Buscar

APOSTILA-COMPLETA-ELETRÔNICA-APLICADA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 78 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ELETRÔNICA APLICADA 
 
 
 
INTRODUÇÃO 
 
Prezado aluno, 
 
O Grupo Educacional FAVENI, esclarece que o material virtual é semelhante 
ao da sala de aula presencial. Em uma sala de aula, é raro – quase improvável - um 
aluno se levantar, interromper a exposição, dirigir-se ao professor e fazer uma 
pergunta, para que seja esclarecida uma dúvida sobre o tema tratado. O comum é 
que esse aluno faça a pergunta em voz alta para todos ouvirem e todos ouvirão a 
resposta. No espaço virtual, é a mesma coisa. Não hesite em perguntar, as perguntas 
poderão ser direcionadas ao protocolo de atendimento que serão respondidas em 
tempo hábil. 
Os cursos à distância exigem do aluno tempo e organização. No caso da nossa 
disciplina é preciso ter um horário destinado à leitura do texto base e à execução das 
avaliações propostas. A vantagem é que poderá reservar o dia da semana e a hora 
que lhe convier para isso. 
A organização é o quesito indispensável, porque há uma sequência a ser 
seguida e prazos definidos para as atividades. 
 
Bons estudos! 
 
 
 
 
1 ELETRIZAÇÃO 
Conforme o dicionário da língua portuguesa, a eletrização é a “operação física 
através da qual um corpo é eletrizado, carregado com cargas elétricas, ou o que foi 
eletrizado” (DICIO, DICIONÁRIO, 2023). Em outras palavras, é uma ação que cria 
propriedades elétricas em corpos materiais. 
Conforme Bauer, Westfall e Dias (2012), quando um objeto recebe uma carga 
elétrica, é dito que este objeto está passando pelo processo de eletrização 
eletrostática, que também pode ser chamado de carregamento eletrostático. Existem 
vários experimentos simples que podem explicar esse processo. 
Trazendo essa conceituação para nossa realidade, a bateria de um carro é um 
ótimo exemplo de fonte de energia, pois é através dela que o carro é energizado. Essa 
bateria utiliza reações químicas que separam as cargas positivas e as negativas. O 
planeta Terra, tem um reservatório infinito de carga, isso faz com que seja possível 
descarregar qualquer objeto que esteja eletricamente carregado e entre em contato 
com ele. É por isso que em instalações elétricas temos os fios que conduzem a 
energia, e temos o fio chamado de terra, o qual é ligado na terra, sendo uma proteção 
contra descargas elétricas nos ambientes. Conforme Bauer, Westfall e Dias (2012), é 
denominado aterramento, o ato de escoar a carga para a terra. 
Através de um eletroscópio (Figura 1), podemos observar o processo de 
eletrização. Para realizar este experimento, é possível construir um simples 
eletroscópio, tendo dois filetes de papel metálico e um copo de isopor. Os filetes de 
metal, você fixa mutualmente por uma das extremidades e as suspende no suporte, 
que será o copo de isopor, este é considerado um isolante. Os filetes devem ficar 
posicionados verticalmente um ao lado do outro. 
Na construção do eletroscópio, é necessário o uso de folhas metálicas de 
espessura adequada, geralmente encontramos em lojas especializadas, não sendo 
recomendado o uso de papel alumínio de uso doméstico. 
 
 
 
 
 
 
 
Figura 1 - Eletroscópio de folhas. 
 
Fonte: Bauer, Westfall e Dias, 2012. 
O eletroscópio apresentado na Figura 1, está descarregado. Nele, temos dois 
condutores neutros, que em posição vertical, se tocam. Um destes condutores possui 
mobilidade e está preso no outro condutor através de uma dobradiça, no meio deles, 
sendo possível seu afastamento quando estão sob a ação de alguma carga. Ambos 
os condutores, permanecem em contato com a esfera condutora, localizada na parte 
superior do instrumento, possibilitando absorção ou remoção rápida de uma carga. 
Uma fonte de potência é utilizada para recarregar negativamente uma das pás 
isoladas. Ao realizar uma aproximação de uma placa com carga da esfera de um 
eletroscópio, assim como está ilustrado na Figura 2b, os elétrons presentes na esfera 
condutora, se repelem, gerando um acúmulo de carga negativa sobre os condutores 
do eletroscópio. 
A carga negativa, gera uma mobilidade no condutor, fazendo com que este gire, 
isso acontece pois, o condutor fixo possui carga com o mesmo sinal, fazendo com que 
se repelem. Quando não há um contato de placa com a esfera, é dito que o condutor 
recebeu uma carga induzida. Quando se afasta a placa carregada conforme 
demonstrado na Figura 2c, a carga será zero, portanto, o condutor móvel voltará a 
sua posição original. 
 
 
 
 
 
 
Figura 2 - Indução de carga. 
 
Fonte: Bauer, Westfall, Dias, 2012. 
Caso este processo seja realizado com uma placa carregada positivamente, os 
elétrons presentes nos condutores deste eletroscópio, vão ser atraídos pela placa, 
portanto, vão fluir para esfera condutora. Assim, os condutores terão uma carga 
líquida positiva, gerando uma movimentação de rotação no condutor móvel. 
Nas duas situações, a carga líquida do eletroscópio é nula, portanto, a 
movimentação que acontece indica que a placa está carregada, assim, quando se 
afasta a placa o condutor móvel retorna à sua posição original. Conforme Bauer, 
Westfall e Dias (2012), em ambos os casos, não é possível determinar o sinal das 
cargas. 
Agora temos outra situação, na Figura 2, a placa apenas se aproximou do 
eletroscópio, já na Figura 3, temos uma placa isolada e carregada negativamente 
encostando no eletroscópio. 
Figura 3 - Eletrização por contato. 
 
Fonte: Bauer, Westfall, Dias, 2012. 
 
 
 
Ao entrar em contato com o eletroscópio, as cargas presentes na placa fluem 
para o condutor, fazendo com que este absorva uma carga líquida negativa, no 
entanto, ao remover esta placa, o condutor se mantém em rotação, assim como está 
ilustrado na Figura 3c, portanto, mesmo que a placa tenha sido removida, a carga ali 
presente, se mantém. 
Isso acontece porque quando uma placa isolada e com carga positiva, toca na 
esfera do eletroscópio, em carga neutra, ocorre uma troca de elétrons, fazendo com 
que a esfera seja carregada positivamente. Cabe ressaltar, que o mesmo aconteceria 
se a carga presente na placa, fosse negativa, sendo que não há uma forma de definir 
se estas cargas são positivas ou negativas. Este processo é denominado eletrização, 
também conhecido como carga por contato (BAUER; WESTFALL; DIAS, 2012). 
Além das situações apresentadas, também é possível fazer o eletroscópio 
adquirir uma carga sem ter que tocá-lo com a placa carregada como ilustra a Figura 
4. Na Figura 4a, temos o eletroscópio descarregado, já na Figura 4b, é aproximada 
uma placa com carga negativa, que provoca uma reação conforme havia sido 
apresentado na Figura 2. 
Já na Figura 4c, o eletroscópio tem uma ligação ao solo, conforme mencionado 
anteriormente, nesta figura temos um aterramento, que quando a placa carregada é 
aproximada do eletroscópio, a ligação com o solo é removida, na Figura 4d, a placa 
carregada é afastada do eletroscópio, e na Figura 4e, podemos notar que mesmo com 
o afastamento da placa, o eletroscópio se mantém carregado positivamente, conforme 
Bauer, Westfall e Dias (2012), neste caso, a deflexão é menor do que o demonstrado 
na Figura 4b. 
Figura 4 - Eletrização por indução. 
 
Fonte: Bauer, Westfall, Dias, 2012. 
 
 
 
CARGAS ELÉTRICAS 
Para entendimento claro de cargas elétricas, vamos utilizar dois exemplos: 
Exemplo 01: Em um ambiente de baixa umidade, ao esfregar uma vareta de 
vidro em um tecido de seda, e em seguida, suspendê-la em um barbante, conforme é 
apresentado na Figura 5. Em seguida, é realizado o mesmo processo com outra vareta 
de vidro, que ao ser aproximada da primeira vareta, fará com que a primeira vareta 
realize uma movimentação de recuo. Portanto, a segunda vareta repeliu a primeira. 
Neste exemplo os bastões não se tocam, o segundo bastão não produziu 
corrente de ar, nem onda sonora. 
Figura 5 - Experimento com varetas de vidro. 
 
Fonte: shre.ink/cCjn 
Exemplo 02: O mesmo que foi feito com a primeira vareta,é feito neste 
exemplo, as mudanças estão na segunda vareta, neste exemplo, é utilizado uma 
vareta de plástico e esta será esfregada em um tecido de lã. Ao aproximar a vareta 
de plástico, da vareta de vidro, elas se atraem, conforme é demonstrado na Figura 6. 
Em ambos os exemplos, as varetas não se encostaram, houve apenas uma 
aproximação. 
 
 
 
 
 
 
 
Figura 6 - Experimento com uma vareta de vidro e uma vareta de plástico. 
 
Fonte: shre.ink/cCjn 
No Exemplo 01, tivemos uma força de repulsão, enquanto no segundo 
exemplo, a força que o segundo bastão exerceu sobre o primeiro foi uma força de 
atração. Conforme, Halliday, Resnick e Walker (2022), após diversas investigações 
realizadas por cientistas, concluíram que acontece uma transferência de carga elétrica 
nas varetas, ao serem esfregadas nos tecidos. A carga elétrica é uma característica 
presente em todos os materiais, inclusive os que foram utilizados nos exemplos acima. 
Ainda segundo os autores, o cientista e político americano Benjamin Franklin 
(1706 – 1790), nomeou os dois tipos de cargas elétricas existentes, a carga positiva e 
a carga negativa. O cientista fez a escolha destes nomes, pois o uso de sinais 
algébricos facilita a realização de cálculos, quando é feita a soma de cargas para obter 
a carga total. 
Na grande maioria dos objetos, como uma xícara, por exemplo, existe um 
número igual de partículas de carga positiva e de carga negativa e, portanto, 
a carga total é zero. Nesse caso, dizemos que as cargas se compensam e o 
objeto está eletricamente neutro (ou, simplesmente, neutro) (HALLIDAY; 
RESNICK; WALKER, 2022, p. 12). 
Geralmente, estamos eletricamente neutros, mas quando estamos em um 
ambiente com clima seco, se caminharmos em um tapete, a carga elétrica presente 
em nossos corpos, sofrerá alteração, ficando ligeiramente descompensada. Isso 
acontece por duas razões: 
 
 
 
• você absorveu carga negativa do tapete, por meio do contato que obteve com 
o mesmo, portanto, houve uma adição de carga negativa em seu corpo; 
• você pode ter perdido carga negativa, ficando positivamente carregado. 
Em ambas as hipóteses, acontece um excesso de carga, que geralmente não 
observamos, até termos contato com uma maçaneta ou com outra pessoa. Quando 
temos um excesso de carga relativamente grande, ao entrar em contato com outra 
pessoa, ou objeto de metal, será gerada uma centelha elétrica, ligando você a outra 
pessoa ou objeto, fazendo com que seu excesso de carga seja eliminado. 
Essas centelhas, podem ocasionar incômodos ou dores. Segundo Halliday, 
Resnick e Walker (2022), essas trocas de energia não acontecem em climas úmidos, 
pois o vapor d’água, presente no ambiente, realiza uma neutralização do excesso de 
carga, antes mesmo que este possa atingir altos níveis. 
A física possui dois grandes mistérios: 
• Por que existem partículas com carga elétrica no universo e o que é realmente 
a carga elétrica? 
• Por que são apenas dois tipos de carga elétrica e não mais ou menos? 
São questionamentos que não sabemos responder, mas conforme Halliday, 
Resnick e Walker (2022), após os cientistas realizarem diversos experimentos, 
concluíram que, quando partículas com cargas de mesmo sinal se aproximam, elas 
se repelem, enquanto as partículas com cargas de sinais diferentes, se atraem. 
 Agora, retornando aos exemplos, você vai compreender de fato o que houve 
com as varetas. Ao esfregarmos a vareta de vidro no tecido de seda, ocorre uma 
pequena transferência de carga negativa, como no exemplo de caminhar sobre o 
tapete, assim, a varinha obteve um excesso de carga positiva. O sentido da 
movimentação da carga negativa, não é obtido obviamente, mas sim, por 
experimentos. 
O ato de esfregar tecido de seda na varinha, aumenta a área de contato entre 
os materiais, ocasionando um aumento na carga transferida. Quando a varinha foi 
pendurada no barbante, isso a manteve eletricamente isolada do ambiente, evitando 
que sua carga fosse transferida para outros objetos. E ao realizar o mesmo processo 
 
 
 
com a outra vareta, ela obteve a mesma carga, ocasionando o recuo entre elas, 
conforme é demonstrado na Figura 7. 
Figura 7 - Varetas carregadas com cargas do mesmo sinal. 
 
Fonte: shre.ink/cCjn 
No exemplo 02, ao esfregar a vareta de plástico no tecido de lã, uma pequena 
carga negativa é transferida da lã para a vareta, ao colocá-lo perto da vareta de vidro, 
que está com excesso de carga positiva, ocasionará uma aproximação entre as 
varetas, como é apresentado na Figura 8. 
Em ambos os exemplos, não é possível visualizar a transferências de cargas, 
apenas podemos ver o resultado. 
Figura 8 – Duas varetas carregadas de cargas com sinais opostos. 
 
Fonte: shre.ink/cCjn 
 
 
 
CONDUTORES E ISOLANTES 
Conforme Halliday, Resnick e Walker (2022), os materiais podem ser 
classificados de acordo com sua facilidade de transferência de carga. As cargas 
elétricas tendem a se mover em condutores como o cobre na fiação elétrica, o corpo 
humano e a água da torneira. As cargas elétricas não se movem em isoladores como 
isolamento de fios, plástico, borracha, vidro e água destilada. Os semicondutores, 
como o silício e o germânio, conduzem eletricidade melhor que os isolantes, mas não 
tão bem quanto os condutores. Um supercondutor é um condutor perfeito, ou seja, um 
material no qual as cargas se movem sem resistência. 
Quando temos condutores ligados mutuamente e com ligação à terra, uma 
carga elétrica passa pelos condutores e se espalha na terra, deixando os condutores 
eletricamente neutros, este é um exemplo de aterramento. Quando um objeto tem sua 
carga neutralizada por meio da eliminação do seu excesso de carga através da terra, 
dizemos que o objeto foi descarregado. 
O comportamento dos condutores e dos isolantes dependem da estrutura e da 
propriedade elétrica dos átomos, que são constituídos por três tipos de partículas: 
• prótons: partículas compostas de carga elétrica positiva; 
• elétrons: partículas compostas de carga elétrica negativa; e 
• nêutrons: partículas que não possem carga elétrica. 
Os átomos, conforme mostrado na Figura 9, possuem um núcleo, constituído 
de prótons e nêutrons, já os pontos apresentados em suas extremidades, são os 
elétrons, que se mantém nas proximidades dos núcleos, por possuírem carga elétrica 
oposta à dos prótons presentes no núcleo, causando então uma atração entre eles 
(HALLIDAY; RESNICK; WALKER, 2022). 
 
 
 
 
 
 
 
Figura 9 - Átomo. 
 
Fonte: shre.ink/cFKa 
Exemplo 03: Na Figura 10, temos uma vareta de plástico com carga negativa, 
atraindo a extremidade de uma vareta neutra de cobre. 
Figura 10 - Experimento de carga induzida. 
 
Fonte: shre.ink/cCjn 
Neste exemplo, os elétrons de condução presentes na extremidade próxima à 
vareta de cobre, se repelem, devido à carga negativa presente na vareta de plástico. 
Ao mesmo momento, elétrons de condução se transferem para a extremidade 
contrária da vareta de cobre, fazendo com que a mais próxima tenha ausência de 
elétrons, ficando esta, com carga total positiva. 
Como temos uma carga positiva próxima da vareta de plástico, a atração 
exercida sobre ela, é superior à repulsão que a vareta de plástico exerce sobre a carga 
negativa acumulada na extremidade contrária da vareta de cobre. 
 
 
 
Mesmo que a vareta de cobre permaneça eletricamente neutra, é dito que esta 
obteve uma carga induzida, ou seja, algumas cargas positivas e negativas foram 
separadas diante de uma carga próxima. 
LEI DE COULOMB 
Conforme Halliday, Resnick e Walker (2022), a Lei de Coulomb é utilizada para 
calcular a força eletrostática entre duas partículas. Se as partículas possuem cargas 
𝑞1 e 𝑞2, elas estão separadas por uma distância 𝑟, e a distância entre elas não varia, 
ou pode variar lentamente. 
Essa é uma lei que apenas é válida para partículas carregadas e para os 
poucos objetosque podem ser tratados como cargas pontuais. No caso de objetos 
macroscópicos, nos quais a carga está distribuída de modo assimétrico, é necessário 
recorrer a métodos mais sofisticados. 
Uma partícula carregada exerce uma força eletrostática sobre outra igual. A 
direção da força é a da reta que liga as partículas, mas o sentido depende do sinal 
das cargas. Se as cargas das partículas têm o mesmo sinal, elas se repelem. Se as 
cargas têm sinais opostos, elas se atraem. 
Utilizaremos a Figura 11, para escrever uma equação vetorial, em que a 
partícula 1 tem carga 𝑞1, e a partícula 2, tem carga 𝑞2. 
Figura 11 - Partículas sob forças eletrostáticas. 
 
Fonte: shre.ink/cCjn 
Vamos voltar nossa atenção para partícula 1 e descrever a força que age sobre 
essa partícula em termos de um vetor unitário �̂� na direção da reta que liga as duas 
partículas e no sentido da partícula 2 para a partícula 1. �̂� é um vetor adimensional de 
módulo 1, seu único propósito é mostrar uma direção e um sentido, como a seta de 
mão única de uma placa de trânsito. A força eletrostática, pode ser escrita na forma: 
 
 
 
 
em que 𝑟, é a distância entre as partículas e k é uma constante positiva conhecida 
como constante eletrostática ou constante de Coulomb. 
Primeiramente, verificamos qual o sentido da força em que a partícula 2 exerce 
sobre a partícula 1, conforme a eq. 1. Se 𝑞1 e 𝑞2 tiverem o mesmo sinal, o produto 
𝑞1𝑞2 será positivo e a força que age sobre a partícula 1 terá o mesmo sentido que �̂�. 
 Observe que a equação 1, possui a mesma forma que a equação de Newton 
( �⃗� = 𝐺.
𝑚1𝑚2
𝑟2
�̂�) usada em força gravitacional entre duas partículas de massas 𝑚1 e 
𝑚2 separados por uma distância 𝑟. 
Apesar dos tipos de força serem muito diferentes, as duas equações 
descrevem leis do tipo inverso do quadrado (a variação com 1/r²) as quais envolvem 
um produto de uma propriedade das partículas envolvidas. Entretanto, as forças 
gravitacionais são sempre atrativas, enquanto as forças eletrostáticas podem ser 
atrativas ou repulsivas, dependendo dos sinais das cargas. A diferença resulta do fato 
de que existe apenas um tipo de massa, mas existem dois tipos de carga elétrica. 
Conforme Halliday, Resnick e Walker (2022), por razões práticas, que têm a 
ver com a precisão das medidas, o Coulomb é definido pelo Sistema Internacional de 
Unidades (SI), para corrente elétrica, o ampère. Neste momento, nossa força é a 
corrente 𝑖 e a taxa 𝑑𝑞/𝑑𝑡 em que a carga passa por um ponto ou região: 
 
Explicitando a carga na Eq. 2 e substituindo os símbolos por suas unidades 
(Coulombs C, ampères A e segundos s), temos: 
 
Por razões históricas e para simplificar outras expressões, a constante 
eletrostática 𝑘 da equação da Lei de Coulomb, é muitas vezes escrita na forma 1/4𝜋𝜀0. 
Neste caso, o módulo da força eletrostática expressa pela lei de Coulomb se torna: 
𝐹 =
1
4𝜋𝜀0
.
|𝑞1||𝑞2|
𝑟2
 
As constantes das equações de Coulomb, possuem o seguinte valor: 
Eq. 1 
Eq. 2 
Eq. 3 
 
 
 
 
A constante 𝜀0 é conhecida como elétrica, às vezes aparece separadamente 
nas equações e tem valor. 
 
Para resolução de problemas, a eq. 3 nos dá o módulo da força eletrostática, 
as cargas aparecem em valor absoluto, podendo ser utilizadas para o cálculo do 
módulo da força a que está sujeita a uma partícula, o sentido da força deve ser obtido 
separadamente, considerando o sinal da carga das duas partículas. 
A força eletrostática, obedece ao princípio da superposição. Supondo que 
existam 𝑛 partículas carregadas nas vizinhanças de uma partícula que vamos chamar 
de partícula 1. Nesse caso, a força total a que a partícula 1 está submetida sendo 
dada pela soma vetorial é, 
 
em que, por exemplo, 𝐹14⃗⃗ ⃗⃗ ⃗⃗ é a força que a partícula 1 está submetida devido à presença 
da partícula 4. 
 Como a eq. 6, pode ser utilizada na resolução de diversos problemas que 
envolvem a força eletrostática, vamos descrevê-la em palavras. 
 Se deseja obter a força resultante que age sobre uma partícula carregada que 
está cercada por outras partículas carregadas, o primeiro passo é definir claramente 
qual é a partícula a ser investigada, o segundo, é calcular as forças que as outras 
partículas exercem sobre a escolhida. 
Desenhe os vetores que representam essas forças em um diagrama de corpo 
livre da partícula escolhida, com as origens de todos os vetores na partícula. 
Finalmente, some as forças usando uma soma vetorial, seu resultado é a força 
resultante que age sobre a partícula escolhida. 
Embora a natureza vetorial das forças eletrostáticas torne os problemas mais 
difíceis de resolver do que se estivéssemos com grandezas escalares, temos a eq. 6, 
que realmente funciona na prática. 
Eq. 4 
Eq. 5 
Eq. 6 
 
 
 
Se o efeito combinado de duas forças eletrostáticas não fosse simplesmente a 
soma vetorial das duas forças, mas, por alguma razão, a presença de uma afetasse a 
intensidade da outra, nosso mundo seria muito difícil de compreender e de analisar. 
 
CAMPO ELÉTRICO 
Vimos em Eletrização, que as forças de campo podem atuar através do espaço, 
produzindo efeito mesmo quando não há contato físico entre os objetos em interação. 
Essa interação, pode ser modelada como um processo de duas etapas: uma partícula-
fonte estabelece um campo e, então, a partícula carregada, interage com o campo e 
experimenta uma força. 
Conforme Serway e Jewett Junior (2017), a conceituação de campo foi 
elaborada por Michael Faraday (1791 – 1867), contextualizado em forças elétricas. 
Com essa abordagem, é considerado que existe um campo elétrico na região do 
espaço em torno de um corpo carregado, uma fonte de carga. 
Através do princípio de superposição, a força sobre uma carga puntiforme 𝑞𝑖, 
devido sua interação eletrostática com outras cargas puntiformes fixas em posições 
predeterminadas, é proporcional a 𝑞𝑖, e pode ser escrita como: 
𝐹𝑖 = 𝑞𝑖𝐸𝑖 
em que, 
𝐸𝑖 =
1
4𝜋𝜀0
∑
𝑞𝑗
(𝑟𝑗𝑖)²
𝑟𝑗�̂�
𝑖≠𝑗
 
Seguindo considerando as demais cargas como “fontes” do campo elétrico 𝐸𝑖, 
cujo efeito sobre a carga 𝑞𝑖 é medido pela força 𝐹𝑖 dada pela eq. 1. O campo é a 
representação da “força por unidade de carga” atuando sobre 𝑞𝑖 no ponto em que está 
colocada. 
É possível visualizar a detecção do campo em um ponto, imaginando colocar 
nele uma pequena partícula carregada, suspensa por um fio isolante. Considerando 
desprezíveis a massa de partícula e do fio, a força eletrostática sobre a partícula, seria 
equilibrada pela tensão do fio, cuja magnitude dividida pela carga, resulta na 
 
Eq. 1 
Eq. 2 
 
 
 
magnitude do campo. A direção e orientação do fio dão a direção e o sentido do campo 
(NUSSENZVEIG, 2015). 
É preciso ter um cuidado, pois a carga também cria seu próprio campo elétrico, 
podendo assim, perturbar a distribuição das demais cargas, modificando o campo que 
se deseja medir. Um exemplo disso, é o efeito de indução eletrostática. Para minimizar 
essa perturbação, deve-se tomar o valor da carga de prova tão pequeno quanto 
possível. 
𝐸, poderia ser definito pelo lim (
𝐹
𝑞
) quando 𝑞 tende a zero. Mas, isso não seria 
algo real, pois 𝑞 não pode ser menor que a carga elementar 𝑒. Como geralmente 
lidamos com campos macroscópicos, produzidos por distribuições de cargas, muitas 
ordens de grandeza maiores que 𝑒, isso não constituirá um problema. 
Na área da Hidrodinâmica, temos um campo vetorial, o campo de velocidades 
no interior de um fluido em movimento. Isso pode ser visualizado através de um 
experimento: ao introduzir em um fluído, partículas de corante, e registrando isso 
através de fotografias, com o tempo de exposição curto, será possível visualizar o 
traço descrito por cada partícula, durante esse tempo, dando a ideia do campo de 
velocidades no fluído. 
Na hidrodinâmica, o campo tem uma interpretação concreta, em termos do 
movimento das partículasdo fluido, levando a dúvida, se este seria um campo elétrico 
no vácuo. Conforme Nussenzveig (2015), dados históricos informam que foram 
realizadas diversas tentativas, para interpretação do vácuo como análogo a um meio 
elástico, e o campo elétrico era como uma modificação desse meio a uma tenção em 
um meio elástico, mas segundo o autor, essas tentativas fracassaram. 
Trazendo a dúvida de, por que introduzir um campo vetorial aparentemente 
abstrato no espaço vazio? Na eletrostática, isso não apenas parece, como é apenas 
uma descrição alternativa mais complicada das interações entre cargas. 
Ao invés de tratá-las pela lei de Coulomb, decompomos o processo em duas 
partes: a criação de um campo 𝐸, em um ponto do vácuo, por uma configuração de 
cargas, e a atuação desse campo sobre outra carga, colocada neste ponto. Essa 
interação entre as cargas passa a ser mediada pelo campo, mas o resultado é 
equivalente. 
 
 
 
Supondo, porém, que a situação não esteja mais estática, por exemplo, que 
uma das cargas inicie uma movimentação em relação as outras. O que acontece com 
a interação? 
A lei de Coulomb, assim como a lei da gravitação, parece sugerir a ideia de 
ação à distância entre partículas. Nesse caso, pensaríamos que os efeitos do 
movimento de uma das cargas seriam sentidos instantaneamente por todas as outras, 
a quaisquer distâncias em todo o espaço. 
Mas, se concebermos a interação como sendo mediada pelo campo, que a 
transmite através do vácuo, o processo de transmissão pode ocorrer com velocidade 
finita, causando uma retardação nos efeitos do movimento da carga sobre as demais 
e elas só sentirão esses efeitos após um intervalo de tempo suficiente para a 
propagação, intervalo tanto maior, quanto mais distantes estejam da carga “fonte” que 
se moveu. 
Newton, considerava inadmissível a ideia da ação à distância, referindo-se à 
gravitação. Em uma carta à Bentley, escrita em 1693, ele disse: 
“(...) que um corpo possa atuar sobre outro à distância através do vácuo, sem 
qualquer agente intermediário que possa transmitir esta ação de um ao outro, 
parece-me um absurdo tão grande, que não acredito que qualquer pessoa 
competente para raciocinar em termos de filosofia natural possa acreditar 
nisso” (NUSSENZVEIG, 2015, p. 25-26). 
Portanto, descobrimos que, se houver variação na distribuição temporal da 
carga, deve haver uma diferença entre a visão da ação à distância e a visão do campo 
de ação contínua à medida que é transferido de ponto a ponto. 
CÁLCULO DO CAMPO 
Conforme a eq. 2, apresentada acima, o campo elétrico 𝐸, produzido por uma 
distribuição de cargas puntiformes 𝑞1, 𝑞2, … , 𝑞𝑁 , em um ponto 𝑃, é dado pela soma 
vetorial 
𝐸 =
1
4𝜋𝜀0
 ∑
𝑞𝑖
(𝑟𝑖)²
𝑟�̂�
𝑁
𝑖=1
 
em que, 𝑟𝑖 é a distância da carga 𝑞𝑖 ao ponto 𝑃 e �̂�1corresponde ao vetor unitário da 
direção que liga a carga a esse ponto, conforme demonstrado na Figura 1, se 𝑞𝑖 é 
positivo, está no sentido da carga para 𝑃, se 𝑞𝑖 é negativo, o campo devido a 𝑞𝑖 aponta 
Eq. 3 
Eq. 4 
 
 
 
em sentido oposto. Tomando a origem das coordenadas num ponto 𝑂, sendo 𝐱 o vetor 
de posição para 𝑃 e 𝐱𝐢 o da carga 𝑞𝑖 , teremos com |𝐱 − 𝐱𝐢| = 𝑟𝑖, 
�̂�𝑖 =
𝐱 − 𝐱𝐢
|𝐱 − 𝐱𝐢|
 
Figura 12 - Campo de uma distribuição de cargas puntiformes num ponto P. 
 
Fonte: Nussenzveig, 2015. 
Exemplo 01: Uma carga puntiforme – 𝑞 está localizada no ponto (0,0, – 𝑑) de 
um sistema de coordenadas cartesianas, e outra +𝑞 , no ponto de coordenadas 
(0,0, 𝑑). Qual é o campo em um ponto (𝑥, 𝑦, 𝑧)? 
Identificando 𝑞1 com a carga −𝑞 e 𝑞2 com a carga +𝑞, e denotando por (𝑖, 𝑗, 𝑘) 
os vetores unitários dos três eixos, temos: 
𝐱 − 𝐱𝟏 = 𝑥𝐢 + 𝑦𝐣 + (𝑧 + 𝑑)𝐤, 𝐱 − 𝐱𝟐 = 𝑥𝐢 + 𝑦𝐣 + (𝑧 − 𝑑)𝐤 
e as equações 3 e 4, resultam em, 
 
Em particular, no plano 𝑧 = 0, em um ponto à distância p = (𝑥2 + 𝑦2)1/2 da 
origem, obtemos: 
 
 
 
 
onde p ≡ 2𝑞𝑑 é denominado de momento de dipolo elétrico do par de cargas. 
 Por outro lado, em um ponto (0, 0, 𝑧), com 𝑧 > 𝑑 (acima da carga positiva), 
resulta, 
 
Qual é o valor do campo na origem? 
Se tivermos uma distribuição contínua de cargas, a somatória da eq. 3 é 
substituída por uma integral: 
𝐄 =
1
4𝜋𝜀0
∫
�̂�
𝑟²
𝑑𝑞 =
1
4𝜋𝜀0
∫
𝑟
𝑟³
𝑑𝑞 
em que, 
𝐫 ≡ 𝐱 − 𝐱′, 𝑟 ≡ |𝐫| 
𝐱, é o vetor de posição do ponto P, onde se calcula o campo, 𝐱′ é o vetor de 
posição do elemento de carga 𝑑𝑞, cuja contribuição está sendo calculada, o que é 
demonstrado na Figura 2. As variáveis de integração são as coordenadas de 𝐱′. 
Figura 13 - Campo de uma distribuição contínua de cargas no ponto p. 
 
Fonte: Nussenzveig, 2015. 
Eq. 5 
Eq. 6 
 
 
 
Se temos uma distribuição de carga tridimensional, temos, 𝑑𝑞 = p𝑑𝑣, em que p 
é a densidade volumétrica de carga e 𝑑𝑣 o elemento de volume. Se temos uma 
distribuição superficial ou linear, empregamos, 
 
em que, σ representa a densidade superficial de carga e 𝑑𝑆 é o elemento de 
superfície. A soma é transformada em uma integral de superfície. A distribuição de 
carga sobre um fio é descrita como uma linha 𝑙, com densidade linear de carga 𝜆, 
 
em que, 𝑑𝑙 é o elemento de linha, em que a soma é transformada em uma integral de 
linha. 
LINHAS DE FORÇA 
Sabemos que existe um campo elétrico numa região do espaço, quando uma 
carga de prova é colocada nesse ponto e detecta a existência de uma força. Será 
possível visualizar o campo elétrico de forma mais concreta? 
Para o campo magnético de um ímã permanente, é familiar torná-lo visível 
utilizando limalha de ferro, que tende a alinhar-se na direção do campo em cada ponto, 
concentrando-se também nas regiões onde o campo é mais intenso. As curvas ao 
longo das quais a limalha se alinha, são linhas de força do campo. 
Uma linha de força é definida como uma curva tangente em cada ponto à 
direção do campo neste ponto. Assim, dada uma linha de força, podemos determinar 
imediatamente a direção do campo em cada um dos seus pontos, bastando traçar a 
tangente à curva, e podemos também obter o sentido do campo, indicando uma 
orientação sobre cada linha (NUSSENZVEIG, 2015). 
Assim, por exemplo, para uma carga puntiforme, o campo elétrico tem a direção 
radial, se temos uma carga positiva, este apontará para fora, mas se a carga for 
negativa, apontará para dentro. O aspecto das linhas de força correspondentes, está 
indicado na Figura 3. Em ambos os casos, não se deve esquecer que o campo é 
tridimensional, tendo simetria de revolução em torno de qualquer eixo que passa pela 
carga. 
 
 
 
Figura 14 - Linhas de força para uma carga puntiforme (a) positiva, (b) negativa. 
 
Fonte: Nussenzveig, 2015. 
No exemplo 1 apresentado acima, em que se têm duas cargas puntiformes 
opostas, vimos que o campo no plano 𝑧 = 0 é vertical. Na vizinhança imediata de 
cada uma das cargas, o campo deve ser dominado por essa carga e as linhas de força 
devem assemelhar-se às da Figura 3, o que nos dá uma ideia qualitativa do aspecto 
dessas linhas, que estão representadas na Figura 4. 
Figura 15 - Linhas de força para um par de cargas puntiformes iguais e opostas. 
 
 
Fonte: Nussenzveig, 2015. 
Nesse caso, existe simetria axial em torno do eixo 𝑧, de forma que, em três 
dimensões, devemos imaginar o resultado da rotação dessa figura em torno do eixo 
que liga as duas cargas. 
Para um plano uniformemente carregado com o campo dado pela equação, 
 
 
 
 
o aspecto das linhas de força está representado na Figura 5. O campo é uniforme 
acima e abaixo do plano, ou seja, as linhas de força são paralelas e igualmente 
espaçadas, mas em sentidos opostos nos dois semi-espaços, com uma 
descontinuidade ao atravessar o plano, no qual nascem todas as linhas de força, a 
partir das cargas. 
 
 
 
Figura 16 - Linhas de força para plano uniformemente carregado. 
 
Fonte: Nussenzveig, 2015. 
É importante reconheceros elementos de simetria de um problema, pois isso 
permite prever a simetria das linhas de força. Na Figura 5, temos uma simetria plana, 
e as linhas de força têm de ser perpendiculares ao plano. Na Figura 3, há simetria 
esférica, e as linhas de força têm de ser radiais. 
Para um fio cilíndrico infinito uniformemente carregado, como é demonstrado 
na Figura 6, temos a simetria axial, ou cilíndrica, e as linhas de força são radiais em 
planos perpendiculares ao fio, ou seja, têm a direção do vetor unitário �̂� em 
coordenadas cilíndricas (𝜌, ϕ, 𝑧). 
Figura 17 - Fio cilíndrico uniformemente carregado. 
 
 
 
 
Fonte: Nussenzveig, 2015. 
Embora ajude a visualizar o campo, a representação por linhas de força possui 
limitações, elas indicam a direção e o sentido do campo em cada ponto, mas não a 
sua magnitude. Entretanto, é possível ter-se uma ideia da magnitude, 
convencionando-se que ela é inversamente proporcional ao espaçamento das linhas 
de força, o que foi feito nos exemplos acima. 
Duas linhas de força não podem se cruzar, pois a direção do campo 𝐄 (suposto 
≠ 0) em um ponto de intersecção deixaria de ser única. As linhas de força não são 
trajetórias de partículas carregadas soltas em repouso no campo, elas apenas 
indicam, nesse caso, a direção inicial do movimento. Para partículas já em movimento, 
a direção da força em um ponto da trajetória de partículas carregadas soltas em 
repouso no campo, apenas indicam, nesse caso, a direção inicial do movimento. Para 
partículas já em movimento, a direção da força em um ponto da trajetória não coincide, 
em geral, com a direção da trajetória. 
2 CORRENTE ELÉTRICA 
Uma corrente elétrica corresponde a movimentação de partículas carregadas, 
mas não são todas as partículas carregadas em movimento, que formam uma corrente 
elétrica. Para que a corrente elétrica atravesse uma superfície, é necessário um fluxo 
líquido de cargas através da superfície, o exemplo 01 vai esclarecer isso. 
 
 
 
Exemplo 01: Os elétrons de condução existentes no interior do fio de cobre, 
realizam movimentações em direções aleatórias a uma velocidade média na ordem 
de 106 𝑚/𝑠. Imagine um plano perpendicular a este fio, os elétrons de condução irão 
passar por este plano em dois sentidos, bilhões de vezes por segundo, mas não terá 
um fluxo líquido de cargas, portanto, não terá uma corrente elétrica no fio. Ao fazer 
uma ligação com as extremidades do fio em uma bateria, o número de elétrons que 
passa pelo plano em um sentido, se tornará ligeiramente maior que o número de 
elétrons que passam pelo plano no sentido oposto, consequentemente, terá um fluxo 
líquido de cargas, portanto, terá uma corrente elétrica no fio. 
Em um circuito fechado, construído com material condutor, mesmo que haja 
um excesso de carga, todos os pontos estão ao mesmo potencial, assim, não haverá 
um campo elétrico no material. Mesmo que existam elétrons de condução disponíveis, 
estes não são sujeitos a uma força elétrica, portanto, não existe uma corrente. 
Por outro lado, ao colocar uma bateria em um circuito, o potencial não é mais 
o mesmo em todo o circuito, “os campos elétricos são criados no interior do material 
e exercem uma força sobre os elétrons de condução que os faz se moverem 
preferencialmente em um sentido, produzindo uma corrente” (HALLIDAY; RESNICK; 
WALKER, 2022, p. 110). 
Após curto intervalo de tempo, a movimentação dos elétrons alcança um valor 
constante, e a corrente entra no regime estacionário, portanto, ela deixa de variar com 
o passar do tempo. A Figura 1, mostra uma seção reta de um condutor, parte de um 
circuito em que existe uma corrente. Se uma carga 𝑑𝑞 passa por um plano hipotético, 
em um tempo de 𝑑𝑡, a corrente 𝑖 nesse plano é definida como: 
𝑖 =
𝑑𝑞
𝑑𝑡
 
 
Figura 18 - A corrente 𝑖 que atravessa o condutor, tem o mesmo valor nos planos. 
 
 
 
 
Fonte: Halliday, Resnick e Walker, 2022. 
É possível determinar por integração, a carga que passa pelo plano no intervalo 
de tempo de 0 a t: 
 
em que a corrente 𝑖 pode variar com o tempo. 
A corrente elétrica, definida pela equação 𝑖 =
𝑑𝑞
𝑑𝑡
, é uma grandeza escalar, já 
que a carga e o tempo que aparecem na equação, são grandezas escalares, mas, 
muitas vezes, uma corrente é representada por uma seta, para que seja indicado o 
sentido da movimentação das cargas. Cabe ressaltar que, essas setas não 
representam vetores, e não se aplicam em regras de operações vetoriais. 
DENSIDADE DA CORRENTE 
A densidade da corrente é utilizada para descrever o fluxo de carga através de 
uma seção reta, que se amplia somente a uma parte do material. A densidade da 
corrente é representada por 𝐽, que possui a mesma direção e sentido da velocidade 
das cargas que formam a corrente, assim, se as cargas forem positivas, elas possuem 
a mesma direção, caso contrário, elas terão sentido oposto. 
Para os elementos da seção reta, o módulo 𝐽 da densidade de corrente, é igual 
à corrente dividida pela área do elemento. É possível, então, escrever a corrente que 
atravessa o elemento de área como 𝐽. 𝑑𝐴, em que 𝑑𝐴, corresponde ao vetor área do 
elemento, perpendicular ao elemento. Assim, a corrente total que passa a seção reta, 
é 𝑖 = ∫ 𝐽. 𝑑𝐴. 
Se a corrente é uniforme pela seção da reta e paralela a 𝑑𝐴. 𝐽 também é 
uniforme e paralela a 𝑑𝐴. Assim, a equação 𝑖 = ∫ 𝐽. 𝑑𝐴, se torna: 
 
e, 
 
 
 
 
em que 𝐴 corresponde a área total da superfície. Conforme as equações 
apresentadas acima, a corrente do 𝑆𝐼 é o ampère por metro quadrado (A/m²). 
A representação dos campos elétricos, pode ser realizada através das linhas 
de campo, conforme mostra a Figura 2, em que também é possível representar a 
densidade de corrente por um conjunto de linhas, chamadas “linhas de corrente”. 
Figura 19 - Representação da densidade da corrente através de linhas de corrente. 
 
Fonte: Halliday, Resnick e Walker, 2022. 
Na Figura 2, a corrente é representada da esquerda para a direita, sendo feita 
uma transição de um condutor mais largo, à esquerda, para um condutor mais estreito, 
à direita. Como a carga é conservada na transição, a quantidade de carga e a 
quantidade de corrente não podem alterar, o que modifica, é a densidade de corrente, 
que é maior no condutor mais estreito. O espaçamento das linhas de corrente é 
inversamente proporcional à densidade de corrente, que quanto mais próximas às 
linhas de corrente, maior é. 
AMPERÍMETRO 
O amperímetro, é um instrumento utilizado na mediação de correntes. Para 
medir a corrente em um fio, em geral, precisamos desligar ou cortar o fio e introduzir 
o amperímetro no circuito para que a corrente passe pelo aparelho. Na Figura 3, o 
amperímetro A está sendo usado para medir a corrente 𝑖 . É essencial que a 
resistência RA do amperímetro seja muito menor que todas as outras resistências do 
circuito, caso contrário, a simples presença do medidor causará alteração no valor da 
corrente que se pretende medir. 
 
 
 
Na Figura 3, temos uma segunda identificação que é a letra V, que representa 
um voltímetro, instrumento que será estudado adiante. 
Figura 20 - Circuito de uma malha, mostrando como ligar um amperímetro (a) e um 
voltímetro (v). 
 
Fonte: Halliday, Resnick e Walker, 2022. 
Existem medidores que dependendo da posição de uma chave, podem ser 
utilizados como um amperímetro, ou como um voltímetro e também, em geral, como 
um ohmímetro, aparelho que mede a resistência do elemento ligado entre seus 
terminais. Esses instrumentos multifuncionais são chamados de multímetros 
(HALLIDAY; RESNICK; WALKER, 2022). 
ENERGIA POTENCIAL ELÉTRICA E POTENCIAL ELÉTRICO 
Para a identificação do potencial elétrico em termos de energia potencial 
elétrica, temos como primeira tarefa, a descoberta do cálculo da energia potencial 
elétrica, dada por 𝑼 = −𝑾. 
Na Figura 4, temos uma situação em que é calculada a energia potencial 𝑈do 
sistema constituído por uma barra carregada e uma carga de prova positiva 𝑞0 no 
ponto 𝑃. 
Figura 21 - (a) carga de prova deslocada do infinito até o ponto P (b) Potencial 
elétrico definido no ponto P. 
 
 
 
 
Fonte: Halliday, Resnick e Walker, 2022. 
Inicialmente, devemos definir uma configuração de referência em que 𝑈 = 0. 
Uma escolha possível é supor que a energia potencial é nula quando a carga de prova 
está a uma distância infinita da barra, visto que, neste caso, ela não é afetada pelo 
campo elétrico produzido pela barra. 
Em seguida, o trabalho para o deslocamento da carga de prova do infinito até 
o ponto 𝑃, deve ser calculado para formar a configuração da Figura 4a. A energia 
potencial da configuração final, é dada pela equação 𝑈 = −𝑊 , em que 𝑊 , 
corresponde ao trabalho realizado pela força elétrica sobre a carga de prova. Então 
utilizamos a notação 𝑊∞, para indicar que a configuração de referência é com a carga 
a uma distância infinita da barra. O trabalho pode ser positivo ou negativo, depende 
do sinal apresentado pela carga da barra. 
Agora, será definido o potencial elétrico 𝑉 no ponto 𝑃, em termos do trabalho 
realizado pelo campo elétrico e a energia potencial resultante: 
𝑉 =
−𝑊∞
𝑞0
=
𝑈
𝑞0
 Potencial elétrico 
 
 
 
O potencial elétrico em um ponto 𝑃 , corresponde a energia potencial por 
unidade de carga, quando uma carga de prova 𝑞0 é deslocada do infinito até o ponto 
𝑃. A própria barra, cria o potencial 𝑉 no ponto 𝑃, mesmo não tendo carga de prova. 
Conforme a equação do potencial elétrico, esta é uma grandeza escalar, visto que a 
energia potencial e a carga são grandezas escalares. 
Aplicando este mesmo método em outros pontos do espaço, podemos verificar 
que um potencial elétrico, está presente em todos os pontos em que há um campo 
elétrico criado pela barra. De fato, todo objeto carregado, cria um potencial elétrico 𝑉 
nos mesmos pontos em que cria um campo elétrico. Ao inserirmos uma partícula de 
carga 𝑞 no ponto em que existe um potencial elétrico 𝑉 , a energia potencial da 
configuração é dada pela seguinte equação: 
(𝑒𝑛𝑒𝑟𝑔𝑖𝑎 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎) = (𝑐𝑎𝑟𝑔𝑎 𝑑𝑎 𝑝𝑎𝑟𝑡í𝑐𝑢𝑙𝑎) (
𝑒𝑛𝑒𝑟𝑔𝑖𝑎 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎
𝑢𝑛𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑎𝑟𝑔𝑎
) 
𝑈 = 𝑞𝑉 
a carga 𝑞 pode se apresentar positiva ou negativa. 
Halliday, Resnick e Walker (2022), trazem duas observações, que segundo 
eles, são importantes, a primeira delas é quanto ao nome da grandeza 𝑉 ter sido uma 
escolha infeliz, visto que a palavra potencial pode ser confundida com facilidade, com 
a energia potencial. Ambas as grandezas estão relacionadas, mas são distintas e uma 
não pode substituir a outra. A segunda observação é sobre o potencial elétrico, ele 
não é um vetor, como o campo elétrico, mas sim, uma grandeza escalar. 
TERMINOLOGIA 
A energia potencial é uma propriedade de um sistema (ou configuração) de 
objetos, mas às vezes podemos atribuí-la a um único objeto. Assim, por exemplo, a 
energia potencial gravitacional de uma bola de futebol chutada, em direção ao campo 
do adversário, pelo goleiro é, na verdade, a energia potencial do sistema bola-terra, 
já que está associada à força entre a terra e a bola. Como, porém, o movimento da 
terra causado pela interação é desprezível, podemos atribuir a energia potencial 
gravitacional apenas à bola. 
 
 
 
Analogamente, se uma partícula carregada é colocada em uma região onde 
existe um campo elétrico e não afeta de modo significativo o objeto que produziu o 
campo elétrico, podemos atribuir a energia potencial elétrica (e o potencial elétrico) 
apenas à partícula. 
UNIDADES 
Conforme a equação 𝑉 =
−𝑊∞
𝑞0
=
𝑈
𝑞0
, a unidade de potencial elétrica do SI é o 
joule por coulomb. Essa combinação é tão popular, que foi criado um nome especial 
para sua representação, o volt (V), assim: 
1 volt = 1 joule por coulomb 
Utilizando duas conversões de unidades, é possível substituir a unidade de 
campo elétrico, newtons por coulomb, por uma unidade mais conveniente, volts por 
metro: 
 
O primeiro fator de conversão, é uma consequência da própria definição de volt, 
já o segundo, pode ser obtido através da definição de joule. 
VOLTÍMETRO 
Conforme Silva Filho (2018), o voltímetro é um tipo de multímetro, um medidor, 
oferecendo em apenas um instrumento, a possibilidade de medir diversas grandezas 
elétricas. Sua função é medir tensões elétricas, para isso, ele deve ser inserido em 
paralelo com os pontos do circuito em que se deseja medir a tenção, conforme é 
mostrado na Figura 5. 
Figura 22 - Medição de resistência elétrica. 
 
 
 
 
Fonte: Silva Filho, 2018. 
Na Figura 5, o objetivo é medir a tensão no resistor 𝑅2, portanto, o voltímetro é 
conectado em paralelo com o resistor nos pontos indicados. 
Conforme Halliday, Resnick e Walker (2022), para medir a diferença potencial 
entre dois pontos de um circuito, os terminais do voltímetro são ligados neste ponto, 
assim como foi feito na Figura 5. Um detalhe importante, é que não se deve desligar, 
nem mesmo cortar nenhum fio do circuito. É essencial que a resistência do voltímetro 
seja maior que a resistência dos elementos do circuito que serão medidos. Caso 
contrário, o medidor causará alterações no valor da diferença potencial que se deseja 
medir. 
 
RESISTORES, RESISTIVIDADE 
Conforme Halliday, Resnick e Walker (2022), ao aplicarmos a mesma diferença 
de potencial às extremidades de barras de mesmas dimensões feitas de cobre e de 
vidro, os resultados são distintos. 
A característica do material que determina a diferença é a resistência elétrica, 
que é entre dois pontos de um condutor, aplicando uma diferença de potencial 𝑉 entre 
esses pontos e medindo a corrente 𝑖 resultante. A resistência 𝑅 é dada por: 
𝑅 =
𝑉
𝑖
 
Conforme a equação da resistência, a unidade de resistência, do SI é o volt por 
ampère. Devido essa combinação ser muito utilizada, foi criada uma unidade para 
representá-la, o ohm (Ω), portanto, 
1 𝑜ℎ𝑚 = 1 𝑣𝑜𝑙𝑡 𝑝𝑜𝑟 𝑎𝑚𝑝è𝑟𝑒 = 1𝑉/𝐴 
Um condutor com a função de introduzir resistência em um circuito, é chamado 
de resistor. Em diagramas de circuitos elétricos, a representação do resistor é feita 
pelo símbolo . 
Ao escrever a equação da resistência na forma, 𝑖 =
𝑉
𝑅
, podemos visualizar que 
essa nomenclatura foi bem escolhida. Para uma determinada diferença potencial, 
quanto maior a resistência, menor é a corrente. 
Conforme Halliday, Resnick e Walker (2022), a resistência de um condutor 
depende do modo como a diferença de potencial é aplicada. A Figura 1 apresenta um 
exemplo dessa diferença, em duas formas distintas ao mesmo condutor. 
Figura 23 - Demonstrações de diferença de potencial a um condutor. 
 
Fonte: Halliday, Resnick e Walker, 2022. 
Podemos visualizar pelas linhas de corrente, que em ambos os casos, as 
correntes são distintas, assim podemos concluir que as resistências também são 
diferentes. A menos que seja dito o oposto, suponha que as diferenças de potencial 
 
Eq. 1 
 
 
 
sejam aplicadas nos condutores da Figura 1b. O interesse aqui é adotar um ponto de 
vista que enfatize mais o material do que o dispositivo, assim, voltamos nossa 
atenção, não para a diferença de potencial 𝑉 entre as extremidades de um resistor, 
mas no campo elétrico �⃗⃗� existente em um ponto do material resistivo. Ao invés de lidar 
com a corrente 𝑖 no resistor, lidamos com a densidade de corrente 𝐽 no ponto em 
questão. A forma correta de pronunciar é “resistividade 𝑝 do material”, ao invés de 
“resistência de 𝑝 de um componente” e temos: 
𝑝 =
𝐸
𝐽
 
Realizando uma combinação das unidades de 𝐸 e 𝐽 do SI conforme a equação 
2, obtemos para a unidade de 𝑝, o ohm-metro (Ω. 𝑚): 
𝑢𝑛𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐸
𝑢𝑛𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐽
=
𝑉/𝑚
𝐴/𝑚²
=
𝑉
𝐴
𝑚 = Ω. 𝑚 
Tenha cuidado para não confundir ohm-metro,com ohmímetro, pois o primeiro é uma unidade de 
resistividade do SI, enquanto o segundo, corresponde a um instrumento para medir resistências. 
A equação 2, também pode ser escrita de forma vetorial, sendo: 
�⃗⃗� = 𝑝𝐽 
As equações 2 e 3, são válidas somente para os materiais isotrópicos, que são 
materiais cujas propriedades são as mesmas em todas as direções. 
Ainda dentro deste assunto, podemos mencionar a condutividade 𝜎 de um 
material, sendo simplesmente o recíproco da resistividade: 
𝜎 =
1
𝑝
 
A unidade de condutividade do SI é o ohm-metro recíproco (Ω. m)−1 . Essa 
unidade é às vezes, chamada de mho por metro (mho = ohm). Com essa definição de 
𝜎, podemos escrever a equação 3, na seguinte forma: 
𝐽 = 𝜎�⃗⃗� 
Eq. 3 
Eq. 4 
Eq. 2 
 
 
 
CÁLCULO DA RESISTÊNCIA A PARTIR DA RESISTIVIDADE 
Para iniciar essa seção, tenha atenção para não se confundir, resistência, 
corresponde a uma propriedade de um componente, já a resistividade, corresponde a 
uma propriedade de um material. 
Ao conhecer a resistividade de um material, por exemplo, o cobre, não é nada 
difícil, calcular a resistência de seu fio. Sejam 𝐴 a área da seção reta, 𝐿 o comprimento 
e 𝑉 a diferença potencial entre as extremidades deste fio. Se as linhas de corrente 
que representam a densidade de corrente são uniformes ao decorrer de toda a seção 
reta, o campo elétrico e a densidade de corrente, são iguais em todos os pontos do 
fio e possuem os seguintes valores: 
𝐸 =
𝑉
𝐿
 e 𝐽 =
𝑖
𝐴
 
Assim, podemos combinar a equação da resistividade com a equação acima, e 
teremos: 
𝑝 =
𝐸
𝐽
=
𝑉/𝐿
𝑖/𝐴
 
Como 𝑉/𝑖 é a resistência 𝑅, podemos modificar a equação 4, que passa a ser: 
𝑅 = 𝑝
𝐿
𝐴
 
Essa equação somente pode ser aplicada em condutores isotrópicos 
homogêneos de seção reta uniforme, com a diferença potencial aplicada como na 
Figura 1b. 
As grandezas macroscópicas 𝑉, 𝑖 e 𝑅 , são de grande interesse, quando 
estamos realizando medidas elétricas em condutores específicos. São essas as 
grandezas que lemos diferentemente nos instrumentos de medida. Por outro lado, 
quando temos interesse nas propriedades elétricas dos materiais, utilizamos as 
grandezas microscópicas 𝐸, 𝐽 e 𝑝. 
Eq. 5 
Eq. 6 
 
 
 
OHMÍMETRO 
Inicialmente, é possível medir a resistência elétrica de um determinado 
elemento através da razão entre tensão em seus terminais e a corrente que passa por 
este elemento. Para conseguir medir uma resistência elétrica, temos o ohmímetro, 
que é a combinação de um voltímetro, com um amperímetro e uma fonte de tensão 
para o estabelecimento da corrente. A Figura 2, a seguir, nos apresenta o ohmímetro. 
Figura 24 -Circuito elétrico de um ohmímetro. 
 
Fonte: shre.ink/c7GH 
Antes do seu uso, o ohmímetro precisa ser calibrado, o que pode ser realizado 
de forma análoga. Conforme é apresentado na Figura 2b, para medição da resistência 
do resistor 𝑅𝑥, o ohmímetro deve ser conectado conforme é apresentado na Figura 2 
e através das leis de Kirchhoff, obtêm-se as seguintes equações: 
𝑅𝑥𝐼𝑥 + (𝑅
′′ + 𝑅𝐺)𝐼𝐺 = 𝑉𝐵 
(𝑅′′ + 𝑅𝐺)𝐼𝐺 = 𝑅′(𝐼𝑥 − 𝐼𝐺) 
Nesta última equação, a equação 8, é possível fazer o isolamento de 𝐼𝑥 e fazer 
a substituição na equação 7, para então encontrar o valor de 𝐼𝐺, o resultado desta 
substituição é: 
𝐼𝐺 =
𝑉𝐵
𝑅𝐺 + 𝑅′′
1
1 +
𝑅𝑥
𝑅1/2
 
Eq. 7 
Eq. 8 
Eq. 9 
 
 
 
 O valor de 𝑅1/2, é dada através de: 
𝑅1/2 =
𝑅′(𝑅𝐺 + 𝑅
′′)
𝑅′ + 𝑅𝐺 + 𝑅′′
 
𝐼𝐺 apresenta dois limites, e eles estão em função dos valores de 𝑅𝑥, sendo: 
𝐼𝐺𝑚á𝑥 =
𝑉𝐵
𝑅𝐺+𝑅
′′
 para 𝑅𝑥 = 0 
𝐼𝐺𝑚á𝑥 = 0 para 𝑅𝑥 = ∞ 
Com essas equações, quanto maior o valor de 𝑅𝑥, menor é a corrente no 
galvanômetro, aqui, a escala do ohmímetro é invertida. Chamamos o parâmetro 𝑅1/2 
de escala do ohmímetro. Ao observar a equação 9, vemos que ela corresponde ao 
valor de 𝑅𝑥, em que a corrente no galvanômetro é igual à metade do seu valor em 
curto quanto 𝑅𝑥 = 0, dessa forma, tanto a corrente no galvanômetro, quanto o valor 
da resistência 𝑅𝑥, estão relacionados univocamente através da equação 9, portanto, 
é possível determinarmos 𝑅𝑥 através da leitura de 𝐼𝐺. 
Para que a deflexão do ponteiro do galvanômetro seja máxima, quando 𝑅𝑥 for 
zero, ajustamos o valor de 𝑅′′, o que pode ser realizado com a equação 11. Por 
exemplo, se um galvanômetro apresenta 𝑅𝐺 = 1𝑘Ω, com fundo de escala igual à 
50µ𝐴, utilizando uma pilha de 1,5 V como 𝑉𝐵, ajustando 𝑅′′, deveríamos utilizar neste 
caso, 𝑅′′ = 29𝑘Ω. Em multímetros análogos comerciais, é possível realizar esse ajuste 
utilizando um cursor. 
Bem, após esse ajuste, podemos escolher 𝑅′ para obter o valor de 𝑅1/2, através 
da definição do fator de escala do ohmímetro. Ao escolher adequadamente 𝑅1/2, 
definimos a precisão do ohmímetro, e para que a medida seja mais precisa, 𝑅1/2 e 𝑅𝑥 
devem estar na mesma ordem de grandeza. O que é perceptível, através da equação 
9, pois, se 𝑅𝑥 = 10. 𝑅1/2, a corrente no galvanômetro será 10% do valor máximo, e se 
𝑅𝑥 = 𝑅1/2/10, ela será 90% do valor máximo. É conveniente que a leitura não esteja 
próxima de zero, nem mesmo do valor máximo. Para isso, 𝑅𝑥 e 𝑅1/2 devem ser de 
mesma ordem de grandeza. 
Eq. 10 
Eq. 11 
Eq. 12 
 
 
 
LEI DE OHM 
Conforme Silva Filho (2018), a Lei de Ohm foi criada pelo físico e matemático 
George Simon Ohm (1787 – 1854), que estudou a relação entre tensão, intensidade 
de uma corrente elétrica e a resistência elétrica. Com seu estudo, notou que, “a 
intensidade da corrente elétrica é diretamente proporcional à diferença de potencial a 
que está submetido o condutor e inversamente proporcional à resistência elétrica 
deste condutor” (SILVA FILHO, 2018, p. 7). 
O estudo de Ohm, foi datado em 1827, e passou a ser popularmente conhecido 
como a Lei de Ohm, expresso nas equações a seguir: 
𝑉 = 𝑅. 𝐼 
𝐼 =
𝑉
𝑅
 
𝑅 =
𝑉
𝐼
 
em que, 
V: corresponde à diferença de potencial, tensão ou Força Eletromotriz (f.e.m.), dada 
em volts (V); 
R: corresponde a resistência elétrica em ohms (Ω); e 
I, corresponde a intensidade da corrente elétrica, dada em ampères (A). 
LEI DE KIRCHHOFF 
Conforme Silva Filho (2018), Gustav Robert Kirchhoff (1824 – 1887), no ano de 
1854, publicou um trabalho voltado aos circuitos elétricos, atualmente conhecido como 
as Leis de Kirchhoff. A utilização destas leis facilita a resolução de circuitos que 
contenham associações mistas de resistores. Mas, antes de usá-las, é necessário 
estabelecer alguns conceitos. 
 
 
 
 
 
Figura 25 - Circuito com associação mista de resistores. 
 
Fonte: Silva Filho, 2018. 
Considerando a Figura 3, temos que: 
• Nó, corresponde a qualquer ponto no circuito, que concorrem três ou mais 
condutores. Na Figura 3, existem dois nós, os pontos 𝑏 e 𝑒. 
• Ramo, corresponde a qualquer trecho do circuito compreendido entre dois 
consecutivos. Na Figura 3, temos três ramos: 𝑏 − 𝑒, 𝑏 − 𝑐 − 𝑑 e 𝑏 − 𝑎 − 𝑓 − 𝑒. 
• Malha, corresponde qualquer circuito fechado, formado por ramos. Na Figura 
3, temos três malhas, 𝑎 − 𝑏 − 𝑒 − 𝑓 − 𝑎, 𝑎 − 𝑏 − 𝑐 − 𝑑 − 𝑒 − 𝑓 − 𝑎 e 𝑏 − 𝑐 −
𝑑 − 𝑒 − 𝑏. 
Como mencionado, Kirchhoff possui mais de uma lei, a primeira delas, é a lei 
de nós, também chamada de 1ª lei de Kirchhoff, segundo a qual: “A soma algébrica 
das correntes que chegam a um nó é igual à soma algébrica das correntes que saem 
desse nó” (SILVA FILHO, 2018, p. 20). O que é ilustrado na Figura 4, a seguir: 
Figura 26 - 1ª Lei de Kirchhoff 
 
 
 
 
Fonte: Silva Filho, 2018. 
A corrente convencional, partindo da fonte e se dividindo pelos nós, polariza 
com sinal positivo o “lado” do resistor por onde ela entra. Desta maneira, estabelecem-
se as polaridades das tensões nos resistores, como mostra a Figura 5. 
Figura 27 - Polarização das tensões nos resistores pela corrente convencional. 
 
Fonte: Silva Filho, 2018.A outra lei de Kirchhoff, é a lei das malhas, também chamada de 2ª lei de 
Kirchhoff e estabelece que: “percorrendo-se uma malha, em um mesmo sentido, a 
soma das tensões nos elementos de circuito encontradas é igual a zero” (SILVA 
FILHO, 2018, p. 20). 
Para aplicação da 2ª lei, é considerado para cada tensão, o primeiro sinal 
encontrado no sentido do percurso. O circuito apresentado na Figura 5, arbitra-se para 
a malha 𝑎 − 𝑏 − 𝑒 − 𝑓 − 𝑎, o percurso no sentido horário. As equações resultantes 
são: 
– 𝑉 + 𝑉1 + 𝑉3 + 𝑉2 = 0 
𝑉 = 𝑉1 + 𝑉3 + 𝑉2 
E para as malhas 𝑎 − 𝑏 − 𝑐 − 𝑑 − 𝑒 − 𝑓 − 𝑎 e 𝑏 − 𝑐 − 𝑑 − 𝑒 − 𝑏 , 
respectivamente: 
– 𝑉 + 𝑉1 + 𝑉4 + 𝑉5 + 𝑉6 + 𝑉2 = 0 
 
 
 
𝑉 = 𝑉1 + 𝑉4 + 𝑉5 + 𝑉6 + 𝑉2 
– 𝑉3 + 𝑉4 + 𝑉4 + 𝑉6 = 0 
𝑉3 = 𝑉4 + 𝑉5 + 𝑉6 
A resolução de circuitos elétricos contendo associações mistas de resistores 
não tem uma regra padrão. Em geral, há mais de uma maneira de visualizar o 
problema e encontrar a solução. Uma sequência mais adequada de procedimentos é 
obtida com a prática. Para resolver os circuitos de modo racional, sugere-se a seguinte 
sequência de etapas: 
1. Enumerar de modo organizado as grandezas conhecidas e aquelas a serem 
calculadas; 
2. Identificar os nós e as malhas do circuito; 
3. Atribuir a cada ramo do circuito o sentido para as correntes e a polaridade 
das tensões nos resistores; 
4. Escrever as equações de corrente para cada nó e as equações de tensões 
para cada malha, conforme as leis de Kirchhoff; 
5. Utilizar, sempre que possível, as propriedades das associações em série e 
em paralelo e a lei de Ohm, para determinar tensões e correntes desconhecidas; 
6. Escolher as equações convenientes dentre aquelas obtidas na 4ª etapa; 
cada equação só permite determinar uma incógnita, não sendo útil aquela que, após 
a substituição dos valores conhecidos, apresentar mais de um termo a ser 
determinado. 
REFERÊNCIAS BIBLIOGRÁFICAS 
HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física: 
eletromagnetismo. 10 ed. v. 3. Traduzido por Ronaldo Sérgio de Biasi. Rio de Janeiro: 
LTC, 2022. 
SILVA FILHO, M. T. Fundamentos de eletricidade, Rio de Janeiro: LTC, 2018. 
 
 
 
 
 
TIPOS DE CORRENTE ELÉTRICA 
Conforme Silva Filho (2018), existem dois tipos de corrente elétrica: a corrente 
contínua (CC) e a corrente alternada (CA). 
A corrente contínua se caracteriza por manter o seu valor constante enquanto 
o tempo decorre. Essa corrente sempre sai do mesmo terminal da fonte. A Figura 1, 
apresenta o gráfico de uma corrente contínua. 
Figura 28 - Gráfico de uma corrente contínua de 3 A. 
 
Fonte: Silva Filho, 2018. 
Na corrente alternada, seu valor e sentido variam periodicamente no decorrer 
do tempo. A corrente alternada sai ora de um, ora de outro terminal da fonte. Um 
gráfico representativo é mostrado na Figura 2. 
Figura 29 - Corrente alternada de 3 A. 
 
Fonte: Silva Filho, 2018. 
 
 
 
A corrente elétrica tem a mesma natureza da fonte que a gerou. Assim, uma 
fonte de tensão contínua gera uma corrente contínua, e uma corrente alternada 
provém de uma fonte de tensão alternada. 
MODELAMENTO DE UM CIRCUITO ELÉTRICO 
Compreende-se como circuito elétrico, o caminho eletricamente completo, em 
que circula ou pode circular uma corrente elétrica, quando se mantém uma Diferença 
de Potencial (d.d.p.) em seus terminais. Para analisar e estudar um circuito elétrico, é 
preciso obter o modelo dos equipamentos elétricos, que estão ligados no circuito em 
análise. 
O modelo dos equipamentos, deve conseguir traduzir o funcionamento do 
equipamento elétrico ligado no circuito. Por exemplo, uma lâmpada é representada 
por uma resistência acompanhada por seu respectivo valor numérico. O modelo da 
lâmpada, no circuito elétrico, é denominado resistor. Além da lâmpada, chuveiros 
elétricos e aquecedores, também são componentes modelados por resistores. 
A fonte de tensão, é um elemento do circuito elétrico, responsável por fornecer 
uma tensão definida. Na Figura 3, temos uma apresentação gráfica de um circuito que 
contém um resistor e uma fonte de tensão. As linhas que ligam a fonte aos terminais 
do resistor representam o caminho para a circulação da corrente elétrica, e não devem 
ser interrompidas, pois, para haver corrente elétrica, o circuito deve ser fechado. A 
corrente está representada em sentido convencional. 
Figura 30 - (a) fonte de tensão contínua, com indicação dos terminais positivo e 
negativo; (b) resistor; (c) circuito elétrico completo. 
 
Fonte: Silva Filho, 2018. 
 
 
 
MÚLTIPLOS E SUBMÚLTIPLOS DAS UNIDADES DE MEDIDAS ELÉTRICAS 
As medidas expressas em eletricidade podem empregar múltiplos ou 
submúltiplos das unidades principais, conforme for sua magnitude. Por exemplo, 
2.000.000 𝛺 e 0,00005 𝐴, são quantidades mais apropriadamente expressas como 
2 𝑀𝛺 e 50 𝜇𝐴, respectivamente. 
Os múltiplos e submúltiplos mais utilizados são os seguintes: 
 
Prefixo Símbolo Fator multiplicador 
Múltiplos 
mega M 1.000.000 ou 106 
quilo k 1.000 ou 10¹ 
Submúltiplos 
mili m 0,001 ou 10−3 
mícro 𝜇 0,000.001 ou 10−6 
Fonte: Adaptado de Silva Filho, 2018. 
Exemplo 01: Um chuveiro elétrico de resistência 6 Ω, submetido a uma d.d.p 
de 120 V, possui uma intensidade de corrente elétrica, descubra qual é essa 
intensidade. 
𝑅 = 6Ω | 𝑉 = 120 𝑉 | 𝐼 =? 
𝐼 =
𝑉
𝑅
=
120
6
= 20 𝐴. 
TRABALHO ELÉTRICO 
Trabalho é definido pela física como: 
𝑇𝑟𝑎𝑏𝑎𝑙ℎ𝑜 = 𝐹𝑜𝑟ç𝑎 𝑥 𝐷𝑒𝑠𝑙𝑜𝑐𝑎𝑚𝑒𝑛𝑡𝑜 
Quando os elétrons livres estão em movimento, sob a ação de uma Força 
Elemotriz (f.e.m.), o trabalho elétrico realizado sobre eles é dado por: 
𝑊 = 𝑉. 𝑞 
 
 
 
em que: 
W, corresponde ao trabalho elétrico, em joules (J); 
V, corresponde a f.e.m. ou tensão, em volts (V); e 
q, corresponde a carga elétrica, em coulombs (C). 
Assim, da definição de corrente elétrica, temos: 
𝐼 =
𝑞
𝑡
 ou 𝑞 = 𝐼. 𝑡 
Substituindo a equação 𝑞 = 𝐼. 𝑡, pela equação do trabalho elétrico, temos: 
𝑊 = 𝑉. 𝐼. 𝑡 
Como, pela lei de Ohm: 
𝑉 = 𝑅. 𝐼 
Temos também, 
𝑊 = 𝑅. 𝐼2. 𝑡 
ENERGIA ELÉTRICA 
Energia é a capacidade de produzir trabalho. A energia tem a mesma unidade 
física de trabalho, o joule (J), e utilizam-se as mesmas equações para se calcular o 
trabalho realizado e a energia consumida. 
A energia elétrica é transportada pela corrente elétrica, e proporciona o 
funcionamento dos equipamentos e aparelhos elétricos e eletrônicos utilizados pelo 
homem. 
POTÊNCIA ELÉTRICA 
Conforme Silva Filho (2018), energia corresponde a capacidade de produção 
do trabalho e possui a mesma unidade física de trabalho, o joule (J), além dessa 
semelhança, eles utilizam as mesmas equações para o cálculo do trabalho realizado 
e da energia consumida, pela equação: 
𝑃 =
𝑊
𝑡
 
 
 
 
em que: 
P, corresponde à potência, dada em watts (W); 
W, corresponde ao trabalho, dado em joules (J); e 
t, corresponde ao tempo, dado em segundos (s). 
Se substituirmos a equação 𝑊 = 𝑉. 𝐼. 𝑡 pela equação da potência, temos a 
seguinte: 
𝑃 = 𝑉. 𝐼 
E substituindo a equação 𝑉 = 𝑅. 𝐼, na equação acima, teremos: 
𝑃 = 𝑅. 𝐼² 
e ainda, levando em consideração a equação 𝐼 =
𝑉
𝑅
, temos: 
𝑃 =
𝑉²
𝑅
 
Conforme o Sistema Internacional de Unidade (SI), a unidade física de 
potência, o watt (W), equivale a 1 joule por segundo. Assim, é a potência envolvida 
quando se realiza o trabalho de 1 joule a cada segundo. Para entender essa teoria, a 
potência apresentada no bulbo de uma lâmpada, por exemplo, 100 W, indica a energia 
elétrica gasta na lâmpada a cada unidade de tempo. 
Entre as unidades de potência muito utilizadas, temos: 
• quilowatt: 1 kW = 1.000 W 
• o cv (cavalo-vapor): 1 cv = 736 W 
Para energia, empregam-se também: 
• watt-hora: 1 Wh = 3.600 J 
• quilowatt-hora: 1 kWh = 3,6.106 J 
Com e equação de potência, é possível calcular a energia, fazendo-se: 
𝐸 = 𝑃. 𝑡em que: 
E, corresponde a energia; 
 
 
 
P, corresponde a potência; e 
t, corresponde ao tempo. 
ASSOCIAÇÃO DE RESISTORES EM SÉRIE E PARALELO 
Conforme Aiub e Filoni (2007), na associação de resistores ou resistências, é 
determinado um valor único de resistência elétrica, que em números, equivale à 
ligação de um grupo de resistências. Obter valores de resistências ou resistores não 
existentes comercialmente e a simplificação dos circuitos para facilidade na solução, 
são exemplos dessa aplicação, na prática. 
Com a associação resistores/resistência, obtém-se a resistência equivalente 
(𝑅𝑒𝑞) ou resistência total (𝑅𝑇), aquela “vista” pela fonte do circuito. 
Figura 31 - Demonstração de um circuito. 
 
Fonte: Aiub e Filoni, 2007. 
Na Figura 4, temos um exemplo de um sistema para explicação dessa 
associação na prática. Para que tenhamos uma resistência equivalente do circuito, 
entre os pontos A e B deve ser ligado um ohmímetro e/ou a fonte deste circuito. 
ASSOCIAÇÃO EM SÉRIE 
No processo de associação em série, é realizada uma ligação por um ponto 
entre cada resistência. Esse ponto não pode ser um nó elétrico, ou seja, um ponto em 
que partem ou que cheguem três ou mais ramos, ou ainda partem, ou cheguem duas, 
ou mais correntes, conforme demonstrado na Figura 5. 
 
Figura 32 - Demonstração de um circuito. 
 
 
 
 
Fonte: Aiub e Filoni, 2007. 
Em ambos os circuitos, entre as resistências 𝑅1 e 𝑅2, o único ponto de ligação 
é o 𝑋 e entre as resistências 𝑅2 e 𝑅3, o ponto 𝑌. 
 
Em uma associação em série, a resistência equivalente à associação, é igual à 
soma das resistências existentes nela (AIUB; FILONI, 2017, p. 33). 
Exemplo 01: 
 
A resistência equivalente entre os pontos A e B, será: 
 
ASSOCIAÇÃO PARALELA 
Essa associação é caracterizada pela ligação realizada por dois pontos entre 
cada resistência. Neste caso, os pontos são nós elétricos (Figura 6). 
 
 
 
Figura 33 - Exemplo de circuito elétrico. 
 
 
 
 
Fonte: Aiub e Filoni, 2007. 
Nas duas figuras, entre cada duas resistências, 𝑅1 e 𝑅2 , 𝑅2 e 𝑅3 , 𝑅1 e 𝑅3, 
existem dois pontos de ligação, no caso os próprios pontos 𝐴 e 𝐵. 
 
Na associação paralela, o inverso da resistência equivalente à soma dos 
inversos das resistências existentes na associação. 
Exemplo 02: 
 
A resistência equivalente entre os pontos A e B, será: 
 
Neste tipo de associação, a resistência equivalente, sempre é menor do que a 
menor resistência do circuito, como no exemplo, 2,86 Ω < 5Ω. 
 
 
 
Casos particulares 
• Quando temos duas resistências diferentes em paralelo. 
 
Temos: 
 
Exemplo 03: 
 
Na prática, este é o método mais utilizado. 
• n resistências iguais em paralelo ≅ 
 
 
 
 
 
Exemplo 04: 
 
A Req 
 
 
DIVISOR DE TENSÃO 
O tema, divisor de tensão, corresponde a um circuito usado para obter valores 
de tensão os quais não podem ser obtidos por associações simples de pilhas ou 
baterias comerciais, ou ainda quando a tensão da fonte que se possui é superior ao 
valor de tensão desejado (AIUB; FILONI, 2007). 
Como em todos os circuitos, através dele obtém-se uma tensão, neste caso, a 
chamada de tensão de saída, sendo representada por 𝑉𝑆 e pode ser um valor fixo ou 
variável. À saída desse circuito podemos ou não acoplar outro circuito e/ou uma 
resistência, chamada de carga. Assim, é possível dizer que os circuitos divisores de 
tensão podem ser fixos ou variáveis e com ou sem carga. 
Conforme Aiub e Filoni (2007), o divisor de tensão sem carga, possui a corrente 
de saída ou de carga nula, portanto, não existe nada acoplado nos terminais de 𝑉𝑆. 
 
 
 
DIVISOR COM TENSÃO DE SAÍDA FIXA OU CONSTANTE 
Corresponde ao circuito série de resistores, em que, por cada resistor, é 
possível obter uma parcela de tensão total da fonte, conforme é apresentado na Figura 
1. 
Figura 34 - Circuito com resistor com tensão de saída fixa. 
 
Fonte: Aiub e Filoni, 2007. 
Analisando o circuito, temos: 
 
A corrente no circuito, é calculada pela expressão: 
 
A tensão de saída 𝑉𝑆 corresponde a tensão na resistência 𝑅2, que conforme a 
lei de Ohm, temos: 
 
Ao substituir “I” pela expressão, temos: 
 
Essa expressão, pode ser chamada de equação para o circuito divisor de 
tensão. “A tensão de saída em um circuito divisor de tensão será igual ao produto da 
resistência em que se deseja obter essa tensão pela tensão da fonte e dividido pela 
soma da resistência do circuito” (AIUB; FILONI, 2007, p. 66). 
Exemplo 01: Dimensionar os valores das resistências do circuito, sabendo 
que a resistência vista pela fonte, é de 3𝐾Ω. 
 
 
 
 
Lembrando que, Req = R1 + R2 = 3KΩ, temos ainda VS =
R2.V
R1+R2
. 
Substituindo os valores, temos: 
20 =
R2. 30
3K
→ R2 = 2KΩ 
Logo, 
R1 = Req − R2 = 3K − 2K = 1KΩ 
TENSÃO DE SAÍDA VARIÁVEL OU AJUSTÁVEL 
Temos o circuito seletor de tensões, em que a tensão de saída pode ter vários 
valores, sem assumi-los. São valores intermediários entre dois consecutivos, portanto, 
acontecem “saltos” de tensão. 
Na Figura 2, adotamos o A, como um ponto comum para todas as tensões. 
 
 
Figura 35 - Circuito seletor de tensões. 
 
Fonte: Aiub e Filoni, 2007. 
Estando a chave na posição B, temos: 
 
Na posição C, temos: 
 
 
 
 
E na posição D, temos: 
 
Com essa demonstração, podemos verificar que a tensão pode assumir alguns 
valores entre 0 e o valor da fonte, mas não estes valores. 
TENSÃO VARIÁVEL ENTRE 0 E V ( 𝟎 ≤ 𝑽𝑺 ≤ 𝑽) 
Nesta situação, utiliza-se apenas um potenciômetro ou um resistor variável 
ligado diretamente aos terminais da fonte de tensão, conforme é apresentado na 
Figura 3. A resistência equivalente ao circuito, será a própria resistência nominal do 
potenciômetro (Rpot) e a tensão de saída VS, é obtida entre o ponto A de referência 
do circuito e o ponto C, contato móvel do potenciômetro. 
Alterando a posição do contato móvel do potenciômetro, obtemos todos os 
valores possíveis de tensão VS, entre zero e o valor da fonte, pois se o contato móvel 
estiver parado em uma posição qualquer que não sejam as extremidades do 
potenciômetro, podemos imaginá-lo como dividido em duas resistências R1 e R2. 
 
 
Figura 36 - Circuito com tensão variável. 
 
Fonte: Aiub e Filoni, 2007. 
em que, 
 
Para a figura seguinte, temos: 
 
 
 
 
O valor nominal do potenciômetro é determinado, imaginando-o como um 
resistor fixo. 
• Ponto C, coincidente com o ponto 𝐀 − VS = 0. 
• Ponto C, coincidente com o ponto 𝐁 − VS = VBA = V = VRpot. 
• Para o ponto C, em uma posição qualquer, diferente de A e B – VS, pode 
assumir valores diferentes de zero e V da fonte. 
Este tipo de divisor, é bastante aplicado em circuitos de áudio, em controles de 
volume e balanço de canais estereofônicos, etc. 
TENSÃO VARIÁVEL COM LIMITE INFERIOR ( 𝐕𝐦𝐢𝐧 < 𝐕𝐒 ≤ 𝐕) OU LIMITE 
SUPERIOR (𝟎 ≤ 𝐕𝐒 < 𝐕𝐦Á𝐱) 
Em um circuito, pode ser necessário limitar a variação da tensão de saída, além 
disso, é possível limitar os valores a partir de um valor mínimo ou máximo, sendo 
praticamente o mesmo, o que altera é apenas o ponto de referência da tensão, o ponto 
A. 
Exemplo 02: Neste exemplo, o limite é para um valor mínimo, pois quando o 
contato móvel do potenciômetro, o ponto C, estiver coincidindo com o ponto B, VS será 
a tensão sobre o resistor R1. 
 
Para as demais posições do contato móvel, VS será a tensão sobre R1 mais um 
pedaço R do potenciômetro até atingir o valor máximo, quando forem coincidentes os 
pontos C e D, neste caso, VS = V da fonte. 
 
 
 
DIVISOR DE CORRENTE 
De forma análoga ao circuito divisor de tensão, às vezes se faz necessário 
limitar a corrente elétrica em um circuito ou em parte dele. Neste caso, usamos o 
circuito divisor de corrente que, basicamente, nada mais é do que um circuito de 
resistências em paralelo cuja corrente total é dividida entre as várias resistências dele. 
DIVISOR DE CORRENTEFIXO OU CONSTANTE 
Tomemos como exemplo um circuito com dois resistores fixos em paralelo. 
 
Utilizando a lei de Ohm, podemos escrever: 
 
Como, 
 
podemos ainda obter, 
 
e de forma análoga, 
 
Desse modo, Aiub e Filoni (2007), afirmam que, 
conhecida a corrente total do circuito paralelo, as correntes em cada resistor 
do circuito serão calculadas multiplicando essa corrente pelo resistor em que 
não se deseja determinar a corrente, dividido pela soma das resistências do 
circuito (AIUB; FILONI, 2007, p. 75). 
Exemplo 01: Determine as correntes I1 e I2 do circuito. 
 
 
 
 
 
DIVISOR VARIÁVEL DE CORRENTE 
Aqui vamos utilizar um potenciômetro com resistência nominal Rpot. A ligação 
será efetuada de forma que a ligação em paralelo, que é necessária, aconteça entre 
as duas frações de resistências que constituem o potenciômetro e é variável, pois 
alterando o posicionamento do cursor móvel deste (C), alteram-se os valores das 
frações correspondentes a cada trecho do potenciômetro. É preciso lembrar que a 
soma das resistências do circuito permanece constante e igual a Rpot. 
 
em que, Rpot = R1 + R2. 
Assim, podemos escrever: 
 
Variando a posição do cursor móvel do potenciômetro (C), vamos variar as 
intensidades das correntes I1 e I2, de modo que: 
• quando o ponto C estiver coincidindo com o ponto A, teremos: R2 = Rpot, logo 
I1 = I e I2 = 0. 
• quando o ponto C estiver coincidindo com o ponto B, teremos: R1 = Rpot, logo 
I2 = I e I1 = 0. 
 
 
 
Então conclui-se que as correntes I1 e I2, variam seus valores entre 0 e I, sendo 
I, a corrente de curto-circuito do gerador (I = Icc). 
DIVISOR DE CORRENTE COM LIMITES MÍNIMO, MÁXIMO OU AMBOS 
Em alguns circuitos, é necessário limitar a variação da corrente elétrica em um 
componente ou determinado trecho do circuito. 
Para simplificar a análise, vamos considerar que a corrente I1 corresponde à 
corrente de saída (IS) do divisor. 
O circuito seguinte, mostra um divisor com limite máximo de corrente IS, pois 
com o contato móvel do potenciômetro no ponto A, R2 será igual a Rpot e R1 igual a R. 
 
 
I1 será igual a zero, quando o contato móvel estiver coincidindo com o ponto B, 
gerador em curto, pois R2 = 0 e R1 = Rpot + R. 
Assim, I1 será uma corrente que varia de zero a I1máx. 
Se alternarmos a posição da resistência R, passando-a para o ramo percorrido 
por I2, conforme o circuito, teremos um divisor de corrente com limite mínimo, pois 
quando o contato do potenciômetro estiver no ponto B, R1 será igual a Rpot e R2, igual 
a R e ainda, quando o contato do potenciômetro estiver no ponto A, R1 = 0 e R2 igual 
a R mais Rpot, o que significa I1 igual a I, em que, I = Icc, (igual à corrente de curto 
gerador). 
 
Assim, 
 
 
 
 
ou seja, I1 será uma corrente que varia de I1mín a I = Icc do gerador. 
Para finalizar a análise do circuito divisor de corrente, basta efetuar a 
composição dos dois circuitos divisores com limites mínimo e máximo. Assim, teremos 
I1mín ≤ IS ≤ Imáx. 
 
• quando o contato móvel estiver coincidindo com o ponto A, teremos: 
l 
• quando o contato móvel estiver coincidindo com o ponto B, teremos: 
 
E para finalizarmos esta aula, temos duas observações: 
1. Ao invés de trabalharmos com geradores de tensão, é possível realizar a 
substituição por geradores de corrente, os quais mantêm a corrente do circuito 
constante, independentemente da tensão aplicada. 
 
2. Em casos analisados como na tensão de saída variável ou ajustável e na 
tensão de saída variável entre 0 e V, quando temos a corrente de saída máxima 
e igual à corrente total, ela era a corrente de curto-circuito do gerador de tensão. 
 
3. CAMPO MAGNÉTICO 
Conforme Halliday, Resnick e Walker (2022), seguindo o raciocínio de que um 
campo elétrico é produzido por cargas elétricas, pela lógica, um campo magnético 
 
 
 
seria produzido por forças magnéticas, os conhecidos monopolos magnéticos, que 
conforme algumas teorias, essas cargas até então, não foram observadas. O que nos 
leva ao questionamento, de como um campo magnético é produzido. E existem duas 
formas para sua produção. 
A primeira forma de produção, é utilizando partículas eletricamente carregadas 
em movimento, como os elétrons responsáveis pela corrente elétrica em um fio, e 
como a fabricação do eletroímã, em que a corrente gera um campo magnético, o qual 
pode ser utilizado para girar um disco rígido de computador, ou para realizar o 
transporte de uma sucata, de um local para outro. 
A segunda forma de produzir um campo magnético, é através das partículas 
elementares, que conforme Halliday, Resnick e Walker (2022), entre essas partículas 
e o elétron, existe um campo magnético intrínseco. Na realidade, o campo magnético 
é uma propriedade das partículas elementares, como a massa e a carga elétrica. 
Existem materiais que os campos magnéticos dos elétrons somam-se para produção 
de um campo magnético no espaço que cerca este material. É devido a isso, que um 
ímã permanente, este que utilizamos em nossas residências para pendurar recados 
na geladeira, possui um campo magnético permanente. 
Na maioria dos materiais, os campos magnéticos dos elétrons se cancelam e o 
campo magnético em volta do material é nulo. É por isso que não possuímos um 
campo magnético ao redor de nosso corpo, o que é uma vantagem, pois, não seria 
nada agradável ser atraído por portas de geladeiras. 
FORÇA MAGNÉTICA 
Conforme Feynman, Leighton e Sands (2019), a força sobre uma carga elétrica 
não depende somente de onde a carga se encontra, mas também de sua 
movimentação. Todo ponto presente no espaço é caracterizado por duas quantidades 
vetoriais, que determinam a força em qualquer carga, a força elétrica e a força 
magnética. 
A força elétrica, é responsável por fornecer o componente da força que 
independe do movimento da carga, ela é descrita através do campo elétrico 𝑬. 
Também temos a força magnética, sendo um componente adicional da força e que 
depende da velocidade da carga. Em qualquer ponto no espaço, seja direção ou em 
 
 
 
magnitude, a força magnética, depende da direção do movimento da partícula, a cada 
instante, sendo sempre perpendicular ao vetor velocidade, e em qualquer ponto, ela 
será perpendicular a uma direção fixa do espaço, essa característica, é dita por 
Feynman, Leighton e Sands (2019), como uma característica estranha direcional. 
A força magnética, possui magnitude proporcional a componente da velocidade 
perpendicular a direção única, sendo possível a descrição de todo o comportamento 
definindo no vetor do campo magnético 𝑩, que especifica tanto a direção única no 
espaço, quanto a constante de proporcionalidade com a velocidade, o que possibilita 
escrever essa força como 𝑞𝑣 × 𝑩. Assim, a força eletromagnética total em uma carga, 
pode ser escrita como: 
𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵) 
o que é chamada de força de Lorentz. 
Essa força é facilmente demonstrada trazendo uma barra de magneto para 
próximo de um tubo de raios catódicos, enquanto a deflexão do feixe de elétrons 
mostra que a presença do magneto resulta em uma força nos elétrons, transversa à 
direção do seu movimento. A unidade do campo magnético 𝑩 é evidentemente um 
newton-segundo por coulomb--metro. Esta mesma unidade é também um volt-
segundo por metro de um weber por metro quadrado. 
LINHAS DE CAMPO MAGNÉTICO 
Assim como um campo elétrico, um campo magnético pode ser representado 
por linhas de campo. As regras são as mesmas do que no campo elétrico: 
• A direção da tangente a uma linha de campo magnético em qualquer ponto, 
fornece a direção de �⃗⃗� neste ponto; 
• O espaçamento das linhas representa o módulo de �⃗⃗�, que quanto mais intenso 
o campo, mais próximas estão as linhas, e vice-versa. 
Na Figura 1, temos uma demonstração de linhas de um campo magnético 
próximo a um ímã em forma de barra. Todas as linhas passam pelo interior do ímã, 
formando

Continue navegando