Logo Passei Direto
Buscar

6675-10_DP_AD_19_20232 ESTUDOS DISCIPLINARES XII

Ferramentas de estudo

Questões resolvidas

Acerca dos argumentos racionais, julgue os itens a seguir.
É correto o que se afirma em:
I. Adotando-se o processo de inferências do tipo indutiva, usado em ciências experimentais, parte-se do particular para o geral, ou seja, a partir da observação de casos particulares, chega-se a uma conclusão que os transcende.
II. Regras de inferência, como Modus Ponens ou Modus Tollens, apresentam estruturas de argumentos indutivos.
III. À luz da teoria da argumentação, o seguinte argumento foi construído com base no raciocínio dedutivo: Todos os gatos são carnívoros. Pepper é um gato. Portanto, Pepper é carnívoro.
a. I, apenas.
b. II, apenas.
c. III, apenas.
d. I e II.
e. II e III.

A intenção do autor foi retratar uma falácia lógica, cometida pelo gato.
Trata-se do(a):
a. Petição de princípio.
b. Apelo à ignorância.
c. Apelo à popularidade.
d. Falsa dicotomia.
e. Apelo à emoção.

Do ponto de vista da lógica formal, uma proposição pode ser definida como uma sentença declarativa classificada como verdadeira ou falsa, assumindo um, e apenas um, desses dois valores lógicos. Dessa forma, sentenças imperativas ou interrogativas não são consideradas proposições. Nesse contexto, assinale a única alternativa que não apresenta uma proposição.
a. O céu é azul.
b. 2 + 2 = 4.
c. Pode me passar o açúcar, por favor?
d. A água ferve a 100 graus Celsius.
e. Todos os pássaros podem voar.

Assinale a alternativa que representa o nome da estrutura do seguinte argumento: Premissa 1: Se José é professor, então ele lê muito. Premissa 2: José é professor. Conclusão: Logo, José lê muito.
a. Silogismo disjuntivo.
b. Silogismo categórico.
c. Silogismo hipotético.
d. Falácia da negação do antecedente.
e. Falácia da afirmação do consequente.

Duas proposições, “p” e “q”, formam uma proposição composta por disjunção inclusiva, tal que p v q. Nessa situação, é correto afirmar que o resultado da proposição composta será:
a. Verdadeiro se ambas as proposições simples forem verdadeiras.
b. Falso se pelo menos uma das duas proposições simples for verdadeira.
c. Verdadeiro se pelo menos uma das duas proposições simples for falsa.
d. Verdadeiro se pelo menos uma das duas proposições simples for verdadeira.
e. Falso se ambas as proposições simples forem falsas.

Dadas as premissas p1 , p2 ,..., pn e uma conclusão q, uma regra de inferência a partir da qual q se deduz logicamente de p1 , p2 ,..., pn pode ser denotada por: p1 , p2 ,..., pn ├ q. O símbolo ├ é utilizado para separar premissas (à esquerda) da conclusão (à direta). Quando há mais de uma premissa no argumento, elas devem ser separadas entre si por vírgula.
Uma regra de inferência clássica é chamada Silogismo Hipotético, que parte de duas premissas condicionais e chega a uma conclusão condicional. Seguindo a estrutura apresentada, qual a notação que designa a regra de inferência em questão?
a. p → q, p ├ q.
b. p, q ├ r.
c. p → q, q ├ p.
d. p → q, ~q ├ ~p.
e. p, ~q ├ r.

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Acerca dos argumentos racionais, julgue os itens a seguir.
É correto o que se afirma em:
I. Adotando-se o processo de inferências do tipo indutiva, usado em ciências experimentais, parte-se do particular para o geral, ou seja, a partir da observação de casos particulares, chega-se a uma conclusão que os transcende.
II. Regras de inferência, como Modus Ponens ou Modus Tollens, apresentam estruturas de argumentos indutivos.
III. À luz da teoria da argumentação, o seguinte argumento foi construído com base no raciocínio dedutivo: Todos os gatos são carnívoros. Pepper é um gato. Portanto, Pepper é carnívoro.
a. I, apenas.
b. II, apenas.
c. III, apenas.
d. I e II.
e. II e III.

A intenção do autor foi retratar uma falácia lógica, cometida pelo gato.
Trata-se do(a):
a. Petição de princípio.
b. Apelo à ignorância.
c. Apelo à popularidade.
d. Falsa dicotomia.
e. Apelo à emoção.

Do ponto de vista da lógica formal, uma proposição pode ser definida como uma sentença declarativa classificada como verdadeira ou falsa, assumindo um, e apenas um, desses dois valores lógicos. Dessa forma, sentenças imperativas ou interrogativas não são consideradas proposições. Nesse contexto, assinale a única alternativa que não apresenta uma proposição.
a. O céu é azul.
b. 2 + 2 = 4.
c. Pode me passar o açúcar, por favor?
d. A água ferve a 100 graus Celsius.
e. Todos os pássaros podem voar.

Assinale a alternativa que representa o nome da estrutura do seguinte argumento: Premissa 1: Se José é professor, então ele lê muito. Premissa 2: José é professor. Conclusão: Logo, José lê muito.
a. Silogismo disjuntivo.
b. Silogismo categórico.
c. Silogismo hipotético.
d. Falácia da negação do antecedente.
e. Falácia da afirmação do consequente.

Duas proposições, “p” e “q”, formam uma proposição composta por disjunção inclusiva, tal que p v q. Nessa situação, é correto afirmar que o resultado da proposição composta será:
a. Verdadeiro se ambas as proposições simples forem verdadeiras.
b. Falso se pelo menos uma das duas proposições simples for verdadeira.
c. Verdadeiro se pelo menos uma das duas proposições simples for falsa.
d. Verdadeiro se pelo menos uma das duas proposições simples for verdadeira.
e. Falso se ambas as proposições simples forem falsas.

Dadas as premissas p1 , p2 ,..., pn e uma conclusão q, uma regra de inferência a partir da qual q se deduz logicamente de p1 , p2 ,..., pn pode ser denotada por: p1 , p2 ,..., pn ├ q. O símbolo ├ é utilizado para separar premissas (à esquerda) da conclusão (à direta). Quando há mais de uma premissa no argumento, elas devem ser separadas entre si por vírgula.
Uma regra de inferência clássica é chamada Silogismo Hipotético, que parte de duas premissas condicionais e chega a uma conclusão condicional. Seguindo a estrutura apresentada, qual a notação que designa a regra de inferência em questão?
a. p → q, p ├ q.
b. p, q ├ r.
c. p → q, q ├ p.
d. p → q, ~q ├ ~p.
e. p, ~q ├ r.

Prévia do material em texto

Teste AVALIAÇÃO II 
Iniciado 09/12/23 10:18 
Enviado 09/12/23 10:42 
Status Completada 
Resultado da tentativa 5 em 10 pontos 
Tempo decorrido 24 minutos 
Resultados exibidos Respostas enviadas, Perguntas respondidas incorretamente 
 Pergunta 1 
0 em 1 pontos 
 
 
Acerca dos argumentos racionais, julgue os itens a 
seguir. 
 
I. Adotando-se o processo de inferências do tipo 
indutiva, usado em ciências experimentais, parte-se 
do particular para o geral, ou seja, a partir da 
observação de casos particulares, chega-se a uma 
conclusão que os transcende. 
II. Regras de inferência, como Modus 
Ponens ou Modus Tollens, apresentam estruturas de 
argumentos indutivos. 
III. À luz da teoria da argumentação, o seguinte 
argumento foi construído com base no raciocínio 
dedutivo: Todos os gatos são carnívoros. Pepper é 
um gato. Portanto, Pepper é carnívoro. 
 
É correto o que se afirma em: 
 
Resposta Selecionada: a. 
I, apenas. 
 
 
 
 
 
 
 
 
Disponível em: https://dogncatcomic.wordpress.com/category/logical-fallacy/. Acesso em: 28 
nov. 2021 (adaptada). 
 
A intenção do autor foi retratar uma falácia lógica, cometida pelo gato. Trata-se 
do(a): 
Resposta Selecionada: a. 
Petição 
de 
princípi
o. 
 
 
 
 
 
 
A falácia retratada se trata do(a): 
Resposta Selecionada: c. 
Apelo à popularidade. 
 
 
 
Pergunta 4 
1 em 1 pontos 
 
 
Do ponto de vista da lógica formal, uma proposição pode ser definida como 
uma sentença declarativa classificada como verdadeira ou falsa, assumindo 
um, e apenas um, desses dois valores lógicos. Dessa forma, sentenças 
imperativas ou interrogativas não são consideradas proposições. Nesse 
contexto, assinale a única alternativa que não apresenta uma proposição. 
 
Resposta Selecionada: c. 
Pode me passar o açúcar, por favor? 
 
 
 
 
 
 Pergunta 6 
1 em 1 pontos 
 
 
Leia o argumento abaixo. 
 
Eu fui a um restaurante em Santos e não gostei. A partir disso, concluí 
que todos os restaurantes de lá são péssimos. 
 
No texto acima, uma falácia, muito conhecida no campo da lógica 
informal, foi cometida. É correto afirmar que se trata de um(a): 
 
Resposta Selecionada: b. 
Generalização precipitada. 
 
 
 Pergunta 7 
0 em 1 pontos 
 
 
Assinale a alternativa que representa o nome da estrutura do seguinte 
argumento: 
 
Premissa 1: Se José é professor, então ele lê muito. 
Premissa 2: José é professor. 
Conclusão: Logo, José lê muito. 
 
Resposta Selecionada: e. 
Falácia da afirmação do consequente. 
 
 
 Pergunta 8 
1 em 1 pontos 
 
 
Assinale a alternativa que representa o nome da estrutura do seguinte 
argumento: 
 
Premissa 1: Se José é professor, então ele lê muito. 
Premissa 2: José lê muito. 
Conclusão: Logo, José é professor. 
 
Resposta Selecionada: e. 
Falácia da afirmação do consequente. 
 
 
 Pergunta 9 
1 em 1 pontos 
 
 
Duas proposições, “p” e “q”, formam uma proposição composta por 
disjunção inclusiva, tal que p v q. Nessa situação, é correto afirmar que 
o resultado da proposição composta será: 
 
Resposta 
Selecionada: 
d. 
Verdadeiro se pelo menos uma das duas proposições 
simples for verdadeira. 
 
 
 Pergunta 10 
0 em 1 pontos 
 
 
Dadas as premissas p1 , p2 ,..., pn e uma conclusão q, uma regra de 
inferência a partir da qual q se deduz logicamente de p1 , p2 ,..., pn 
pode ser denotada por: 
p1 , p2 ,..., pn ├ q. 
 
O símbolo ├ é utilizado para separar premissas (à esquerda) da 
conclusão (à direta). Quando há mais de uma premissa no argumento, 
elas devem ser separadas entre si por vírgula. 
 
Uma regra de inferência clássica é chamada Silogismo Hipotético, que 
parte de duas premissas condicionais e chega a uma conclusão 
 
condicional. Seguindo a estrutura apresentada, qual a notação que 
designa a regra de inferência em questão? 
Resposta Selecionada: d. 
p → q, ~q ├ ~p

Mais conteúdos dessa disciplina