
ing in Brazil from Amapá to Bahia states and it was recently 
recorded in Amapá (Maia et al. 2016), Pará (Ferreira et al. 
2011), Maranhão (Piorski & Nunes 2010), Piauí (Mai et al. 
2012), Ceará (Osório et al. 2011), Paraíba (Oliveira 2011), Per-
nambuco (Pinto et al. 2015), and Alagoas (Paiva et al. 2013). In 
Figure 3. Canthidermis maculata, 400 mm, LABIPE 1101.
Figure 2. Batrachoides surinamensis, 488 mm, LABIPE 1051.
Table 1. Morphometric and meristic characters of Batrachoides surina-
mensis (LABIPE 1051).
Morphometric Size (mm) Meristic
Total length 488 Dorsal rays 29
Standard length (SL) 422 Anal rays 26
Head length 187 Pectoral rays 22
Head width 110 Upper lateral line pores 55
Orbit diameter 9.5 Lower lateral line pores 53
Interorbital distance (ID) 60 Pectoral fin glands 10
Snout–2D 235 Subopercular spines 2
Snout–A 280.5 Weight (g) 1975
Pectoral length 92
Pelvic length 75
Eye size (% SL) 2.25
Eye in ID 6.35    
Garcia Jr. et al. | First record of Batrachoides surinamensis and Canthidermis maculata 
 Check List | www.biotaxa.org/cl Volume 13 | Issue 3 | Article 2119 3
the conservation status may not represent historical declines. 
In Rio Grande do Norte, fishing activities are considerably 
unregulated, unreported, and to some extent also illegal (Ross 
et al. 2015; Damasio et al. 2015; Bevilacqua et al. 2016). 
Some fisheries and target species are poorly assessed or not 
assessed at all, and the presence, abundance, and availability 
for fisheries of some species might be misreported. Therefore, 
their actual conservation status might have been unknown to 
researchers, fisheries managers, and younger fishers before 
such species were first assessed. This seems to be the case, for 
example, for C. maculata; in data collected from fishers (see 
Damasio et al. 2015), elderly fishers reported high catches of 
triggerfishes prior to 2003 and the complete disappearance of 
current landings. However, fishers used just common names 
(cangulo) and grouped together several species such as Bali­
stes vetula, B. capriscus, and Cantherhines macrocerus. Thus, 
poor historical data on species’ occurrence do not allow for the 
precise identification of species. The implication of this lack 
of historical information is the assumption that C. maculata is 
under Least Concern for the fishery, economy, and conserva-
tion. In general, the major interest in research has been on the 
commercially important fishes, resulting in less research effort 
on non-commercially important species such as C. maculata 
(Abdussamad et al. 2009). 
Nonetheless, there is increasing demand and global exploita-
tion of Rough Triggerfish for human consumption, export, and 
for aquarium purposes (Sahayaki et al. 2014). Consequently, 
this species has economic and social importance for communi-
ties around the Indian, Atlantic, and Pacific oceans, enhancing 
Bahia, the recognized southern limit of the range for this spe-
cies, the only record found was the MCZ Thayer Expedition 
specimen from Salvador city (Collette & Russo 1981). Fol-
lowing the new record described here, Sergipe state currently 
figures as the only gap in this species’ distribution along its 
expected range. Most likely this gap is a consequence of poor 
sampling, mainly in estuarine areas. An increased sampling 
effort in brackish waters of estuarine environments, where the 
species is typically found, would probably fill this gap.
Although the distribution of Canthidermis maculata is 
expected to extend along the entire Brazilian coast, this species 
was only recorded in Bahia (Moraes et al. 2008) and Santa 
Catarina states (Hostim-Silva et al. 2002). In addition, Mur-
ray (1902) reported the occurrence of this species (as Balistes 
maculatus) around Trindade Island, located 1160 km off the 
central coast of Brazil. Herein is reported the third confirmed 
record of C. maculata for the Brazilian coast.
Recently, the coastal fish species of Rio Grande do Norte 
was revised totaling 459 species, including 4 species of batrach-
oidids and 5 balistids (Garcia Jr. et al. 2015). Therefore, the 
new occurrences reported here enlarge the distributions for 
both B. surinamensis and C. maculata and increase the number 
of species in this state to 461 species. 
Even though both species are now listed as Least Con-
cern by the International Union for Conservation of Nature 
(Collette 2010; Leis 2015) and by the Brazilian Red List of 
Endangered Species/BRL-EndS (Decree no. 445; MMA 2014), 
Table 2. Morphometric and meristic characters of Canthidermis maculata.
Morphometric (mm) LABIPE 1101 LABIPE 1102
Total length 400 437
Standard length 335 368
Head length 108 120
Snout length 71 76.5
Body height 127 136
Body width 56 59
Predorsal
distance to first dorsal 110 121
Predorsal distance to second dorsal 190 218
Anteanal distance 216 243
Base length second dorsal 96 99
Base length anal 80 89
Eye diameter 21 27
Interorbital width 39 54
Branchial aperture length 23 26
Length of the first spinous ray first dorsal 37 45
Length of the longest ray second dorsal 66 85
Length of the longest ray anal 64 70
Distance between first and second dorsal 59 66
Length of the longest ray pectoral 33 38
Length of caudal 56 63
Caudal peduncle height 37 41
Caudal peduncle length 47 52
Meristic    
First dorsal spines 3 3
Second dorsal rays 24 23
Anal rays 21 20
Pectoral rays 14 14
Caudal rays 5+5 5+5
Lateral line scales 46 49
Weight (g) 970 1345
Figure 4. Canthidermis maculata landed on 2 March 2017 in the main port 
of Rio Grande do Norte state. The photo shows roughly 100 individuals. 
Total landings recorded in this date reached 600 kg of the species. 
Garcia Jr. et al. | First record of Batrachoides surinamensis and Canthidermis maculata 
 Check List | www.biotaxa.org/cl Volume 13 | Issue 3 | Article 2119 4
the accumulation of biological and ecological information 
(Sahayaki et al. 2014; Lezama-Ochoa et al. 2016). Follow-
ing this trend, after this first record of C. maculata, during 5 
months of ongoing landing records, we recorded the landing 
of 1.6 tons of this species at the main port of RN state (230 
km from the record reported herein) (Fig. 4). On average, this 
represents 230 kg of C. maculata landed monthly and roughly 
more than 1500 individuals caught per month in the northeast-
ern coast of Brazil. Therefore, we are optimistic that the new 
record reported here and the record of these landings will boost 
interest in better understanding the importance of C. maculata 
in the Western Atlantic. However, while the records presented 
here sheds light on the importance of C. maculata, the eco-
nomic and social role of B. surinamensis remains unknown. 
Likewise, their conservation status is currently unsure and war-
rants further investigation.
LITERATURE CITED 
Abdussamad, E.M., K.K. Joshi, P.U. Zacharia & K. Jayabalan. 
2009. Emergence of triggerfishes (Family: Balistidae) as an 
alternate lucrative target fishery for trawls along the Tuticorin 
coast of Gulf of Mannar. Marine Fishery Information Services, T 
& E Series 199: 3–6.
Bevilacqua, A.H.V., A.R. Carvalho, R. Angelini, & V. Christensen. 
2016. More than anecdotes: fishers’ ecological knowledge can fill 
gaps for ecosystem modeling. PloS ONE 11: e0155655. https://doi.
org/10.1371/journal.pone.0155655 
MMA - Ministério do Meio Ambiente. 2014. Lista Nacional Oficial 
de Espécies da Fauna Ameaçadas de Extinção. Portaria No. 445 
de 17 de dezembro de 2014, (Brazil’s Red List). Accessed at 
http://www.mma.gov.br/biodiversidade/especies-ameacadas-de-
extincao/fauna-ameacada, 24 January 2017.
Carvalho-Filho, A. 1999. Peixes da costa brasileira. São Paulo: 
Editora Melro. 320 pp.
Collette, B. B. & J.L.Russo.1981. A revision of the scaly toadfishes, 
genus Batrachoides, with descriptions of two new species from the 
eastern Pacific. Bulletin of Marine Science 31: 197–233.
Collette, B.B. 2010. Batrachoides surinamensis. The IUCN Red 
List of threatened species 2010: e.T154930A4670747. https://doi.
org/10.2305/iucn.uk.20104.rlts.t154930a4670747.en 
Damasio, L.D.M.A., P.F. Lopes, R.D. Guariento & A.R. Carvalho. 
2015. Matching fishers’ knowledge and landing data to overcome 
data missing in small-scale fisheries. PloS ONE 10: e0133122. 
https://doi.org/10.1371/journal.pone.0133122 
Damasio, L.D.M.A., A.R. Carvalho, P.F. Lopes, M.G. Pennino & 
U.R. Sumaila. 2016. Size matters: fishing less and yielding more 
in smaller-scale fisheries. ICES Journal of Marine Science 73: 
1494–1502. doi.org/10.1093/icesjms/fsw016 
Ferreira, L.N., B. Bentes, G. Sarmento, P.A. Cruz & S. Leão. 2011. 
Ecological characterization of the by-catch ichthyofauna in marine 
shrimp manual trawling on the Caeté river estuary (Bragança - 
Pará - Brasil). Uakari 7: 7–17.
Garcia Jr., J., M.F. Nóbrega & J.E.L. Oliveira. 2015. Coastal fishes 
of Rio Grande do Norte, northeastern Brazil, with new records. 
Check List 11(3): 1–24. https://doi.org/10.15560/11.3.1659 
Hostim-Silva, M., J. Fontes, P. Afonso, N. Serpa, C. Sazima, J.P. 
Barreiros & I. Sazima. 2002. Plataformas de Petróleo - Pontos de 
Encontro de Peixes em Alto-Mar. Ciência Hoje 31: 20–26.
Leis, J.L., K. Matsuura, K.-T. Shao, G. Zapfe, M. Liu, L. Jing, J. 
Tyler & R. Robertson. 2015. Canthidermis maculata. The IUCN 
Red List of threatened species 2015: e.T190444A1952236. https://
doi.org/10.2305/Iucn.Uk.20154.Rlts.T190444a1952236.en 
Léopold, M. 2004. Poisson de mer de Guyane. Paris: Éditeur Ifremer. 
216 pp.
Lezama-Ochoa N., H. Murua, G. Chust, E. Van Loon, J. Ruiz, M. 
Hall, P. Chavance, A.D. De Molina & E. Ernesto Villarino. 
2016. Present and future potential habitat distribution of Carcharhi­
nus falciformis and Canthidermis maculata by-catch species in the 
tropical tuna purse-seine fishery under climate change. Frontiers in 
Marine Science 3: 1–16. https://doi.org/10.3389/fmars.2016.00034 
Mai, A.C.G., T.F.A. Silva & J.F.A. Legat. 2012. Assessment of the 
fish-weir fishery off the coast of Piauí state, Brazil. Arquivos de 
Ciências do Mar 45: 40–48. 
Maia, B.P., Z.M.P. Nunes, F.C.A.F. Holanda, V.H. Silva, & B.B. 
Silva. 2016. Gradiente latitudinal da beta diversidade da fauna 
acompanhante das pescarias industriais de camarões marinhos 
da costa norte do Brasil. Biota Amazônia 6: 31–39. https://doi.
org/10.18561/2179-5746 
McEachran, J.D. & J.D. Fechhelm. 2005. Fishes of the Gulf of 
Mexico. Vol 2. Austin: University of Texas Press. 1004 pp.
Menezes, N.A., P.A. Buckup, J.L. Figueiredo & R.L. Moura. 2003. 
Catálogo das espécies de peixes marinhos do Brasil. São Paulo: 
Museu de Zoologia de Universidade de São Paulo. 159 pp.
Moore, D. 1967. Triggerfishes (Balistidae) of the western Atlantic. 
Bulletin of Marine Science 17: 689–722.
Moraes, L.E., P.R.D. Lopes, C.C. Martins, & J.T. Oliveira-Silva. 
2008. Registro de juvenil de Canthidermis maculata (Bloch) 
(Actinopterygii: Balistidae) na Praia de Berlinque, Ilha de Itapa-
rica, Bahia. Boletim SBI 93: 6–7.
Murray, G. 1902. The voyage southward of the Discovery—II. From 
Madeira to the Cape. The Geographical Journal 19: 423–435.
Oliveira, R.E.M.C.C. 2011. Composição, estrutura e efeito do grau 
de exposição às ondas sobre a comunidade de peixes do estuário 
do Rio Mamanguape, Paraíba – Brasil. Trabalho de conclusão de 
curso. Campina Grande: Universidade Estadual da Paraíba. 64 pp.
Osório, F.M., W.O. Godinho & T.M.C. Lotufo. 2011. Ictiofauna 
associada às raízes de mangue do Estuário do Rio Pacoti – CE, 
Brasil. Biota Neotropica 11(1): 415–420.
Paiva, A., P.T. Chaves & M.E. Araújo. 2013. Distribution of estuarine 
fish fauna along coast of Brazil. Tropical Oceanography 41: 1–36. 
https://doi.org/10.5914/to.2013.0076 
Pinto, M.F., J.S. Mourão & R.R.N. Alves. 2015. Use of ichthyo-
fauna by artisanal fishermen at two protected areas along the coast 
of Northeast Brazil. Journal of Ethnobiology and Ethnomedicine 
11(20): 1–32. https://doi.org/10.1186/s13002-015-0007-5 
Piorski, N.I. & J.L.S. Nunes. 2010. A case of albinism in Batrachoides 
surinamensis (Batrachoidiformes: Batrachoididae) from north-
eastern Brazil. Marine Biodiversity Records 3: e99. https://doi.org/ 
10.1017/S1755267210000746 
Roos, N.C., A.R. Carvalho, P.F. Lopes & M.G. Pennino. 2015. 
Modeling sensitive parrotfish (Labridae: Scarini) habitats along 
the Brazilian coast. Marine Environmental Research 110: 92–100. 
https://doi.org/10.1016/j.marenvres.2015.08.005 
Sahayak, S., K.K. Joshi & V. Sriramachandramurty. 2014. Taxon-
omy of the Ocean Triggerfish, Canthidermis maculata (Tetradon-
tiformes, Balistidae) from the Indian coast. Journal of the Marine 
Biological Association of India 56: 56–61. https://doi.org/10.6024/
jmbai.2014.56.2.01770A-08
Authors’ contributions: ARC and JGJr conceived
and designed the 
sampling, JGJr and GAA collected the data, JGJr, GAA and JELO 
identified the specimes, and JGJr and ARC wrote the text. 
Received: 31 January 2017
Accepted: 30 March 2017
Academic editor: Hudson T. Pinheiro
http://www.mma.gov.br/biodiversidade/especies-ameacadas-de-extincao/fauna-ameacada
http://www.mma.gov.br/biodiversidade/especies-ameacadas-de-extincao/fauna-ameacada
https://doi.org/10.2305/iucn.uk.20104.rlts.t154930a4670747.en
https://doi.org/10.2305/iucn.uk.20104.rlts.t154930a4670747.en
https://doi.org/10.1093/icesjms/fsw016
https://doi.org/10.2305/Iucn.Uk.20154.Rlts.T190444a1952236.en
https://doi.org/10.2305/Iucn.Uk.20154.Rlts.T190444a1952236.en
https://doi.org/10.3389/fmars.2016.00034
https://doi.org/10.18561/2179-5746
https://doi.org/10.18561/2179-5746
https://doi.org/10.5914/to.2013.0076
https://doi.org/10.1186/s13002-015-0007-5
https://doi.org/10.1017/S1755267210000746
https://doi.org/10.1017/S1755267210000746
https://doi.org/10.1016/j.marenvres.2015.08.005
https://doi.org/10.6024/jmbai.2014.56.2.01770A-08
https://doi.org/10.6024/jmbai.2014.56.2.01770A-08
21 
 
CAPÍTULO 2 
The effect of market opportunities on the unreported fishing resources 
Geovanine Araújo Alves1* and Adriana Rosa Carvalho2 
 
Este artigo será submetido à revista Marine and Coastal Fisheries e, portanto, está formatado 
de acordo com as recomendações desta revista. 
 
1, 2 Universidade Federal do Rio Grande do Norte, Fishing Ecology Management and 
Economics – FEME (http://feme-group.blogspot.com.br), Dept. of Ecology, Campus Central. 
CEP 59.098-970 Natal/RN, Brazil. 
*Corresponding author: Email: geovaninealves@gmail.com 
 
 
 
 
 
 
 
 
http://feme-group.blogspot.com.br/
mailto:geovaninealves@gmail.com
22 
 
Abstract 
This study investigated the landings in the main port at the region along one year with 
respect to the marine resources exploited and economic aspects such as the landing value 
and the economic incentives to exploit the most caught species. Here by monitoring 35 
landings in the central wharf in one of the main capital in the northeastern coast of Brazil, 
we found out that the small-scale fishery has reached markets outside northeast region 
and abroad by delivering the catch into three local fishing companies. Most of the catches 
are made up of pelagic fishes exploited by a specific fleet operating offshore and targeting 
tuna and tuna-like species. Pelagic resources are comprised by only six (to eight) species 
and are always landed into the fishing companies making these landings suitably reported 
(by export taxes paid and invoice) beyond being protected by international committee 
and quota while demersal resources, largely made up of reef species, are mostly directed 
to local market (70%) representing nearly 320 tons of unreported fish annually landed 
just in Natal harbor. Demersal species acquired by fishing companies are S. axillare, C. 
fulva, P. maculatus, and Acanthurus chirurgus, which supply directly USA market. Some 
dermesal species are traded in a basket of mixed species, and referred as one single 
species, inducing to the mislabeling. We envision that local marine fish, specially 
demersal fish, can only be protected for the future under management measures that 
include regulation of fish species allowed for retailers and mainly to fishing companies. 
By changing the pursuit of fish species by fishing companies in the ground, rules are likely 
to change the fishers search for species in the ocean. 
Key words: artisanal fishing; unreported fish; pelagic; demersal; composition; mislabeling 
 
 
 
 
 
 
 
 
 
23 
 
INTRODUCTION 
Small-scale fishery fleets around the world are usually small, distributed by many 
habitats and decentralized post-harvest, consequently landing in places where 
production is sold directly to local markets (Alarco’n-Urbistondo, 2002; Salas et al., 2007). 
In developing regions these fisheries face many ecological and operational challenges to 
decide when to fish, where to fish, what to target, where fish are landed and to achieving 
sustainable fisheries (Asche et al., 2015; Cisneros-Montemayor et al., 2018). 
However, globalization of seafood markets turned fisheries on an increasingly 
competitive activity reaching 15% of average animal protein consumption worldwide and 
showing increased real prices for fish products (FAO, 2010; Tveteras et al., 2012; Asche 
et al., 2015). The economic incentives for small-scales fisheries prompted by the growing 
demand for consumption enlarge, widening the system of opportunities for exploitation 
and trading of catches. However, resource exports through access to markets are prone 
to cause declines in local resources (Brewer et al, 2012) and may undermine efforts to 
regulate and report catches from legal fisheries. 
Currently official fisheries catch records underestimate global trends of declining 
catch and illegal or unreported catches (Pauly and Zeller, 2016). These missing data 
implies in lost of ecological information on impacts from fisheries but also in substantial 
undervaluation of the seafood sector. In developing countries, such inefficiencies 
disregard in official statistics the biomass removed from the marine environment and 
significantly overlook the contribution of small-scale to many levels of the economy, to 
species conservation and most to unreported legal and illegal catches, which has 
ramifications for social and economic policy (Brewer et al., 2012; Asche et al., 2015; 
Cisneros-Montemayor et al., 2018). 
 
Small-scale fishery represents an important part of Brazil's fisheries, since this fleet is 
responsible for more than half of the fishery production (Colloca et al, 2004; Forcada, 
2010). Operation of this fleet is no longer local but may exceeds the limits of the exclusive 
economic zone of Brazil (200 nautical miles) due to the still limited, but growing access to 
the technologies that are used in industrial fishing, such as the use of sonar to detect the 
presence of schools, GPS to access and register the site of capture and use of radio for 
communication (Freire and Garcia-Allut, 2000; Tzanatos et al., 2005, 2006). 
24 
 
In an attempt to estimate the unreported legal fishery catches in the northeasthern coast 
of Brazil, we monitored the landings in the main port at the region along one year. We 
expected to register fisheries harvesting upon either demersal or pelagic marine 
resources, estimate the landing value per year and indicated the amount of unreported 
fishery, specifically underlining the conservation status and the economic incentives to 
exploit the most caught species. 
 
Study area 
Fishery data were sampled in Natal municipality, which is located in the extreme 
northeast of Brazil and has a total of 410 km of coastline along its eastern and northern 
region (Vital, 2006). The small-scale fishing is an important economic activity in the state 
that employs 20 thousand people directly and support nearby 65 thousand ones who rely 
in the sector (Brazil, 2011). Fishery produces around ~20% of nationwide total catches 
(IDEMA, 2014) and Rio Grande do Norte state is responsible for 17% of marine products 
exported. 
The city holds the main landing port and the main market center, which 
concentrates from small traders to medium and large companies of the fishing sector in 
the state of Rio Grande do Norte (Izquierdo et al., 2011). Three fishing companies are 
operating in the small-scale fishing sector and one operats in the industrial fishing sector. 
All fish caught by small-scale fishery in Natal is landed either in the local docks or into one 
of the three small-scale fishing companies. 
When not suitable for exporting by the companies, the fish is directed to local 
commerce. The fish landed in the local docks is sold from the boat to consumers, at fishers’ 
homes or at the street markets around the harbor. If landed within the
companies, the fish 
is exported countrywide (mainly São Paulo and Rio de Janeiro) and abroad (USA, Japan 
and Spain). 
The fishing activities in the region target demersal or pelagic marine resources. 
Small-scale fishery in the state harvests both categories of resources operating at diverse 
fishing grounds targeting upon a myriad of invertebrate and vertebrate marine species. 
Beyond targeting sardines and flying fish, local fishery turned the state in the second 
largest producer of lobster and the fourth largest producer of octopus. Local fishery also 
exploits oysters, clams, crabs (Leite et al., 2008; IBAMA, 2010; Brasil, 2011) and 461 
25 
 
marine fish species (Garcia Jr et al. 2017). The small-scale fleet that fishes in the Natal 
shore is comprised by boats sizing maximum 20 meters, which may operate even beyond 
the Exclusive Economic Zone (EEZ) that extends to the 200 nautical miles. The fleet 
exploiting demersal species covers an average distance of 18 nautical miles (≈33.3 km), 
while the fishing fleet exploiting pelagic resources operates far the EEZ, till 300 nautical 
miles from the coast (≈555.6 km). 
Data survey 
We actively searched for the small-scale commercial fleets landing in Natal harbor, 
from September 2016 to September 2017 and personally interviewed the fisher in charge 
of the fishing vessel in the docks. Regardless the catch would be traded inside the fishing 
companies or in the local commerce, we collect information on the fishing trip, its 
production, costs and economic returns. Data on fishery trip included the boat size, the 
fishing grounds exploited, bottom type, gear used, distance traveled, depth of hauls and 
the number of crewmembers. After have recorded data on the total catch landed and 
production by species, the fishers also informed on the ex-vessel price/species. The data 
sampling was approved according to the guidelines of the Committee of Ethics at the 
Federal University of Rio Grande do Norte (Protocol of approval No. 
48378415.9.0000.5537) and may be available under a specific request and justification, 
to protect the likely private information provided by interviewees. 
 
Estimating economic data 
These data were mainly the revenue, the cost and the profit per vessels. To these 
estimates, fleets were split in demersal and pelagics fisheries according to the gear used 
and mainly the fishing grounds exploited. The revenue was calculated by multiplying the 
ex-vessel price by the amount of fish caught. The estimation was given as follows: 
𝑅𝑖 = Σ 𝑃𝑆𝑖 ∗ 𝐶𝑆1 
where Ri is the revenue per vessel at each fishing trip, Ps is the ex-vessel price of 
each species per kilogram recorded during the fish trade and Cs is the total catch landed 
per species at each fishing trip per vessel. Information on fishing capture was precisely 
recorded during weighing before each vessel delivers its catches into fishing companies 
or in the local commerce. During the negotiation, we were able to note the quantity 
captured by species and the amount paid by the buyers per each species. The fisher in 
26 
 
charge of the vessel precisely informed the expenses with ice, food and total of fuel used 
at each fishing trip (fixed costs) as well as the costs for maintenance of the vessel and 
eventually the gears replacement for the fishery (variable cost). To each vessel we 
recorded the amount of fuel used (in liters) and estimated the value spent. The average 
price for diesel in the state of Rio Grande do Norte in the period of the study was used to 
estimate the total of fuel expenses. The total cost function was the estimated as follows: 
Ci = Cf + Cv 
where Ci represented the total cost per vessel at each trip, Cf represented the fixed 
costs and CV was the number on variable costs. We represent the costs per trip for each 
vessel by simply adding the fixed cost to the variable cost per vessel at each trip. The 
average cost was estimated per demersal and pelagic fishery, dividing the total cost 
assessed to each fishery by the number of boats operating in each one. 
The profit per fishing trip (Pi) was then calculated by subtracting the total cost 
from the total revenue per trip for each vessel, i.e. Pi = Ri – Ci. We estimated the average 
profit per fishery by dividing the total profit per fleet by the number of vessels operating 
in demersal or pelagic fisheries. 
We used the total cost per vessel (Cv) and the number of species caught per vessel 
(Sv) to estimate the cost per species (Csp) using the formulae: Csp = Cv/ton The profit per 
species (Psp) was then estimated by subtracting the revenue obtained per species in each 
vessel from the Csp as follows Psp = Rsp − Csp. The average Psp was estimated using the total 
Psp of either demersal or pelagic fleet divided by the number of vessel operating per fleet. 
We evaluate the profit per species only for those species comprising more than 70% of 
total biomass caught, given that the remaining biomass encompassed species of least 
economic importance. 
The CPUE for the two fleets operating in the region was calculated by the ratio 
between the total catch (kg) of each fleet and the effort calculated by the total number of 
crewmembers multiplied by the total of fishing hours. Likewise, the profit of the fleets 
was estimated standardized by the effort and is given by the ratio of profit per effort 
(PPUE = profit / crew number x total hours fished). Economic estimates presented were 
converted to US dollars (USD) according to the exchange rate on April 24th, 2018 (USD 
1.00 = BRL 3.47). 
 
27 
 
 
Aiming to estimate the expenses per unit of effort (EPUE) to exploit each species 
landed, the cost at each fishing trip for exploiting every species landed per vessel was 
divided by the unit of effort (crew number multiplied by the hours fished in that specific 
fishing trip). The cost for exploiting each species landed was calculated based on the 
proportion of each species caught in relation to the total cost for a given trip. Likewise, 
we estimated the PPUE (profit per unit of effort) to each species by dividing the catch per 
species landed by the total profit produced by each fishing trip. 
Differences among profit values in both fisheries were explored by Kruskal-Wallis 
tests, as the data did not show a normal distribution, despite any logarithmic 
transformation. Aiming to adjust the number of economic returns among fisheries, earns 
were randomly chosen using the “samples” function in R (R development Team, 2012). 
Pair-wise comparisons were computed using the Dunn test to determine which profit 
values were significantly different. 
 
RESULTS 
Catches of demersal and pelagic species 
The small-scale fishery is characterized by commercial fishing vessels exploiting 
on demersal fish species in coastal areas and vessels harvesting on pelagic fishes in 
oceanic areas (Figure 1). The demersal fishery operates from 25 km to up to 97 km from 
the coast (average distance ≈37,8 km) and exploits 22 demersal species, which represents 
8% of total catch (Table 1). The pelagic fishery operates in average up to 663 km from 
the coast (min: 201km; max: 11,980km) to harvest on six pelagic species (92% of total 
catch) although their fishing target is tuna species (80,9%, Table 1). 
 
 
 
 
28 
 
Resources 
Demersal 
Pelagic 
 
 
 
 
 
 
 
 
Figure 1 – Area of distribution and capture of demersal and pelagic resources landing in 
Natal harbor, from September 2016 to September 2017. 
Fish species harvested yielded roughly 5,6 thousand tons of fish landed by both 
fleets in total. Biomass of pelagic species was 11-fold greater than the amount of demersal 
species caught (Table 1). Annual fishing landings monitored comprised 128 days in which 
28 species and 13 families were recorded (Table 2). 
Table 1 – Average values of annual biomass and economic returns from
demersal and 
pelagic fishery operating in the South Atlantic (northeastern of Brazilian shoreline). 
 Pelagic 
(Oceanic fleet) 
Demersal 
(Coastal Fleet) 
Total Proportion 
Catch/boat (ton) 350.6 38.2 388.8 9.1 
Cost per boat (USD) 17,359.25 2,268.13 19,627.38 7.7 
Profit per boat (USD) 44,003.10 1,733.54 45,736.65 25.4 
Total catch/year (ton) 5,200 460 5660 11.3 
Total cost/year (USD) 260,388.86 27,217.57 287,606.44 9.5 
Total profit/year (USD) 660,046.58 20,802.59 680,849.17 31.7 
CPUE (kg/fisher×hrs) 132.5 74.9 207,40 -- 
 
The demersal fishery operates with 12 vessels of 11 meters (± 1,34) and storage 
capacity up to 10 tons. Fishing trips take approximately 4 hours (min: 2.5h-max: 12h) to 
reach the fishing grounds at an average depth of 41 meters (min: 23m; max: 58m) and last 
29 
 
in average 8 days. This fishery employs c.a. 48 fishers exploiting demersal fish species 
along the coast (4 fishers/boat). 
Total demersal fishery production is around 459,840.00 kg/year (≈ 460ton/yr) 
using only traps. The average annual CPUE was 74.9kg/fisher×h (±0.77). Fishers reached 
higher CPUE on May, June, and September. Overall fishing pressure of coastal fisheries 
falls on reef species, which account for 86,3% of catches and represents almost half of 
total fish biomass landed by the demersal fleet (46,3%). Nearly half of demersal species 
(45,2%; 20,1tons) are made up by the mixture of four species (71,6%) and the 
parrotfishes (29,4%; Table 2). 
The pelagic fishery operates with 15 vessels that size around 14,7 meters (± 1.92) 
and maximum storage capacity of 50 ton (± 9 ton). Fishing trips lasts in average for 20 
days. Vessels take in average 3 days to reach the fishing grounds at an average depth of 
2,876 meters (min: 1.400m; max: 3000m). The fleet counts with c.a. 105 fishers to harvest 
on pelagic fish species (7 crewmembers/boat). 
Pelagic species are exploited by handline and produce a total catch estimated in 
5,259,127.50 kg per year (roughly 5,2 thousand ton). Average CPUE was 132.5 
kg/fisher×h (±1.42). Highest CPUEs were achieved on March and May. Most of catches is 
made up of tuna species (74%), which are the main species targeted by the pelagic fleet 
(Table 2). 
Table 2 – Demersal and pelagic species caught from September 2016 to September 2017 
in Natal harbor, northeast of Brazil ( 1 Species comprising the group known as mixture of 
species). % Total – inform the percentual using the total biomass landed, regardlees if 
coastal or oceanic. %FishC – refers to the percentual by fish species category, i.e. the 
percentual that each species represents from the total of pelagic or demersal species 
caught. 
 
Gear 
Depth 
(m) 
Distance 
(km) 
Fishing Composition 
Vernacular name 
English/Portuguese 
% 
Total 
% 
FishC 
H
an
d
lin
e 
(p
el
ag
ic
 s
p
ec
ie
s)
 
2876,1 
+679,6 
358,5 
+255,7 
Thunnus spp (T.obesus and T. 
alalunga) 
Tuna/Atum 45,5 50.8 
Thunnus albacare Yellowfin tuna/Albacora 26,9 29.8 
Katsuwonus pelamis (Linnaeus, 1758) Skipjack tuna/Bonito listrado 15,0 16.6 
Canthidermis maculata (Bloch, 1786) Rough triggerfish/Cangulo de fundo 1,8 1.9 
Coryphaena hippurus Linnaeus, 1758 Dolphin fish/Dourado 0,6 0.7 
Elagatis bipinnulata (Quoy & Gaimard, 
1825) 
Rainbow runner/Peixe rei 0,2 0.2 
30 
 
 
 
Biomass traded and economic returns 
Almost the entire 5,200 thousand tons of pelagic species caught per year (80%) 
were landed within the fishing companies and sold outside the state or abroad. On the 
other hand, mostly the 460 tons of demersal species caught (70%) are sold in the local 
market. In both cases, the species of greater production do not correspond entirely to the 
species lending higher economic returns. Amongst the three most landed pelagic species, 
fishers would make profits if harvesting just tuna or yellowfin tuna alone but not if 
exploiting only the skipjack tuna. Similarly, even though the mixture of species yields the 
greater catch among demersal species (¼ of total biomass caught), the exploitation only 
upon the group would not return any profits (Figure 2). 
 
Tr
ap
 
(d
em
er
sa
l s
p
ec
ie
s)
 
41 
(+10,8) 
21 
(+10,3) 
Calamus penna (Valenciennes, 1830)1 Sheepshead porgy/Peixe pena 
2,5 31. 3 
Bodianus rufus (Linnaeus, 1758)1 Spanish hogfish/Budião 
Halichoeres brasiliensis (Bloch, 1791)1 Brazilian wrasse/Budião bispo 
Halichoeres dimidiatus (Agassiz, 1831)1 Brazilian wrasse/Budião bispo 
Sparisoma axillare (Steindachner, 1878) Gray parrotfish/Budião batata 1,0 12.5 
Haemulon plumierii (Lacepède, 1801) White grunt/Biquara 1,0 12.5 
Cephalopholis fulva (Linnaeus, 1758) Coney/Piraúna 0,8 10.0 
Pseudupeneus maculatus (Bloch, 1793) Spotted goatfish/Saramunete 0,6 7.5 
Ocyurus chrysurus (Bloch, 1791) Yellowtail snapper/Guaiúba 0,6 7.5 
Lutjanus analis (Cuvier, 1828) Mutton snapper/Cioba 0,4 5.0 
Acanthurus chirurgus (Bloch, 1787) Doctorfish/Caraúna 0,3 3.7 
Lutjanus synagris (Linnaeus, 1758) Lane sanpper/Ariocó 0,3 3.7 
Balistes capriscus Gmelin,1758 Gray Triggerfish/Peixe porco 
0,2 2.5 
Balistes vetula Linnaeus, 1758 Queen Triggerfish/Cangulo rei 
Melichthys niger (Bloch, 1786) Black Triggerfish/Cangulo 
Xanthichthys ringens (Linnaeus, 1758) Sargassun Triggerfish/Cangulo guiné 
Aluterus monoceros (Linnaeus, 1758) Unicorn leatherjacket filefish/Cangulo 
Aluterus schoepfii (Walbaum, 1792) Orange filefish/Cangulo folha 
Aluterus scriptus (Osbeck, 1765) Scribbled leatherjacket filefish/Cangulo 
Cantherhines macrocerus (Hollard Whitespotted filefish/Cangulo espora 
Cantherhines pullus (Hollard, 1853) Orangespotted filefish/Cangulo de chifre 
31 
 
 
 
 
 
 
 
 
Figure 2 – Biomass (kg) caught and profit (USD) reaped by the species comprising ≥ 70% of total 
catch landed in Natal harbor, northeastern of Brazil from 2016 to 2017. 
Economic returns are greatly different among pelagic species (Kruskal-Wallis chi- 
squared; p-value < 0.001) and among demersal fishery (Kruskal-Wallis chi- squared; p-
value < 0.001) and, as expected, between the fisheries (Kruskal-Wallis chi- squared; p-
value < 0.001). While in pelagic fishery tuna and yellowfin tuna fishery reap greater 
profits, in demersal fishery 84% of profits comes from parrotfishes (34%), Ocyurus 
chrysurus (28,2%) and Cephalopholis fulva (21%). The species Pseudupeneus maculatus 
(14,8%) and Haemulon plumierii 1.2% lend the remaining profits. Five demersal species 
would produce any profits if exploited as target species and are exploited just by the 
opportunity of been caught (mixture of species, Lutjanus analis, Acanthurus chirurgus, 
triggerfish/filefish and Lutjanus synagris (Supplementary figures). 
Total profits produced by the trading of pelagic species were $229.108,348,00 
while total profits produced by the trading of demersal species was $10.401,30 (Table 1; 
Figure 3 and Figure 4). On the other hand, overall costs estimated to both fisheries were 
UDS 287,606.45. Total cost to exploit upon pelagic species is roughly 10-fold higher than 
the cost to harvest upon demersal species. 
32 
 
Figure 3 - Relation between catch percentage, profit per unit of effort (PPUE) and costs 
per unit effort (GPUE) for pelagic fishing of the main target species: (A)Thunnus obesus 
and T. alalunga; (B) T. albacares and (C) Katsuwonus pelamis). 
A 
B 
C 
33 
 
 
0
5
10
15
20
25
30
1 2 3 4 5 6 7 8 9 10 11 12 13
Number of landings
D
%Catch_ %PPUE %EPUE
0,0
5,0
10,0
15,0
20,0
25,0
30,0
35,0
1 2 3 4 5 6 7 8 9 10 11 12 13
%
Number of landings
C
%Catch %PPUE %EPUE
0
10
20
30
40
50
60
70
1 2 3 4 5 6 7 8 9 10 11 12 13
B
Figure 4 - Relation between catch percentage, profit per unit of effort (PPUE) and costs per unit effort (GPUE) for demersal fishing of the main 
target species: (A) Mixture of species (Calamus penna, Bodianus rufus, Halichoeres brasiliensis and Halichoeres dimidiatus), (B) Sparisoma sp, 
(C) Ocyurus
chrysurus and (D) Cephalopholis fulva. 
0
5
10
15
20
25
1 2 3 4 5 6 7 8 9 10 11 12 13
%
A
34 
 
Discussion 
But here, by monitoring the central wharf in one of the main capital in the northeastern 
coast of Brazil, we found out that the small-scale fishery has reached markets outside 
northeast region and abroad by delivering the catch into three local fishing companies. Most 
of the catches are made up of pelagic fishes exploited by a specific fleet operating offshore 
and targeting tuna and tuna-like species. Small-scale fishers, by its physical remoteness, 
spread landings and low capacity are often taken in disadvantage to access large market, 
mainly when competing with large-scale industrial fleets (Sumaila & Pauly, 2006). 
Pelagic resources are comprised by only six (to eight) species and are always landed 
into the fishing companies. The purchase by these companies implies in tax payments and 
emission of export invoices, making at some extent, mandatory the report of pelagic resources 
exploited. Mainly tuna species caught offshore Natal despite being considered as near 
threatened or vulnerable (such as Thunnus obesus), are suitably reported (by export taxes paid 
and invoice) beyond being protected by international committee and quotas. As companies 
keep tuna-like species and large and red-fleshed tuna species, only a minor portion of pelagic 
catches are directed to local market, where it becomes totally unreported. 
However, demersal resources, largely made up of reef species, are mostly directed to 
local market (70%) representing nearly 320 tons of unreported fish annually landed just in 
Natal harbor. Demersal species acquired by fishing companies (~30%) are S. axillare, C. fulva, 
P. maculatus, and Acanthurus chirurgus. These reef resident species or reef associated species 
supply directly USA market and either because the fish arrived filleted, peeled or for reasons 
of simplification of sale, fishers may offer to fishing company’s different species as if they were 
one single species. Indeed, in the USA more than one third of all fish may be mislabeled and 
renaming is also common for many fish species (Tennyson et al., 1997; Jacquect et al. 2009). 
Seafood market growth globally is worrisome for demersal fish resources, which are 
associated to reef areas, estuaries and other patchy coastal environments that are under 
intense anthropogenic-induced stress. For example, fish intake in the USA and China have 
reached five-fold the consumption from 100 years and from 60 years ago respectively 
(Halweil, 2006; NMFS, 2006). The demersal resources mainly comprised by coral reef fish 
35 
 
species or even whole functional groups being increasingly exploited (Jackson et al. 2001; 
Micheli et al. 2005). 
Even though the fishing companies enlarge market access making reef fish increasingly 
global assets (Sadovy et al., 2002), the opportunities of data reporting in northeastern coastal 
areas of Brazil, is evaded by misleading information during export or simply lost in reason of 
the lack of regulation and inconsistencies of fisheries data countrywide. Regardless traded in 
local or external market, demersal resources recorded here represent an unreported legal 
catch. The attention in management and conservation of these resources is diverted under 
the shadows of deregulation, mislabeling and undetermined economic benefits. 
From an economic point of view, the trading of demersal species at local market 
provides the flow of around USD 15,000/year. Fishing companies, reaps ~USD 6,000 thousand 
per year from demersal species trading, which represents 1% of total profit gained by pelagic 
species trade. Adding our records to other previous data collected in one site in the south of 
the state and one in the north (Roos et al. 2016; Bevilacqua et al, in press) the total of 1580 
tonnes of demersal fish may be landed each year in only three landing sites. This must 
represent up to ~USD 71,5 thousand per year. 
This may sound negligible as a landed value to industry sector level, but represents 
part of conducive gains for small-scale fishers and brings important ecological implications due 
to the ecological function of the species heavily removed mainly from coastal reef areas. The 
pressure on specific target reef species affects species interactions in the ecosystem (Bundy 
et al., 2005), contributing to the increase of predation by non-target species from higher tropic 
level and competition at the same tropic level decreased (Zhou, 2008). Strictly speaking, 
selective fishing pressure on reef areas contributes to a shift in species dominance and reef 
attributes (Bellwood et al., 2006; Dale et al., 2011), induces the truncation of age structure 
(Hsieh et al., 2006) and changes the composition of reef fish communities (Pinca, 2011). 
Pressures on marine ecosystems are highly worrisome for fisheries, causing 
subsequent impacts on local and national economies (Sumaila et al., 2011) and beyond, as it 
may reverberate in foreign economies, as identified here mainly for demersal resources. Brazil 
is not a large producer of pelagic fishes, mainly tuna or tuna-like species, which are global 
resources and migratory species (Restrepo et al., 2016). But considering the few data recorded 
36 
 
by us in just one state in northeastern coast and the lack of fishery report countrywide, we 
may assume a significant provision of demersal resources (mainly comprised by resident 
species) to the international market. 
Exploitation upon pelagic resources has long been prompt by global economic 
incentives from worldwide demand for consumption and overexploitation has been reported 
for many fish stocks (Pauly 2018). Fishery upon demersal resources on the other hand seems 
to be expanding mainly in development countries. Particularly reef fishery has been boosted 
by the demand and price that increase economic incentives for harvesting, threatening the 
sustainability of reef species (Sadovy and Vincent 2002). 
Notwithstanding the global nature of the seafood market, many seafood providers 
have a regional focus (Jacquect et al., 2009) and are overtly supplying the market with much 
more demersal species than those actually reported to consumers (due to deregulation and 
mislabeling). Under the slight possibility that the amount of total fisheries catches are 
unreported highlights the need for much closer cooperation between government and fishers, 
especially in situations in which financial and human resources are lacking and there is also a 
lack of interest in fisheries in general (Cisneros-Montemayor et al., 2018). In such a situation 
regulation statement upon resource extractors only, would be unrealistic, as economic 
incentives from other agents are steering the fishery upon specific groups (Sadovy and Vincent 
2002). 
Small-scale fisheries are taken as in disadvantage when competing for market access 
and that the sector lacks knowledge on stock declines, key life history characteristics, food 
chain, bycatch and habitat effects (Sumaila & Pauly, 2006). By consumers side, the status of 
fish species or fishing environments exploited are largely blurred for individuals, who transfer 
the concerns on conservation to governments, accepting as allowable the fish reaching the 
market to be sold and consumed. In this context the retailers or ultimately the landing site 
available may influence fishers and consumers decision. 
Even though the landing location is slightly referred in the literature, it is important to 
take into consideration that it can have important implications for price variation and markets 
to be reached influencing catch composition, quality of fish fishing revenues and the viability 
of coastal communities. Under this perspective, putting too much emphasis on consumers is 
37 
 
not an effective market-based strategy (Asche et al., 2015). In other

Teste o Premium para desbloquear

Aproveite todos os benefícios por 3 dias sem pagar! 😉
Já tem cadastro?

Continue navegando