Prévia do material em texto
1 2 3 4 5 6 AVALIAÇÃO DA AÇÃO ANTIMICROBIANA DO 7 EXTRATO PIROLENHOSO NEUTRALIZADO E BIDESTILADO 8 9 10 11 12 13 GIL SANDER PRÓSPERO GAMA 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Macaíba/RN 33 Fevereiro de 2023 34 Nº 104 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PRÓ-REITORIA DE PÓS-GRADUAÇÃO UNIDADE ACADÊMICA ESPECIALIZADA EM CIÊNCIAS AGRÁRIAS - UAECIA ESCOLA AGRÍCOLA DE JUNDIAÍ - EAJ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FLORESTAIS GIL SANDER PRÓSPERO GAMA AVALIAÇÃO DA AÇÃO ANTIMICROBIANA DO EXTRATO PIROLENHOSO NEUTRALIZADO E BIDESTILADO Dissertação apresentada ao Programa de Pós- Graduação em Ciências Florestais da Universidade Federal do Rio Grande do Norte, como parte das exigências para obtenção do título de Mestre em Ciências Florestais (Tecnologia e Utilização de Produtos Florestais – Energia da Biomassa Florestal). Orientador: Prof. Dr. Alexandre Santos Pimenta Coorientador: Prof. Dr. Francisco Marlon Carneiro Feijó Macaíba/RN Fevereiro de 2023 Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Rodolfo Helinski - Escola Agrícola de Jundiaí - EAJ - Macaiba Gama, Gil Sander Próspero. Avaliação da ação antimicrobiana do extrato pirolenhoso neutralizado e bidestilado / Gil Sander Próspero Gama. - 2023. 95f.: il. Dissertação (mestrado) - Universidade Federal do Rio Grande do Norte, Unidade Acadêmica Especializada em Ciências Agrárias, Programa de Pós-Graduação em Ciências Florestais. Macaíba, RN, 2023. Orientador: Prof. Dr. Alexandre Santos Pimenta. Coorientador: Prof. Dr. Francisco Marlon Carneiro Feijó. 1. Pirólise da madeira - Dissertação. 2. Antisséptico - Dissertação. 3. Produtos naturais - Dissertação. I. Pimenta, Alexandre Santos. II. Feijó, Francisco Marlon Carneiro. III. Título. RN/UF/BSPRH CDU 674 Elaborado por Elaine Paiva de Assunção - CRB-15/492 i AVALIAÇÃO DA AÇÃO ANTIMICROBIANA DO EXTRATO PIROLENHOSO NEUTRALIZADO E BIDESTILADO Gil Sander Próspero Gama Dissertação julgada para obtenção do título de Mestre em Ciências Florestais (Área de Concentração em Ciências Florestais - Linha de Pesquisa: Tecnologia e Utilização de Produtos Florestais) e aprovada pela banca examinadora em 16 de fevereiro de 2023. Banca Examinadora Prof. Dr. Alexandre Santos Pimenta EAJ/UFRN Presidente Profª. Dra. Tatiane Kelly Barbosa de Azevedo EAJ/UFRN Examinador interno Prof. Dr. Rafael Rodolfo de Melo Universidade Federal Rural do Semiárido - UFERSA Examinador interno Prof. Dr. Francisco Marlon Carneiro Feijó Universidade Federal Rural do Semiárido - UFERSA Examinador Externo Prof. Dr. Ananias Francisco Dias Júnior Universidade Federal do Espírito Santo UFES Examinador Externo Macaíba/RN Fevereiro de 2023 ii iii AO SENHOR DA MINHA VIDA: “Deus meu e Rei meu”, a quem eu devo cada respirar e cada conquista. Ao único que é digno de receber a honra, a glória e o poder. Rei eterno e real que derrama sobre mim a sua infinita bondade e misericórdia. DEDICO iv AGRADECIMENTOS __________________________________________________________________________ Agradeço Ao meu orientador Prof. Dr. Alexandre Santos Pimenta e ao coorientador Prof. Dr. Francisco Marlon Carneiro Feijó, por terem visto em mim a capacidade de trabalhar em parceria com eles nas suas pesquisas e terem me concedido a chance de aperfeiçoar a vivência científica e acadêmica. Por sempre estarem disponíveis a me orientar e por serem exemplos de profissionais que terei a honra de levar para a vida. À Escola Agrícola de Jundiaí, Universidade Federal do Rio Grande do Norte - UFRN, por me proporcionar a oportunidade de cursar o mestrado e fundamentar minha carreira acadêmica. Ao Laboratório de Microbiologia Veterinária (LAMIV) da Universidade Federal Rural do Semiárido – UFERSA, pela parceria e apoio durante a realização da pesquisa. Ao Laboratório de Microscopia Eletrônica (CPVSA) da Universidade Federal Rural do Semiárido – UFERSA, pela parceria e apoio durante a realização da pesquisa. Ao Laboratório de Morfofisiologia Animal Aplicada (LABMORFA) da Universidade Federal Rural do Semiárido – UFERSA, pela parceria e apoio durante a realização da pesquisa. Ao Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO, mais precisamente às pesquisadoras Thays V. C. Monteiro e Maíra Fasciotti, pela parceria e apoio durante a realização da pesquisa. À minha família que é a minha base forte em todas as situações, se mostrando sempre meus auxiliadores, tanto na vida pessoal, quanto na acadêmica: meu pai Petérson H. F. Gama, minha mãe Juçária P. F. Gama e ao meu irmão Éricson P. Gama. De maneira geral, a todos os meus amigos que de alguma forma fazem parte desta trajetória, por todo apoio, incentivo, orientação e dedicação a mim concedidos. A Deus acima de tudo, por me dar o dom da vida e proporcionar cada uma das oportunidades que me trouxeram até aqui. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. v RESUMO GERAL __________________________________________________________________________ AVALIAÇÃO DA AÇÃO ANTIMICROBIANA DO EXTRATO PIROLENHOSO NEUTRALIZADO E BIDESTILADO O extrato pirolenhoso (EP) é um coproduto gerado no processo de pirólise da biomassa 35 vegetal que pode apresentar uma gama de aplicações. Dentre estas aplicações, tem-se 36 como agente antimicrobiano. No entanto, existem afirmações que limitam a ação 37 antimicrobiana que o EP desempenha apenas à fração de ácidos orgânicos presente em 38 sua composição química, gerando dúvidas quanto à sua eficiência como um conjunto. Com 39 isso, o objetivo desta pesquisa foi avaliar a atividade antimicrobiana do EP, testar a 40 influência do seu pH nesta atividade, avaliar a composição química deste produto e registrar 41 imagens de microscopia eletrônica de varredura (MEV) das células microbianas. As 42 avaliações antimicrobianas, para a determinação da Concentração Inibitória Mínima (CIM), 43 foram realizadas in vitro pelo método de microdiluição em caldo. Para as Concentrações 44 Bactericida e Fungicida Mínimas (CBM e CFM) utilizou-se o método de crescimento em ágar 45 BHI. A composição química do EP e seu concentrado foi determinada por cromatografia 46 gasosa e espectrometria de massas e as imagens MEV foram obtidas com o auxílio de um 47 microscápio eletrônico (Pfeiffer Vacuum – D-35614 Assiar). As análises estatísticas foram 48 realizadas por meio de análise de regressão utilizando o software R (versão 4.1.3). Os 49 resultados obtidos demonstraram que mesmo em pH neutro o EP se mostrou eficaz como 50 antimicrobiano, provando que a sua ação não se limita apenas à uma classe de compostos, 51 mas sim ao seu conjunto. No entanto, o aumento da neutralização influenciou nas 52 concentrações de EP requeridas para a inibição dos microrganismos avaliados. Ambos os 53 EPs, obtidos de B. vulgaris e E. urograndis, desempenharam papel antimicrobiano 54 satisfatório, inibindo o desenvolvimento de todos os microrganismos testados. As imagens 55 de MEV demonstraram que o EP infuencia na morfologia da parede celular dos 56 microrganismos, resultando em alterações em sua estrutura. Conclui-seque esses produtos 57 são promissores ao desenvolvimento de alternativas antimicrobianas eficazes. No entanto, 58 estudos posteriores são necessários para firmar o seu uso, ressaltando a necessidade de 59 testes in vivo. 60 Palavras-chave: pirólise da madeira, vinagre de madeira, resistência microbiana, produtos 61 naturais, antisséptico 62 vi GENERAL ABSTRACT __________________________________________________________________________ EVALUATION OF THE ANTIMICROBIAL ACTION OF NEUTRALIZED AND DOUBLE- DISTILLATE WOOD VINEGAR Wood vinegar (WV) is a co-product generated in the pyrolysis process of plant biomass that 63 can have a range of applications. Among these applications, it is used as an antimicrobial 64 agent. However, there are statements that limit the antimicrobial action that EP performs only 65 to the fraction of organic acids present in its chemical composition, raising doubts as to its 66 efficiency as a whole. Thus, the objective of this research was to evaluate the antimicrobial 67 activity of WV, test the influence of its pH on this activity, evaluate the chemical composition 68 of this product and record images of scanning electron microscopy (SEM) of microbial cells. 69 Antimicrobial evaluations to determine the Minimum Inhibitory Concentration (MIC) were 70 performed in vitro by the broth microdilution method. For the Minimum Bactericidal and 71 Fungicide Concentrations (MBC and MFC) the agar growth method was used. The chemical 72 composition of WV and its concentrate was determined by gas chromatography and mass 73 spectrometry and the SEM images were obtained with the aid of an electron microscope 74 (Pfeiffer Vacuum – D-35614 Assiar). Statistical analyzes were performed using regression 75 analysis using the R software (version 4.1.3). The results obtained showed that even at 76 neutral pH, WV proved to be effective as an antimicrobial, proving that its action is not limited 77 to a single class of compounds, but to all of them. However, the increase in neutralization 78 influenced the WV concentrations required for the inhibition of the evaluated microorganisms. 79 Both WV obtained from B. vulgaris and E. urograndis played a satisfactory antimicrobial role, 80 inhibiting the development of all tested microorganisms. SEM images demonstrated that WV 81 influences the morphology of the cell wall of microorganisms, resulting in alterations in its 82 structure. It is concluded that these products are promising for the development of effective 83 antimicrobial alternatives. However, further studies are needed to confirm its use, highlighting 84 the need for in vivo tests. 85 Keywords: wood pyrolysis, wood vinegar, microbial resistance, natural products, antiseptic 86 vii SUMÁRIO ________________________________________________________________________ Página 1. INTRODUÇÃO GERAL .................................................................................................. 1 2. OBJETIVO GERAL ........................................................................................................ 4 3. REVISÃO DE LITERATURA .......................................................................................... 6 3.1. RELATOS HISTÓRICOS DO USO DE EPB E DERIVADOS ...................................... 6 3.2. EXTRATO PIROLENHOSO: PROPRIEDADES QUÍMICAS E FÍSICAS ..................... 7 3.3. MÉTODOS, EQUIPAMENTOS DE RECUPERAÇÃO E PURIFICAÇÃO .................... 8 3.4. BIOATIVIDADE DO EP ............................................................................................ 10 3.5. OUTRAS APLICAÇÕES RELACIONADAS AO EP................................................... 12 LITERATURA CITADA ........................................................................................................ 17 4. CAPÍTULO 1. EFFECT OF PH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS ... 27 RESUMO ......................................................................................................................... 28 ABSTRACT ...................................................................................................................... 29 INTRODUCTION .............................................................................................................. 30 MATERIAL AND METHODS ............................................................................................. 31 RESULTS ......................................................................................................................... 33 DISCUSSION ................................................................................................................... 40 CONCLUSIONS ............................................................................................................... 44 ACKNOWLEDGEMENTS ................................................................................................. 44 REFERENCES ..................................................................... Erro! Indicador não definido. 5. CAPÍTULO 2. ANTIMICROBIAL ACTIVITY AND CHEMICAL PROFILE OF PYROLIGNEOUS ACIDS FROM BAMBOO AND EUCALYPTUS ...................................... 50 RESUMO ......................................................................................................................... 51 ABSTRACT ...................................................................................................................... 52 INTRODUCTION .............................................................................................................. 53 MATERIAL AND METHODS ............................................................................................. 55 RESULTS ......................................................................................................................... 58 CONCLUSIONS ............................................................................................................... 71 ACKNOWLEDGEMENTS ................................................................................................. 72 REFERENCES ................................................................................................................. 72 6. CONSIDERAÇÕES FINAIS .......................................................................................... 80 7. ANEXOS....................................................................................................................... 82 viii LISTA DE FIGURAS __________________________________________________________________________ CAPÍTULO 1 Figure 1. Graphs representing the effect of the pH of WV on the growth of Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, Streptococcus agalactiae, and Candida albicans as a function of the concentration at zero time (A) and 24 hours (B) after incubation ............................................................................................................................ 36 CAPÍTULO 2 Figure 2. Absorbances of microorganisms’ cultures as a function of the concentration of eucalyptus (orange curves) and bamboo (blue curves) vinegar; A1, B1, C1, D1, E1, and F1 – at the moment of inoculation – 0 h; and A2, B2, C2, D2, E2, and F2 – 24 h after inoculation (48 h for C. albicans)............................................................................................................ 60 Figure 3. Total ion chromatograms of Eucalyptus urograndis (A) and Bambusa vulgaris (B) carbonization vinegar ........................................................................................................... 62 Figure 4. SEM micrographs of Staphylococcus aureus before (A) and after 24-h exposure (B) to bamboo vinegar. Magnification: 30.000 X ................................................................... 69 Figure 5. SEMmicrographs of Streptococcus agalactiae before (A) and after 24-h exposure (B) to bamboo vinegar. Magnification: 13,400 X ................................................................... 70 Figure 6. SEM micrographs of Candida albicans before (A), after 24 h (B), and 48 h (C) of exposure to bamboo vinegar. Magnification: 5,000 and 7,410 X (arrows in the micrographs indicate cell budding) ........................................................................................................... 70 ix LISTA DE TABELAS __________________________________________________________________________ CAPÍTULO 1 Table 1. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) values against the microorganisms according to increasing pH levels ...................... 34 Table 2. Regression models that were adjusted to explain the behavior of absorbances from cultures of Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, Streptococcus agalactiae, and Candida albicans after 24 hours of incubation at each pH level according to WV concentration ............................................................................................ 36 Table 3. Results of the identity test applied to the regression models adjusted for the absorbances of the microbial cultures after 24 hours of incubation (A): Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, and Streptococcus agalactiae; (B): Candida albicans .......................................................................................................... 39 CAPÍTULO 2 Table 4. Values of MIC, MBC, and MFC (%) for the microorganisms subjected to the action of Eucalyptus urograndis and Bambusa vulgaris vinegar ..................................................... 58 Table 5. Regression models to predict the behavior of microorganisms' growth as a function of the eucalyptus and bamboo vinegar concentrations ......................................................... 60 Table 6. Annotated compounds in the carbonization vinegar of Eucalyptus urograndis and Bambusa vulgaris ................................................................................................................ 63 x LISTA DE ABREVIATURAS __________________________________________________________________________ AP – Ácido Pirolenhoso CIM – Concentração Inibitória Mínima EPB – Extrato Pirolenhoso Bruto EP – Extrato Pirolenhoso LPB – Líquido Pirolenhoso Bruto MBC – Minimum Bactericidal Concnetration MEV – Microscopia Eletrônica de Varredra MFC – Minimum Fungicidal Concentration MIC – Minimum Inhibitory Concentration PA – Pyroligneous acid PBS – Solução Tampão Fosfato de Sódio PE – Pyroligneos extract SEM – Scanning Electron Microscopy xi Introdução _____________________________ 1 1. INTRODUÇÃO GERAL __________________________________________________________________________ A pirólise da madeira é descrita como processo de degradação térmica que ocorre 87 na presença restrita ou ausência completa de oxigênio (AGUIRRE et al., 2020). Conforme a 88 pirólise está ocorrendo são gerados produtos sólidos, líquidos e gasosos, sendo a 89 temperatura do processo o principal fator que controla estes resultados (SOUZA et al., 90 2012). Atualmente, o principal produto resultante da pirólise é o carvão vegetal, 91 correspondente à fração sólida (GREWAL et al., 2018). 92 A porção líquida originada é referente ao líquido pirolenhoso bruto (LPB). Este 93 líquido, também chamado de extrato pirolenhoso bruto (EPB), é formado da fração 94 condensável dos vapores da fumaça desprendida do material que está sendo pirolisado 95 (SOUZA et al., 2012). Basicamente, estes vapores são oriundos da quebra de moléculas 96 como as hemiceluloses, celuloses e as ligninas (LI et al., 2017). 97 O EPB é composto por três porções, o alcatrão, o extrato pirolenhoso (EP) e os 98 óleos leves (SENA et al., 2014). O EP é um produto que vem sendo estudado há décadas e 99 tem sua utilização cultural estabelecida há muito tempo e isto pode ser atribuído à sua 100 composição química e propriedades físicas (CAMPOS, 2007; TIILIKKALA et al., 2010; 101 SURESH et al., 2019). 102 Quimicamente, é um produto extremamente complexo, devido à grande variedade 103 de compostos presentes em sua constituição, podendo chegar a mais de duzentas 104 substâncias diferentes (SCHNITZER et al., 2015; ARAÚJO et al., 2017). Outra característica 105 que chama a atenção dos pesquisadores é a sua acidez, pois apresenta caráter ácido, com 106 pH variando entre 2.5 e 3.6 (AUBIN; ROY, 1990; RAHMAT et al., 2014; PIMENTA et al., 107 2018). Esta acidez é associada à elevada concentração de ácidos orgânicos presentes no 108 mesmo, principalmente o ácido acético (SIPILÄ et al., 1998; THEAPPARAT et al., 2018). 109 Devido a esta composição química particular, este produto tem sido aplicado para 110 diversos fins desde tempos muito antigos (DORAN, 1932; KURLANSKY, 2002; CAMPOS, 111 2007; TIILIKKALA et al., 2010). Por sua variabilidade de aplicações, o interesse neste 112 bioproduto tem ganhado cada vez mais força, tendo diversas pesquisas focadas na sua 113 ação antimicrobiana (CHEN et al., 2015; ARAÚJO et al., 2017; PAN et al., 2017; SOUZA et 114 al., 2018; AGUIRRE et al., 2020; MALIANG et al., 2020). 115 Este fato ocorre porque a sua aplicação como um possível antimicrobiano se 116 mostra muito importante, pois, atualmente, há uma busca por alternativas de tratamento 117 para doenças causadas por microrganismos, isto porque, o aumento no surgimento de 118 resistência bacteriana aos fármacos antibióticos tem tomado proporções preocupantes 119 2 (WORLD HEALTH ORGANIZATION, 2020). Este fato é atribuído ao uso indiscriminado 120 destes fármacos e, adicionado a isto, um agravante para este quadro é o uso de antibióticos 121 não se resumir apenas à medicina humana, mas também serem amplamente utilizados em 122 outras áreas como a medicina veterinária (ZIMERMAN, 2010; PALMA et al., 2020). 123 Com isso, diz-se que o EP pode ser uma importante alternativa para esta finalidade, 124 pois com a variedade de compostos presentes em sua composição química e cada um 125 deles podendo apresentar um mecanismo de ação diferente, o desenvolvimento de 126 resistência pelos microrganismos seria dificultado (SURESH et al., 2019). No entanto, 127 existem especulações na literatura de que a atividade antimicrobiana do EP é referente 128 apenas à presença do ácido acético na sua constituição, com o intuito de afirmar que esta 129 atividade biológica não pode ser atribuída ao todo, ou seja, à ação dos demais componentes 130 encontrados no mesmo (MEDEIROS; GASPAROTTO, 2021). Sendo assim, faz-se 131 necessário investigar a influência do pH na ação antimicrobiana deste produto. 132 Outra questão tem chamado a atenção de pesquisadores: a dificuldade de 133 armazenamento e transporte do EP. Há em sua constituição, cerca de 80 a 88% de água 134 (YATAGAI et al., 2002), isto torna o seu armazenamento instável e dificultado, além de 135 aumentar os custos de transporte, devido a requerer mais espaço que o necessário. Liu et 136 al. (2021) relatam a este respeito e testaram uma metodologia visando amenizar estes 137 empecilhos sem que a bioatividade do EP fosse afetada. Com o exposto, nota-se a 138 necessidade da aplicação de processos que reduzam a quantidade de água presente neste 139 produto. 140 Vale ressaltar também que é importante que as emissões dos gases poluentes 141 lançados na atmosfera pela pirólise da lenha sejam atenuadas e que haja um 142 gerenciamento estratégico dos processosque utilizam essa matéria prima e dos coprodutos 143 a partir dela gerados (GREWAL et al., 2018). Dentre estes coprodutos está o EP, logo, com 144 isso, a sua utilização como antimicrobiano classifica-se como uma alternativa de mitigação 145 das emissões poluentes. 146 Com o exposto, torna-se explícita a necessidade da comprovação científica das 147 aplicações antimicrobianas do EP oriundo da produção do carvão vegetal e de desenvolver 148 uma metodologia viável que vise reduzir a quantidade de água no mesmo sem afetar 149 negativamente a sua bioatividade, ressaltando que a sua utilização poderá trazer benefícios 150 como, atenuação das emissões de gases poluentes para a atmosfera e o desenvolvimento 151 de um novo antimicrobiano para reverter um cenário preocupante a nível mundial, além de 152 agregar valor à cadeia produtiva do carvão. 153 3 Objetivo Geral _____________________________ 4 2. OBJETIVO GERAL __________________________________________________________________________ A presente pesquisa tem como objetivo avaliar as atividades antibacteriana e 154 antifúngica de extratos pirolenhosos de duas espécies vegetais: Bambusa vulgaris (bambu) 155 e Eucalyptus urograndis (clone I144); Avaliar a composição química desses produtos; 156 Investigar o efeito da neutralização de um dos EPs frente a sua ação antimicrobiana e; 157 Registrar imagens de microscopia eletrônica de varredura das células microbianas após a 158 exposição ao EP. 159 5 Revisão de Literatura _____________________________ 6 3. REVISÃO DE LITERATURA __________________________________________________________________________ 3.1. Relatos históricos do uso de EPB e derivados 160 O extrato pirolenhoso (EP) já teve diversas maneiras de utilização ao decorrer da 161 história. Há relatos do uso do alcatrão pelos antigos egípcios na calafetação de 162 embarcações e em alguns princípios do embalsamento (BALAT et al., 2009). Campos 163 (2007) relata que, no século XVII, a madeira já era destilada na Europa, a fim de se obter 164 alcatrão. Este autor também menciona a utilização milenar do extrato pirolenhoso na China 165 e na Índia para o tratamento de enfermidades. 166 Já no século XIX, nos anos de 1813, houve uma grande produção e utilização do EP 167 para aplicação no processo de coloração de tecidos de linho na Inglaterra (CAMPOS, 2007). 168 Ainda no século XIX, em meados de 1862, um tipo de aplicação peculiar foi registrada. 169 Devido à escassez de sal em alguns países durante a guerra civil americana, houve um 170 problema para a conservação de carnes, de modo que, famílias detentoras de suprimentos 171 de sal o mantinham guardado como se fossem joias. Com isso, nessas regiões começaram 172 a aparecer alguns boatos de que a utilização do EP serviria para conservar bacon e outros 173 tipos de carne, notícia divulgada em um jornal do Alabama (KURLANSKY, 2002). 174 Os relatos datando do século XX trazem como o primeiro livro a respeito do EP, em 175 1945, o exemplar denominado de “Fabricação e utilização do extrato pirolenhoso”, obra de 176 autoria de Tatsujiro Fakuda, o qual relatava a respeito do uso eficiente do pirolenhoso em 177 culturas de arroz (ALMEIDA, 2012). 178 No ano de 1932 já eram realizadas pesquisas comparando a eficiência do EP com 179 outros produtos para a desinfecção de solo para a agricultura. Doran (1932) traz em seu 180 estudo relatos sobre a ótima qualidade do EP como eficiente desinfetante do solo. Este 181 autor relata vantagens desta fração do EPB quando comparado ao formaldeído e ácido 182 acético. O mesmo expõe que o EP não prejudicou a germinação de sementes de beterraba, 183 pepino e alface, mesmo quando sua aplicação ocorreu apenas um dia antes da semeadura, 184 demonstrando a vantagem frente ao formaldeído, pois para este, deve haver um tempo 185 maior de espera para realizar a semeadura para que a germinação das sementes não seja 186 afetada. Ele ainda menciona que no solo tratado com EP houve um aumento no peso seco 187 das plantas, além da diminuição do custo de tratamento do solo por unidade de área. 188 Analisando o contexto atual, existem diversas pesquisas e formas de aplicações 189 deste extrato como, herbicida, adjuvante de herbicida, inseticida, desenvolvimento de 190 plantas, aumento na disponibilidade de nutrientes no solo e melhoria das características 191 7 deste, industrial, antioxidante, entre outros (TRINDADE et al., 2014; SEO et al., 2015; 192 CAMPOS, 2017; SOUZA et al., 2018; MALLIANG et al., 2020). Na Tailândia existem testes 193 verificando a eficiência do EPB de bambu e derivados na ação antifúngica e como 194 preservativo de madeira (THEAPPARAT et al., 2015). 195 Em Quebec, Canadá, pesquisadores avaliam a atividade antibacteriana e antifúngica 196 do EP proveniente de madeira macia composta por partículas de madeira de pinho e de 197 abeto (SURESH et al., 2019). Em zonas rurais da Tailândia a extração do EPB da produção 198 de carvão de madeira e de bambu para uso em fogões de barro pode ser utilizada para a 199 proteção de sementes para a agricultura (CHALERMSAN; PEERAPAN, 2009). No Japão o 200 uso deste produto é bastante aceito como agroquímico orgânico (GREWAL et al., 2018). Na 201 China é testado como alternativa para melhorar a saúde do solo (MALIANG et al., 2020). Na 202 Malásia é avaliado como promotor de crescimento de plantas (MAHMUD et al., 2016). 203 O interesse voltado para este coproduto se dá porque, além das suas propriedades 204 químicas e físicas e suas potencialidades de uso, a captação deste produto durante a 205 produção do carvão evita que os gases poluentes sejam lançados como fumaça na 206 atmosfera, no entanto, em algumas regiões, ainda existem empecilhos jurídicos e 207 econômicos a respeito da sua utilização (DAROIT et al., 2013). Porém, é fato que o 208 gerenciamento de maneira estratégica da biomassa vegetal e os resíduos oriundos dos seus 209 processos de utilização é uma alternativa de mitigação das emissões poluentes (GREWAL 210 et al., 2018). 211 3.2. Extrato pirolenhoso: propriedades químicas e físicas 212 213 O EP, também chamado de vinagre de madeira, é um produto de coloração 214 amarelada ou marrom transparente, referente à porção aquosa (entre 60 a 75%) do EPB 215 resultante da condensação da fumaça produzida no processo de pirólise da madeira 216 (CAMPOS, 2007; SENA et al., 2014; SEO et al., 2015; SOUZA et al., 2018; SURESH et al., 217 2019). Basicamente, ele se origina da quebra de algumas moléculas que estão presentes na 218 composição do material vegetal que está sendo pirolisado, sendo algumas delas a lignina, a 219 hemicelulose e a celulose (LI et al., 2017). 220 De forma mais específica, diz-se que o EP é um ácido carboxílico que apresenta uma 221 mistura originada de diversos compostos que são oriundos de inúmeras reações 222 termoquímicas que ocorrem durante a pirólise (CAMPOS, 2017). Em sua maioria, ele é 223 constituído por água, cerca de 80% do seu total, no entanto, sua constituição química é 224 extremamente complexa, pois nele podem ser encontrados mais de duzentos compostos 225 orgânicos diferentes como, fenóis, cetonas, álcoois, metanol, butanol, derivados de 226 piranfuranos, derivados de seringol, cresóis, guaiacol, fenol, formaldeído, maltou, cetonas, 227 8 os ácidos valérico, propiônico e fórmico, ácido metílico, ácido acético, dentre outros 228 (TIILIKKALA et al., 2010; SCHNITZER et al., 2015; ARAÚJO et al., 2017; SILVA et al., 2017; 229 SURESH et al., 2019). Segundo Sipilä et al. (1998) e Theapparat et al. (2018), alguns dos 230 constituintes mais expressivosdo EP são o ácido acético e o fórmico, com destaque para o 231 ácido acético, podendo apresentar valores entre 3.0 e 7.4%. 232 Souza et al. (2012) relatam em sua pesquisa a presença do guaiacol e seringol na 233 constituição química do EP. Estes autores mencionam que estas duas substâncias fazem 234 parte do grande grupo dos metoxifenóis, sendo estes produtos oriundos da degradação da 235 lignina, juntamente com os fenóis. Em um estudo utilizando o EP de um clone de eucalipto 236 (Eucalyptus urograndis) foi demonstrada a presença de 93 substâncias, sendo que os 237 compostos fenólicos foram o maior grupo encontrado, além das cetonas, aldeídos, piranos, 238 furanos e ésteres. De forma mais específica, os autores destacaram altos níveis de 239 guaiacol, fenol, furfural e cresol, além de citar duas substâncias que merecem atenção por 240 supostamente serem cancerígenas, sendo o N-nitrosodimetilamina e o fenol (PIMENTA et 241 al., 2018). 242 A composição química do EP pode apresentar algumas semelhanças com a química 243 da fração do EPB referente ao alcatrão. Souza et al. (2012) avaliaram os constituintes do 244 alcatrão de Eucalyptus sp. por meio de técnicas de GC-FID e de GC-MS. Nos resultados 245 obtidos, foram determinadas cerca de 65 substâncias orgânicas, sendo a maior parte delas 246 fenóis, metoxifenóis e grupos cetônicos, dos quais se destacou o seringol. Além destes, 247 foram encontrados alcoóis e cerca de 44% de ésteres de ácido carboxílico. 248 As aplicações do EP nas mais diversas áreas do conhecimento estão relacionadas 249 não só à sua composição química, mas também à sua viscosidade, pH, densidade, entre 250 outros (CAMPOS, 2007; SURESH et al., 2019). De acordo com Pimenta et al., (2018), este 251 produto apresenta coloração amarelada, densidade de 1,032 g cm-3 e pH de 2,85. Outro 252 estudo demonstrou o pH de 3,6, densidade de 1,021 g mL-1 e coloração amarelo-253 amarronzado (RAHMAT et al., 2014). No fim, as características intrínsecas de cada um 254 destes produtos podem variar de acordo com a espécie utilizada (DIAS JÚNIOR et al., 255 2018). 256 3.3. Métodos, equipamentos de recuperação e purificação 257 258 Como relatado nos tópicos anteriores, o método de produção do EP está referido ao 259 processo de pirólise. Este processo tem dois regimes de aquecimento definidos: a pirólise 260 rápida e a lenta, sendo que quando se deseja obter um maior rendimento do EPB e, 261 consequentemente, do EP como produto final da pirólise, temperaturas mais elevadas e 262 9 menores tempos de residência, ou seja, pirólise rápida são os mais indicados (BALAT et al., 263 2009). 264 Em seu estudo, Bridgwater e Coulson (2007) trazem comparações dos rendimentos 265 gravimétricos do EPB nestes dois regimes. Os autores demonstraram que os rendimentos 266 em pirólise rápida foram consideravelmente superiores à lenta, apresentando valores de 267 75% de rendimento em comparação a cerca de 50% em regime lento. 268 A coleta do EPB é realizada por meio de tubos recuperadores instalados nos fornos de 269 pirólise. Nestes fornos, a fumaça produzida no processo da degradação da madeira é 270 conduzida para o tubo recuperador, onde os vapores condensáveis se condensam, 271 precipitam e são coletados (SANTOS et al., 2011). 272 Na literatura podem ser encontrados alguns relatos de tubos de recuperação para 273 diferentes realidades. Pimenta et al. (2018) realizou a coleta do EPB em laboratório, onde a 274 pirólise foi processada em uma mufla, sendo que os autores acoplaram a ela um dispositivo 275 de tubo projetado para condensar os vapores. Neste processo, o tubo de recuperação foi 276 mantido resfriado por água a fim de sustentar a temperatura em torno de 25 °C, 277 proporcionando condições de condensação. O rendimento obtido por eles foi de 42.4% de 278 EPB. 279 Já em campo, Gonçalves et al. (2010) confeccionaram um tubo de chapas de zinco 280 acoplado a um forno de alvenaria do tipo rabo quente com capacidade aproximada de 12.4 281 m3 de madeira. Nesta pesquisa, o tubo media 8 metros de comprimento e não apresentava 282 sistema de resfriamento artificial como no estudo de Pimenta et al. (2018). Os resultados 283 mostraram um rendimento de 2.01% na coleta do extrato, no entanto, os autores 284 recomendam a utilização de resfriadores externos para o aumento da eficiência de coleta, 285 devido ao baixo rendimento obtido. 286 Após a sua captação, reações químicas entre as partes componentes do EPB 287 acontecem, a chamada polimerização, por este motivo este produto deve ficar em repouso 288 por cerca de três a seis meses para que os componentes se estabilizem com o término das 289 reações (CAMPOS, 2007). Segundo Araújo et al. (2017) este tempo de repouso pode variar. 290 Ao final do repouso torna-se possível notar a diferenciação das três fases componentes do 291 EPB, o alcatrão, o EP e os óleos leves (ALVES, 2007). 292 O processo de refinamento do extrato pirolenhoso passa por diversas fases para 293 gerar diferentes níveis de purificação, industrial e purificado (farmacêutico). Inicialmente, o 294 extrato pirolenhoso bruto deve ser submetido à decantação. Nesta fase é separado o extrato 295 ácido do alcatrão insolúvel. Por sua vez, a porção correspondente ao extrato ácido é 296 composta por EP e alcatrão solúvel. Sendo assim, o extrato ácido passa por mais uma 297 etapa, a destilação simples, onde há a separação destas duas frações (SOUZA et al., 2012). 298 10 Nesta fase, este produto já é recomendado para aplicação na agricultura, pois já está livre 299 de alcatrão e impurezas (CAMPOS, 2007). 300 Para um maior refinamento do EP, a fim de gerar maior segurança da ausência de 301 algum resíduo do alcatrão, faz-se o processo de bidestilação a vácuo, sob 1.0 mm HG a 100 302 °C, gerando um extrato pirolenhoso purificado, de baixa toxicidade, tornando-o um composto 303 de constituição similar à de fármacos fitoterápicos, adquirindo um grau de purificação 304 farmacêutico (PIMENTA et al., 2018; SOARES et al., 2020). 305 3.4. Bioatividade do EP Atualmente, vários pesquisadores têm buscado alternativas terapêuticas no controle 306 de doenças causadas por microrganismos. Diversos patógenos têm desenvolvido 307 resistência aos antimicrobianos já existentes, pois de acordo com Berquó et al. (2004), é 308 prática comum que o tratamento dessas doenças seja basicamente realizado através deste 309 medicamentos. 310 Além do consumo severo de antimicrobianos pelo homem, a sua aplicação na 311 criação animal é um forte agravante para este quadro, pois o aumento da resistência 312 microbiana está relacionado ao uso indiscriminado destes fármacos e é nítido o aumento 313 das taxas de resistência quando há um consumo maior destes medicamentos (ZIMERMAN, 314 2010; PALMA et al., 2020; ZIMERMAN, 2010). 315 Isto porque, o uso de antimicrobianos de forma inadequada, seja no consumo 316 humano ou na alimentação animal, caracteriza-se como causador de um aumento na 317 disseminação de microrganismos multirresistentes a fármacos antibióticos, sendo que uma 318 porção destes microrganismos pode resistir até mesmo aos antimicrobianos mais potentes 319 (NACHMAN, 2016). 320 Um antimicrobiano pode ser descrito como uma substância que apresenta ação de 321 inibir o crescimento microbiano (ABAS et al., 2018). Substâncias de origem vegetal se 322 mostram uma importante alternativa para esta aplicação, pois têm sua utilização 323 consolidada na medicina popular para o tratamento de diversas enfermidades desde tempos 324 muito antigos (COSTA, 2015). 325 Por este motivo, devido a sua constituição química variada, o EP se mostra como um 326 produto de interesse para este fim. Este interesse está relacionado com a presença de 327 substâncias como, compostos fenólicos, carbonilas e ácidos orgânicos, substâncias que têm 328 asua bioatividade comprovada (ABAS et al., 2018). 329 Estas constatações abrem um leque promissor de aplicações do EP nesta área de 330 pesquisa em todo o mundo. Avaliações utilizando EPs provenientes das madeiras de 331 11 Eucalyptus urograndis e Mimosos tenuiflora frente a vinte e uma cepas bacterianas, 332 incluindo gram-positivas e gram-negativas, demonstraram que ambos foram capazes de 333 inibir o crescimento bacteriano, mesmo na menor concentração testada no estudo, 20% 334 (ARAÚJO et al., 2017). 335 Soares et al. (2020) relatam resultados semelhantes utilizando as mesmas espécies 336 vegetais. Os autores avaliaram as concentrações de 20, 15 e 10% dos EPs. Os resultados 337 demonstraram a ação dos mesmos para todas as cepas testadas na concentração de 20%, 338 porém, frente a cepa de Staphylococcus aureus, a inibição também ocorreu a 15%. 339 Suresh et al. (2019) avaliaram a sua ação antimicrobiana em duas condições, com a 340 sua acidez normal e com o pH neutralizado. Em ambas as situações foram obtidos 341 resultados favoráveis à atividade do EP frente a cepas gram-positivas e gram-negativas, 342 porém, os valores da concentração inibitória mínima foram relativamente menores frente a 343 todas as cepas avaliadas com o produto no seu estado neutralizado. 344 Abas et al. (2018) investigaram a ação antimicrobiana deste produto utilizando discos 345 de antibióticos. As cepas empregadas nas avaliações foram Bacillus cereus, Staphylococcus 346 aureus, Lactobacillus plantarum e Escherichia coli. Os resultados obtidos demonstraram alto 347 potencial antimicrobiano, apresentando zonas de inibição do crescimento microbiano 348 variando entre 29 e 79%. Outros autores relatam esta aplicação do EP (SOUZA et al., 2018). 349 Além da sua atividade antimicrobiana frente a cepas bacterianas, tem-se também 350 avaliado a sua utilização no controle de outros microrganismos como os fungos. Testes 351 usando EP de Enterolobium contortisiliquum foram aplicados para realizar a desinfecção de 352 sementes de Schizolobium amazonicum e demonstraram potencial para o controle de 353 fungos como Fusarium sp., Rhizoctonia sp. e Aspergillus sp. (MACEDO et al., 2019). 354 Araújo et al. (2017) trazem o efeito antifúngico do EP de Eucalyptus urograndis e 355 Mimosos tenuiflora frente a Candida albicans e Cryptococcus neoformans. Trabalhos 356 realizados utilizando cepas de Candida sp. também têm mostrado resultados promissores. 357 Ibrahim et al. (2013) executaram testes com EPs concentrados de Rhizophora apiculata e 358 relataram ação destes frente a quatro cepas de C. albicans. 359 No entanto, Almeida (2012) relata que o EP a ser empregado para o controle fúngico 360 deve ser escolhido com um maior grau de atenção pois, em seu trabalho, os resultados 361 demonstraram que há uma maior eficiência antifúngica para o seu extrato obtido em escala 362 laboratorial, em comparação à industrial, e atribui este fato à presença de compostos que 363 tenham maior ligação com componentes ligados ao alcatrão, mencionando compostos como 364 corilon, 2-metoxi 4-metilfenol, 1,6 - dimetoxifenol, etc. 365 Outra atividade referida ao EP é a antiviral. Avaliações realizadas frente ao vírus da 366 encefalomiocardite demonstram esta atividade. No estudo, foram utilizados EPs de madeira 367 12 dura, macia e de bambu, onde todos estes extratos foram capazes de desinfestar de forma 368 significativa o vírus (LI et al., 2017; LI et al., 2018). Os autores ainda relatam que a 369 quantidade de grupos hidroxila presente nos compostos fenólicos do extrato pirolenhoso 370 interferem significativamente na ação antiviral e demonstram que o composto catecol e seus 371 derivados foram os que se sobressaíram nos testes, em comparação aos demais compostos 372 fenólicos presentes nos extratos. 373 Esta ação também é relatada por Marumoto et al. (2012). Na sua pesquisa in vitro, 374 com o mesmo vírus, foi observada a ação antiviral do EP de bambu, atribuindo a maior 375 atividade ao fenol. No estudo, os autores ainda fizeram a mistura deste composto fenólico 376 com o ácido acético, o que potencializou significativamente a atividade antiviral do fenol, 377 sugerindo que esta combinação se mostrou uma boa alternativa para a inativação do vírus. 378 Além das potencialidades já mencionadas, a atividade antioxidante também é 379 registrada. Ao realizar a aplicação do EP de Rhizophora apiculata e seus compostos 380 isolados, Loo et al. (2008) avaliaram a sua capacidade na eliminação dos radicais livres, no 381 seu potencial de redução do molibdênio e no seu poder antioxidante redutor férrico, 382 resultando em dados promissores para esta aplicação. 383 3.5. Outras aplicações relacionadas ao EP A literatura tem demonstrado diversos usos do EPB nas mais diferentes áreas de 384 aplicação. Na agricultura, como um todo, ele é amplamente utilizado (TIILIKKALA et al., 385 2010). No entanto, sua aplicação não deve ocorrer na sua forma bruta, sem um refinamento 386 prévio, sendo assim, é necessário que ele passe por um processo de purificação para a 387 eliminação do alcatrão solúvel e insolúvel, processo este que dá origem ao EP e que pode 388 ser feito por meios industriais ou artesanais, pela sua decantação (SILVEIRA et al., 2010). 389 Após o refinamento são feitas diluições adequadas para cada caso específico, visando 390 adequá-lo para o uso (SOUZA et al., 2012). 391 Aguirre et al. (2020) avaliaram, em laboratório, seu efeito herbicida em diferentes 392 concentrações (10, 5, 2 e 1%) frente a plântulas de ervas daninhas. Os resultados 393 demonstraram mortalidade total das plântulas há apenas dois dias após a aplicação em 394 todas as concentrações, exceto a de 1%. Nesta concentração a taxa de mortalidade foi mais 395 lenta, no entanto, o estudo revela o efeito promissor deste produto como herbicida mesmo 396 em baixas concentrações. 397 Já em campo, ao se misturar o extrato pirolenhoso a subconcentrações de herbicidas 398 químicos, há uma potencialização destes herbicidas, reduzindo a quantidade necessária de 399 produto químico aplicado ao solo, expondo a função adjuvante do EP (SEO et al., 2015). Os 400 13 relatos deste produto agindo de forma eficiente no controle de ervas daninhas estão 401 presentes em diversos estudos (TIILIKKALA et al., 2010). 402 A aplicação do EP ao solo interfere na acidez deste solo, aumentando o pH na 403 camada de 0-20 cm, porém em camadas mais profundas não foram notificadas 404 modificações significativas (TOGORO et al., 2014). Estes autores ainda mencionam que o 405 teor de material orgânico deste solo não foi influenciado com a sua aplicação. 406 Um estudo expõe a eficiência do EP de bambu para melhorar o pH do solo e traz 407 relatos do emprego de EPs de outras origens interferindo na atividade enzimática do mesmo 408 (MALIANG et al., 2020). No estudo realizado por Koc et al. (2018) a melhora da atividade 409 enzimática de alguns solos também foi relatada. Além disso, ele pode ser um poderoso 410 desinfetante de solo (DORAN, 1932). 411 Tem sido amplamente avaliado como estimulante do crescimento de plantas. Quando 412 adicionado a fertilizantes orgânicos tem demonstrado resultados mais eficientes do que o 413 uso de fertilizantes químicos no cultivo de mudas de Dypsis lutescens, resultando em 414 plantas mais altas, com maior número de brotações e de folhas (WANDERLEY et al., 2012). 415 Nos trabalhos realizados com as orquídeas Cattleya loddigesii, Cattleya intermedia e 416 Miltonia clowesii foi observado aumento na altura das plantas, no número de raízes, de 417 pseudobúlbos, da massa fresca, maiores áreas foliares, além de aumentar os teores de 418 nitrogênio foliar (SCHNITZER et al., 2010; SCHNITZER et al., 2015). Silva et al. (2017), 419 utilizando a espécie Oeceoclades maculata, encontraram resultados promissoresde 420 desenvolvimento da mesma empregando 50 mL de solução de 2 a 3 mL L-1 de EP no 421 substrato de fixação. 422 No cultivo do quiabo, a adição de EP a fertilizantes promoveu maior número de 423 folhas, raízes mais compridas, maior altura da planta e aumento no peso dos frutos e no 424 diâmetro foliar (MAHMUD et al., 2016). 425 Já alguns estudos voltados para a área florestal trazem a aplicação deste produto na 426 produção de mudas de Pinus elliottii promovendo maior desenvolvimento radicular e foliar 427 (PORTO et al.,2007) e no aumento da taxa de germinação sementes de Eugenia 428 dysenterica quando tratadas com baixas concentrações de EP (JOSÉ et al., 2016). Pesenti, 429 (2021) avaliou seu efeito alelopático gerando controle germinação de Eragrostis plana e 430 Bidens pilosa, com eficiência de 87 a 100%, respectivamente. As doses aplicadas neste 431 estudo foram de 17.5% para B. pilosa e 20% para E. plana. 432 Os usos deste produto no controle de pragas e doenças também estão sendo 433 amplamente difundidos. A aplicação de EP puro e associado a inseticidas frente a Anticarsia 434 gemmatalis e Pseudoplusia includens apresenta efeito semelhante ao controle feito com 435 inseticidas químicos puros (PETTER et al., 2013). A ingestão de folhas de milho embebidas 436 14 com este produto causa mortalidade de Spodoptera frugiperda em sua fase larval 437 (TRINDADE et al., 2014). Análises in vitro demonstram a ação antifúngica contra fungos 438 patogênicos da soja (PIETA, 2017). 439 Na proteção de sementes os efeitos atribuídos ao EP são promissores. Ele 440 apresentou capacidade de diminuir o ataque do gorgulho Collosobruchus maculates 441 Frabricius à sementes de feijão caupi, minimizando a postura de ovos e a perfuração das 442 sementes causada por este inseto (CHALERMSAN e PEERAPAN, 2009). Os autores ainda 443 fizeram a comparação entre três tipos de EP frente a estas variáveis, o extrato cru, 444 centrifugado e um comercial. Os resultados expuseram que o EP centrifugado se mostrou o 445 mais eficiente na redução da perfuração das sementes e da postura dos ovos. 446 Seu efeito repelente foi também relatado por Rahmat et al. (2014), onde quando 447 misturado a grãos de milho armazenados em recipiente fechado causaram a mortalidade de 448 gorgulhos. Os autores atribuem o ocorrido ao fato deste produto repelir os insetos, 449 deixando-os sem alimento e, consequentemente, levando-os à morte. Uma pesquisa 450 avaliando a repelência do produto contra mosquitos que se alimentam no corpo humano 451 mostrou eficácia frente a Culex pipiens pallens e Aedes togoi (KIARIE-MAKARA et al., 452 2010). 453 No entanto, um estudo relata um efeito inverso no controle de formigas cortadeiras. 454 Quando mudas de Eucalyptus sp. foram pulverizadas com concentrações de 1 e 2% de EP 455 não houve a inibição do ataque das formigas, ao contrário, apresentou-se um aumento no 456 forrageamento das mesmas (SOUZA-SILVA et al., 2005). Nestas concentrações, este 457 extrato causa atratividade a estes insetos, isto é sugerido à melhor condição nutricional que 458 as mudas apresentam, demonstrando que as formigas selecionam mudas mais nutritivas 459 para suprir as necessidades das colônias (SOUZA-SILVA; ZANETTI, 2007). 460 Outra área de aplicação que vem sendo estudada é a de culturas hidropônicas. A 461 adição de 0,25 mL.L-1 de EP em solução hidropônica para a cultura do alface mostrou-se 462 eficiente para ajustar o pH da solução a um ponto ótimo para esta cultura. Nesta 463 concentração as plantas absorveram água e nutrientes equiparadamente com a solução 464 tratada com ácido nítrico, insumo usado comumente neste tipo de cultivo (CHEN et al., 465 2015). 466 Além disso, tem sua aplicação como produto defumante e aromatizante, conhecido 467 como fumaça líquida há muito tempo na indústria alimentícia para conservar e defumar 468 comida (CAMPOS, 2017). Usado também como antisséptico, aplicado frente a bactérias 469 causadoras de mastite, reduzindo o número de células bacterianas (SOARES et al., 2020). 470 Tem efeito nematicida frente a nematoides das galhas e do inhame (FARIAS et al., 2020; 471 15 SANTOS et al., 2017). Está sendo empregado no estudo como fotoprotetor em experimento 472 com a sua mistura com a quitosana (PORTO et al., 2018). 473 Pesquisas têm o avaliado como promotor de crescimento e bem estar-animal, 474 visando introduzir este produto na sua alimentação e assim baratear custos e diminuir o uso 475 de antibióticos para criação de animais confinados, por exemplo. Diógenes et al., (2019) 476 avaliaram níveis crescentes de dosagens de EP em ração oferecida a codornas e 477 monitoraram o desempenho em relação ao ganho de peso dos animais, taxa de conversão 478 alimentar e consumo da ração e recomendaram a adição da dosagem de 2,5% deste extrato 479 à alimentação das codornas. Os autores relataram uma diminuição do consumo de ração 480 nesta dosagem, ou seja, menores quantidades de ração são suficientes para o aumento do 481 peso dos animais. 482 16 Literatura Citada _____________________________ 17 LITERATURA CITADA __________________________________________________________________________ ABAS, F.Z.; ZAKARIA, Z.A.; ANI, F.N. Antimicrobial Properties of Optimized Microwave-483 assisted Pyroligneous Acid from Oil Palm Fiber. Journal of Applied Pharmaceutical 484 Science, v.8, n.7, p.065-071, 2018. Disponível em: https://doi.org/10.7324/JAPS.2018.8711. 485 486 AGUIRRE, J.L.; BAENA, J.; MARTÍN, M.T.; NOZAL, L.; GONZÁLEZ, S.; MANJÓN, J.L.; 487 PEINADO, M. Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained 488 through Fast Biomass Pyrolysis. Energies, v.13, n.10, p. 2418, 2020. Disponível em: 489 https://doi.org/10.3390/en13102418. 490 491 ALMEIDA, R.S.R. Potencial do extrato pirolenhoso de eucalipto como agente 492 conservante de cosméticos e saneantes. 2012. 112p. Tese (Doutorado em Ciências) – 493 Universidade de São Paulo, Piracicaba, 2012. 494 495 ALVES, M. CAZETA, J.O.; NUNES, M.A.; OLIVEIRA, C.A.L.; COLOMBI, C.A. Ação de 496 diferentes preparações de extrato pirolenhoso sobre Brevipalpus phoenicis (GEIJSKES). 497 Revista Brasileira de Fruticultura, v.29, n.2, 2007. Disponível em: 498 http://dx.doi.org/10.1590/S0100-29452007000200037. 499 500 ARAÚJO, E.S.; PIMENTA, A.S.; FEIJÓ, F.M.C.; CASTRO, R.V.O.; FASCIOTTI, M.; 501 MONTEIRO, T.V.C.; LIMA, K.M.G. Antibacterial and antifungal activities of pyroligneous acid 502 from wood of Eucalyptus urograndis and Mimosa tenuiflora. Journal of Applied 503 Microbiology, v.124, n.1, p.85-96, 2017. Disponível em: https://doi.org/10.1111/jam.13626. 504 505 AUBIN, H.; ROY, C. Study on the corrosiveness op wood pyrolysis oils. Fuel Sci Technol 506 Int, v.8, n.1, p.77-86,1990. Disponível em: 10.1080/08843759008915914. 507 508 BALAT, M.; BALAT, M.; KIRTAY, E.; BALAT, H. Main routes for the thermo-conversion of 509 biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and 510 Management, v.50, n.9, p.3147-3157, 2009. Disponível em: 511 https://doi.org/10.1016/j.enconman.2009.08.014. 512 513 BERQUÓ, L.S.; BARROS, A.J.D.; LIMA, R.C.; BERTOLDI, A.D. Utilização de medicamentos 514 para tratamento de infecções respiratórias na comunidade. Revista de Saúde Pública, 515 v.38, n.3, p.358-364, 2004. Disponível em: https://doi.org/10.1590/S0034-516 18 89102004000300004 517 518 BRIDGWATER, A.V.; CARSON, P.; COULSON, M. A comparison of fast and slow pyrolysis 519 liquids from mallee. International Journal of Global Energy, v.27, n.2, 2007. Disponível 520 em: https://doi.org/10.1504/IJGEI.2007.013655. 521 522 CAMPOS, A.D. Técnicas para produção de extrato rodução pirolenhoso para uso 523 agricola. Pelotas:Embrapa Clima Temperado, 2007. 8p. (Embrapa Clima Temperado. 524 Circular técnica, 65). Disponível em: 525 https://ainfo.cnptia.embrapa.br/digital/bitstream/item/30826/1/Circular-65.pdf. 526 527 CAMPOS, A.D. Informação Técnica sobre Extrato Pirolenhoso. Pelotas: Embrapa Clima 528 Temperado, 2017. 9p. (Embrapa Clima Temperado. Circular técnica, 177). Disponível em: 529 https://ainfo.cnptia.embrapa.br/digital/bitstream/item/178670/1/Circular-177-final.pdf. 530 CHALERMSAN, Y.; PEERAPAN, S. Wood vinegar: by-product from rural charcoal kiln and 531 its role in plant protection. Asian Journal of Food and Agro-Industry, v.2 n.especial, 532 p.S189-S195, 2009. Disponível em: 533 https://www.cabdirect.org/cabdirect/abstract/20123113805. 534 535 CHEN, J.; WU, J.H.; SI, H.P.; LIN, K.Y. Effects of Adding Wood Vinegar to Nutrient Solution 536 on the Growth, Photosynthesis, and Absorption of Mineral Elements of Hydroponic Lettuce. 537 Journal of Plant Nutrition, v.39, n.4, p.456-462, 2015. Disponível em: 538 https://doi.org/10.1080/01904167.2014.992539. 539 COSTA, R. A. L. Uso de plantas medicinais pela população da Região Norte de 540 Caraguatetuba – SP. 2015. 56p. Dissertação (Mestrado em Ciências Ambientais) – 541 Universidade Camilo Castelo Branco, Fernandópolis, 2015. 542 543 v DAROIT, D.; MOURA, A.B.D.; MARTINS, I.P.D. Vegetable Charcoal and Pyroligneous 544 Acid: Technological, Economical and Legal Aspects of its Production and Commerce. 545 Journal of Technology Management and Innovation, v.8, 2013. Disponível em: 546 https://scielo.conicyt.cl/pdf/jotmi/v8s1/art28.pdf. 547 548 DIAS JÚNIOR, A.F.; ANDRADE, C.R.; PROTÁSIO, T.P.; MELO, I.C.N.A.; BRITO, J.O.; 549 TRUGILHO, P.F.Pyrolysis and wood by-products of species from the Brazilian semi-arid 550 19 region. Scientia Forestalis, v.46, n.117, p.65-75, 2018. Disponível em: 551 https://doi.org/dx.doi.org/10.18671/scifor.v46n117.06. 552 553 DIÓGENES, G.V.; TEIXEIRA, E.N.M.; PIMENTA, A.S.; SOUZA, J.G.; MOREIRA, J.A.; 554 MARINHO, A.L.; VERAS, A.; CHEMANE, I.A. Wood Vinegar From Eucalyptus As An 555 Additive in Broiler Quail Feed. International Journal of Plant, Animal and Environmental 556 Sciences, v.9, n.3, 2019. Disponível em: 10.26502/ijpaes.003. 557 558 DORAN, W.L. Acetic acid and pyroligneous acid in comparison with formaldehyde as soil 559 disinfectants. Journal of Agricultural Research, v.44, n.7, p.571-578, 1932. Disponível em: 560 http://www.pyroligneousacid.com.au/wp-content/uploads/2019/01/acetic-acid-and-561 pyroligneous-acid-in-comparison-with-formaldehyde-as-soil-disinfectants.pdf. 562 563 FARIAS, S.P.; ALMEIDA, A.V.D.L.; NASCIMENTO, E.S.; SOLETTI, J.I.; BALLIANO, T.L.; 564 MOURA FILHO, G.; MUNIZ, M.F.S. In vitro and in vivo control of yam dry rot nematodes 565 using pyroligneous extracts from palm trees. Revista Ceres, v.67, n.6, 2020. Disponível em: 566 https://doi.org/10.1590/0034-737x202067060008. 567 568 GONÇALVES, F.G.; SILVA, A.G.; FERRARO, A.C.; COSTA, N.N.M.;SOUZA, R.A.B.; 569 TOSATO, A.F. Captação de líquido pirolenhoso da carbonização da madeira de Eucalyptus 570 cloeziana em forno rabo quente. Revista Brasileira de Ciências Agrárias, v.5, n.2, p.232-571 237, 2010. Disponível em: https://www.redalyc.org/articulo.oa?id=119016982013. 572 573 GREWAL, A.; ABBEY, L.; GUNUPURU, L.R. Production, prospects and potential application 574 of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis, v.135, 575 n.18, p.152-159, 2018. Disponível em: https://doi.org/10.1016/j.jaap.2018.09.008. 576 577 IBRAHIM, D.; KASSIM, J.; SHEH-HONG, L.; RUSLI, W. Efficacy of pyroligneous acid from 578 Rhizophora apiculata on pathogenic Candida albicans. Journal of Applied Pharmaceutical 579 Science, v.3, n.7, p.7-13, 2013. Disponível em: https://doi.org/10.7324/JAPS.2013.3702. 580 581 JOSÉ, A.C.; ANDRADE, R.J.; PEREIRA, W.V.S.; SILVA, N.C.N.; FARIA, J.M.R. Efeito do 582 extrato pirolenhoso sobre a germinação de espécies do Cerrado brasileiro. Cad. Ciênc. 583 Agrá., v.8, n.1, p.62-69, 2016. 584 585 KIARIE-MAKARA, M.W.; YOON, H.S.; LEE, D.K. Repellent efficacy of wood vinegar against 586 20 Culex pipiens pallens and Aedes togoi (Diptera: Culicidae) under laboratory and semi-field 587 conditions. Entomological Research, v.40, p.97-103, 2010. 588 589 KOC, I.; YARDIM, E.N.; AKCA, M.O.; NAMLI, A. Impact of pesticidesand wood vinegar, used 590 in wheat agro-ecossistems, on the soil enzyme activities. Fresenius Environmental 591 Bulletin, v.27, n.4, p.2442-2448, 2018. Disponível em: http://www.prt-parlar.de/.../. 592 593 KURLANSKY, M. Salt: a world history. 1 ed. Los Angeles: Editora Pinguin Books, 2002. 594 LI, R.; NARYTA, R.; NISHIMURA, H.; MARUMOTO, S.; YAMAMOTO, S.P.; OUDA, R.; 595 YATAGAI, M.; FUJITA, T.; WATANABE, T. Antiviral Activity of Phenolic Derivatives in 596 Pyroligneous Acid from Hardwood, Softwood, and Bamboo. Sustainable Chemistry & 597 Engineering, v.6, n.1. p.119-126, 2017. Disponível em: 598 https://doi.org/10.1021/acssuschemeng.7b01265. 599 600 LI, R.; NARITA, R.; OUDA, R.; KIMURA, C.; NISHIMURA, H.; YATAGAI, M.; FUJITA, T.; 601 WATANABE, T. Structure-dependent antiviral activity of catechol derivatives in pyroligneous 602 acid against the encephalomycarditis vírus. RSC Advances, v.8, p.35888-35896, 2018. 603 Disponível em: 10.1039/c8ra07096b. 604 605 LIU, X.; CUI, R.; SHI, J.; JIANG, Q.; CAO, J.; WANG, Z.; LI, X. Separation and 606 microencapsulation of antibacterial compounds from wood vinegar. Process Biochemistry, 607 v.110, p.275-281, 2021. Disponível em: https://doi.org/10.1016/j.procbio.2021.08.020. 608 609 LOO, A.Y.; JAIN, K.; DARAH, I. Antioxidant activity of compounds isolated from the 610 pyroligneous acid, Rhizophora apiculata. Food Chemistry, v.107, p.1151–1160, 2008. 611 Disponível em: https://doi.org/10.1016/j.foodchem.2007.09.044. 612 613 MACEDO, D.G.C.; DAVID, G.Q.; YAMASHITA, O.M.; PERES, W.M.; CARVALHO, M.A.C.; 614 SÁ, M.E.; LOURENÇO, F.M.S.; MATEUS, M.P.; KARSBURG, I.V.; ARRUDA, T.P.M.; 615 RODRIGUES, C. Study of the Control of Fungus Occurring in Schizolobium amazonicum 616 Seeds with the Use of Pyroligneous Extrac. International Journal of Plant & Soil Science, 617 v.31, n.4, p.1-9, 2019. Disponível em: htts://doi.org/10.9734/IJPSS/2019/v31i430216. 618 619 MAHMUD, K.N.; YAHAYU, M.; SARIP, S.H.M.; HUSAN, N.H.; MIN, C.B.; MUSTAFA, N.F.; 620 NGADIRAN, S.; UJANG, S.; ZACARIA, Z.A. Evaluation on Efficiency of Pyroligneous Acid 621 21 from Palm Kernel Shell as Antifungal and Solid Pineapple Biomass as Antibacterial and Plant 622 Growth Promoter. Sains Malaysiana v.45, n.10, p.1423-1434, 2016. Disponível em: 623 https://core.ac.uk/download/pdf/84306792.pdf. 624 625 MALIANG, H.; TANG, L.; LIN, H.; CHEN, A.; MA, J. Influence of high-dose continuous 626 applications of pyroligneous acids on soil health assessed based on pH, moisture content 627 and three hydrolases. Environmental Science and Pollution Research, v.27, n.20, p. 628 15426-15439, 2020. Disponível em: https://doi.org/10.1007/s11356-020-08075-x. 629 MARUMOTO, S.; YAMAMOTO, S.; NISHIMURA, H.; ONOMOTO, K.; YATAGAI, M.; 630 YAZAKI, K.; FUJITA, T.; WATANABE, T. Identification of a Germicidal Compound against 631 Picornavirus in Bamboo Pyroligneous Acid. Journal of Agricultural and Food Chemistry, 632 v.60, p.9106−9111, 2012. Disponível em: https://doi.org/dx.doi.org/10.1021/jf3021317. 633 634 MEDEIROS, L.; GASPAROTTO, L. Pyroligneous acid and antibacterial activity: criticism of a 635 paper by Araújo et al. (2018). J Appl Microbiol, v.132, n.3, p.1768-1770, 2021. Disponível: 636 10.1111/jam.15281. 637 NACHMAN, K. Pills for pigs: just say no. Scientific American, v.314, n.3, p.11, 2016. 638 Disponível em: https://doi.org/10.1038/scientificamerican0316-11. 639PAN, X.; ZHANG, Y.; WANG, X.; LIU, G. Effect of adding biochar with wood vinegar on the 640 growth of cucumber. IOP Conference Series: Earth and Environmental Science, v.61, 641 p.10-12, 2017. Disponível em: https://doi.org/10.1088/1755-1315/61/1/012149. 642 643 PALMA, E.; TILOCCA, B.; RONACADA, P. Antimicrobial Resistance in Veterinary Medicine: 644 An Overview. International Journal of Molecular Sciences, v.21, n.6, p.1914, 2020. 645 Disponível em: https://doi.org/10.3390/ijms21061914. 646 647 PESENTI, M.C. Caracterização química do extrato pirolenhoso obtido a partir de 648 Eucalyptus grandis e testes alelopáticos da fração destilada. 2021. 67f. Dissertação 649 (Mestrado em Tecnologia de Processos Químicos e Bioquímicos) – Universidade 650 Tecnológica Federal do Paraná, Pato Branco. 651 652 PETTER, F.A.; SILVA, L.B.; SOUZA, I.J.; MAGIONNI, K.; PACHECO, L.P.; ALMEIDA, F.A.; 653 PAVAN, B.E. Adaptation of the Use of Pyroligneous Acid in Control of Caterpillars and 654 Agronomic Performance of the Soybean Crop. Journal of Agricultural Science, v.5, n.8, 655 22 2013. Disponível em: http://dx.doi.org/10.5539/jas.v5n8p27. 656 657 PIETA, S. Eficácia de extratos pirolenhosos de canade-açúcar (Saccharum officinarum 658 L.) e eucalipto (Eucalyptus spp.) no controle in vitro de patógenos da soja. 2017. 81f. 659 Dissertação (Mestrado em Produção Vegetal) – Universidade Federal da Grande Dourados, 660 Dourados. 661 662 PIMENTA, A.S.; FASCIOTTI, M.; MONTEIRO, T.V.C.; LIMA, K.M.G. Chemical Composition 663 of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules, v.23, n.2, p.426, 664 2018. Disponível em: https://doi.org/10.3390/molecules23020426. 665 666 PORTO, P.R.; SAKITA, A.E.N.; SAKITA, M.N. Efeito da aplicação do extrato pirolenhoso na 667 germinação e no desenvolvimento de mudas de Pinus elliottii var. elliottii. IF Sér. Reg., n.31, 668 p.15-19, 2007. Disponível em: 669 https://smastr16.blob.core.windows.net/iflorestal/RIF/SerieRegistros/IFSR31/IFSR31_15-670 19.pdf. 671 672 PORTO, F.G.S.; CAMPOS, A.D.; GARCIA, I.T.S. Distilled pyroligneous liquor obtained from 673 Eucalyptus grandis and chitosan: physicochemical properties of the solution and films. 674 Environmental Science and Pollution Research, v.26, p.672–683, 2018. Disponível em: 675 https://doi.org/10.1007/s11356-018-3590-x. 676 677 RAHMAT, B.; PANGESTI, D.; NATAWIJAYA, D.; SUFYADI, D. Generation of Wood-waste 678 vinegar and Its effectiveness as a plant growth regulator and pest insect repellent. 679 Bioresources, v.9, n.4, p.6350-6360, 2014. Disponível em: 680 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/download/BioRes_09_4_6350_Rahmat_Ge681 neration_Wood_Waste_Vinegar/3030. 682 683 SANTOS, A.M.; ALMEIDA, F.A.; FONSECA, W.L.; LEITE, M.L.T.; PEREIRA, F.F.; 684 CARVALHO, R.M. Ácido pirolenhoso no manejo de nematoides das galhas na cultura da 685 alface. Revista Espacios, v.38, n.3, 2017. Disponível em: 686 http://www.revistaespacios.com/a17v38n43/17384301.html. 687 688 SANTOS, M.E.; FERNÁNDEZ G.S.; OLIVEIRA, S.V.W.B. Recogida de extracto de piroleno 689 en la industria del carbón. Revista de Estudos Sociais, v.13, n. 25, p.22, 2011. Disponével 690 em: https://periodicoscientificos.ufmt.br/ojs/index.php/res/article/download/269/1336/5208. 691 23 692 SCHNITZER, J.A.; FARIA, R.T.; VENTURA, M.U.; SORACE, M. Substratos e extrato 693 pirolenhoso no cultivo de orquídeas brasileiras Cattleya intermedia (John Lindley) e Miltonia 694 clowesii (John Lindley) (Orchidaceae). Acta Scientiarum. Agronomy, v.32, n.1, p.139-143, 695 2010. Disponível em: 10.4025/actasciagron.v32i1.714. 696 697 SCHNITZER, J.A.; SU, M.J.; VENTURA, M.U.; FARIA, R.T. Doses de extrato pirolenhoso no 698 cultivo de orquídea. Revista Ceres, v. 62, n.1, p. 101-106, 2015. Disponével em: 699 http://dx.doi.org/10.1590/0034-737X201562010013. 700 701 SENA, M.F.M.; ANDRADE, A.M.; THODE FILHO, S.; SANTOS, F.R.; PEREIRA, L.F. 702 Potencialidades do extrato pirolenhoso: práticas de caracterização. Revista Eletronica em 703 Gestão, Educação e Tecnologia Ambiental, v.18, n.14. p.41-44, 2014. Disponível em: 704 https://doi.org/10.5902/2236117013808. 705 706 SEO, P.D.; ULTRA JÚNIOR, V.U.; RUBENICIA, M.R.U.; LEE, S.C. Influence of Herbicides-707 pyroligneous Acids Mixtures on Some Soil Properties, Growth and Grain Quality of Paddy 708 Rice. International Journal of Agriculture & Biology, v.17, n.3, 2015. Disponível em: 709 https://doi.org/10.17957/IJAB/17.3.14.349. 710 SILVA, C.J.; KARSBURG, I.V.; DIAS, P.C.; ARRUDA, T.P.M. Pyroligneous liquor effect on in 711 and ex vitro prodution of Oeceoclades maculata (Lindl). Lindl. Revista Caatinga, v.30, n.4, 712 p.947-954, 2017. Disponível em: 713 https://periodicos.ufersa.edu.br/index.php/caatinga/article/download/6485/pdf/. 714 715 SILVEIRA, C.M. Influência do extrato pirolenhoso no desenvolvimento e crescimento 716 de plantas de milho, 2010, 93f. Tese (Doutorado em agronomia) - Faculdade de Ciências 717 Agrárias e veterinárias, Jaboticabal, 2010. 718 719 SOARES, W.N.C.; LIRA, G.P.O.; SANTOS, C.S.; DIAS, G.N.; PIMENTA, A.S.; PEREIRA, 720 A.F.; BENÍCIO, L.D.M.; RODRIGUES, G.S.O.; AMORA, S.S.A.; ALVES, N.D.; FEIJÓ, F.M.C. 721 Pyroligneous acid from Mimosa tenuiflora and Eucalyptus urograndis as an antimicrobial in 722 dairy goats. Journal of Applied Microbiology, 2020. Disponível em: 723 https://doi.org/10.1111/jam.14977. 724 725 SOUZA-SILVA, A.; ZANETTI, R.; CARVALHO, G.A.; SANTOS, A.; MATTOS, J.O.S. 726 24 Preferência de formigas cortadeiras por mudas de eucalipto pulverizadas ou imersas em 727 soluções de extrato pirolenhoso em diferentes concentrações. Scientia Forestalis, n.67, 728 p.9-13, 2005. 729 730 SOUZA-SILVA, A.; ZANETTI, R. Forrageamento por Atta sexdens rubropilosa forel, 1908 731 (hymenoptera: formicidae) a campo em mudas de eucalipto pulverizadas ou imersas em 732 soluções de extrato pirolenhoso. Revista Árvore, v.31, n.4, p.753-759, 2007. 733 734 SOUZA, J.B.G.; RÉ-POPII, N.; RAPOSO JÚNIOR, J.L. Characterization of Pyroligneous 735 Acid used in Agriculture by Gas Chromatography-Mass Spectrometry. Journal of the 736 Brazilian Chemical Society, v.23, n.4, p.610-617, 2012. Disponível em: 737 https://doi.org/10.1590/S0103-50532012000400005. 738 739 SOUZA, J.L.S.; GUIMARÃES, V.B.S.; CAMPOS, A.D.; LUND, R.G. Antimicrobial potential of 740 pyroligneous extracts – a systematic review and technological prospecting. Brazilian 741 Journal of Microbiology, v.49, n.1, p.128-139, 2018. Disponível em: 742 https://doi.org/10.1016/j.bjm.2018.07.001. 743 744 SIPILÄ, K., KUOPPALA, E., FAGERNAÉS, L., OASMAA, A. (1998) Characterization of 745 biomass-based flash pyrolysis oils. Biomass and Bioenergy, 14, 2, 103-113. 746 747 SURESH, G. PAKDEL, H.; ROUSSI, T.; BRAR, S.K.; FLISS, I.; ROY, C. In vitro evaluation of 748 antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechenology 749 Research e Innovation, v.3, n.1, p.47-53, 2019. Disponível em: 750 https://doi.org/10.1016/j.biori.2019.02.004. 751 752 THEAPPARAT, Y.; CHANDUMPAI, A.; LEELASUPHAKUL, W.; LAEMSAK, N. Pyroligneous 753 acids from carbonisation of wood and bamboo: their components and antifungal activity. 754 Journal of Tropical Forest Science, v.27, n.4, p.517–526, 2015. Disponível em: 755 https://www.jstor.org/stable/43596228. 756 757 THEAPPARAT, Y., CHANDUMPAI, A., LEELASUPHAKUL, W., FAROONGSARNG, D. 758 (2018). Physicochemistry and utilization of wood vinegar from carbonization of tropical 759 biomass waste. IntechOpen, Open Access Books, chapter 8. 760 761 TIILIKKALA, K.; FAGERNAS, L.; TIILIKKALA, J. History and Use of Wood Pyrolysis Liquids 762 25 as Biocide and Plant Protection Product. The Open Agriculture Journal, n.4, p.111-118, 763 2010.Disponível em: https://doi.org/10.2174/1874331501004010111. 764 765 TOGORO, A.H.; SILVA, J.A.S.; CAZETTA, J.O. Chemical changes in an oxisol treated with 766 pyroligneous acid. Ciência e Agrotecnologia, v.38, n. 2, p.113-121, 2014. Disponível em: 767 http://dx.doi.org/10.1590/S1413-70542014000200002. 768 769 TRINDADE, R.C.P.; PALMEIRA, L.H.; SANTANA, A.E.G.; SOUSA, R.S.; COSTA, A.P.A.; 770 AMORIM, E.P.R. Atividade do extrato pirolenhoso sobre lagartas de Spodoptera frugiperda 771 (J.E. Smith) (Lepidoptera: Noctuidae). Revista Brasileira de Agroecologia, v.9, n.3, p.84-772 89, 2014. Disponível em: http://revistas.aba-773 agroecologia.org.br/index.php/rbagroecologia/article/download/15449/10664. 774 WANDERLEY, C.S.; FARIA, R.T.; VENTURA, M.U. Chemical fertilization, organic fertilization 775 and pyroligneous extract in the development of seedlings of areca bamboo palm (Dypsis 776 lutescens). Acta Scientiarum, v.34, n.2, p.163-167, 2012. Disponível em: 777 http://doi.org/10.4025/actasciagron.v34i2.12488. 778 779 WORLD HEALTH ORGANIZATION. Antibiotic resistance, 2020. Disponível em: 780 https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. 781 YATAGAI, M.; NISHIMOTO, M.; HORI, K.; OHIRA, T.; SHIBATA, A. Termiticidal activity of 782 wood vinegar, its components and their homologues. J Wood Sci, n.4, p.338-342, 2002. 783 Disponível em: https://doi.org/10.1007/BF00831357. 784 785 ZIMERMAN, R.A. Uso indiscriminado de antimicrobianos e resistência microbiana. 3. 786 ed. Brasília: Editora MS, 2010. 787 26 Capítulo 1 _____________________________ 27 4. CAPÍTULO 1 __________________________________________________________________________ EFFECT OF pH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS 28 EFEITO DO pH NA ATIVIDADE ANTIBACTERIANA E ANTIFÚNGICA DO VINAGRE DE MADEIRA (EXTRATO PIROLENHOSO) DE EUCALIPTO Gil Sander Próspero Gama1, Alexandre Santos Pimenta1, Francisco Marlon Carneiro Feijó2, Caio Sergio Santos2, Renato Vinicius Oliveira Castro3, Tatiane Kelly Barbosa de Azevedo1, Lúcio César Dantas de Medeiros1 *Artigo aceito para publicação. Link para as normas da revista no anexo I RESUMO 788 O presente trabalho teve como objetivo avaliar o efeito da neutralização progressiva na 789 atividade antimicrobiana do extrato pirolenhoso (EP) de eucalipto. Amostras de madeira 790 foram carbonizadas a uma taxa de aquecimento de 0.7 °C min-1 até a temperatura final de 791 450 °C. Os líquidos brutos da carbonização foram deixados em repouso e a fração aquosa foi 792 separada. A fração aquosa correspondente ao EP bruto foi destilada obtendo o EP purificado. 793 Alíquotas de EP purificado foram progressivamente neutralizadas do pH 2.5 até 7.5, 794 respectivamente, 2,5, 3,0, 3,5, 4,0, 4,5, 5,0, 5,5, 6,0, 6,5, 7,0, e 7,5. Com o método da micro-795 diluição em caldo, o efeito antimicrobiano das amostras neutralizadas em cada pH foi 796 avaliado contra Pseudomonas aeruginosa (ATCC 27853), Salmonella enteritidis 797 (ATCC 13076), Staphylococcus aureus (ATCC 25923), Streptococcus agalactiae (CEPA 798 CLINICA) e Candida albicans (ATCC 10231). As concentrações inibitórias mínimas e as 799 concentrações bactericida e fungicida mínimas foram determinadas. Os resultados foram 800 analisados por regressão e foram ajustados os modelos estatísticos. Foi detectada uma perda 801 progressiva da atividade antimicrobiana do EP com a neutralização. Entretanto, mesmo em 802 pH neutro e ligeiramente alcalino, a atividade inibitória ao crescimento microbiano se 803 manteve em certa extensão. 804 805 Palavras-chave: carbonização de madeira de eucalipto; extrato pirolenhoso de eucalipto; 806 bactericida e fungicida natural 807 29 EFFECT OF PH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS Gil Sander Próspero Gama1, Alexandre Santos Pimenta1, Francisco Marlon Carneiro Feijó2, Caio Sergio Santos2, Renato Vinicius Oliveira Castro3, Tatiane Kelly Barbosa de Azevedo1, Lúcio César Dantas de Medeiros1 ABSTRACT 808 The study aimed to assess the effect of progressive neutralization on the antimicrobial 809 properties against bacteria and yeasts of wood vinegar obtained from the pyrolysis of 810 Eucalyptus urograndis wood. Wood samples were carbonized at a heating rate of 0.7 °C min-1 811 until a final temperature of 450 °C. The raw pyrolysis liquids were left to settle and the 812 aqueous fraction was separated. Then, the aqueous fraction (raw wood vinegar – WV) was 813 purified to yield the WV. WV samples were collected and neutralized from pH 2.5 until 7.5 814 (2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5. Through the broth microdilution method, 815 the antimicrobial effect of the neutralized samples at each pH was assessed on 816 Pseudomonas aeruginosa (ATCC 27853), Salmonella enteritidis (ATCC 13076), 817 Staphylococcus aureus (ATCC 25923), Streptococcus agalactiae (CEPA CLINICA), and 818 Candida albicans (ATCC 10231). The minimum inhibitory concentration (MIC) and 819 minimum bactericidal (and fungicidal) concentrations were determined. Results were 820 submitted to regression analysis, and statistical models were fitted. A progressive decrease in 821 the antimicrobial activity was determined as pH increased. Nevertheless, even when neutral 822 and slightly alkaline pH values are reached, the inhibitory activity remained at a certain level. 823 Higher pH values of the WV were associated with lower antimicrobial activity. However, its 824 activity remained even at neutral and slightly alkaline pH values. 825 826 Keywords: wood vinegar and pH effect; antibacterial activity; antifungal activity 827 30 INTRODUCTION 828 Wood vinegar (WV), pyroligneous acid, pyroligneous extract, and water-soluble liquid 829 smoke are expressions referring to the same product, namely the aqueous fraction separated 830 through the settling of the raw pyrolysis liquids (Sena et al. 2014). WV has a complex 831 chemical composition, which can reach up to 200 compounds, among them phenols, ketones, 832 furans, aldehydes, pyrans, alcohols, and organic acids (Schnitzer et al. 2015; Araújo et al. 833 2017; Dias Júnior et al. 2018; Pimenta et al. 2018; Suresh et al. 2019). WV is essentially an 834 acidic product with a pH ranging usually from 2.5 to 3.6 (Aubin and Roy, 1990; Rahmat et al. 835 2014; Pimenta et al. 2018), depending on the chemical composition of the pyrolyzed raw 836 material. This acidity is due to the presence of organic acids, the most common being acetic 837 and formic acids. The most usual organic acid in WV is acetic acid, with concentrations of 3.0 838 to 7.4% (Sipilä et al. 1998; Theapparat et al. 2018). 839 Due to its particular chemical composition, preservative, and medicinal properties, 840 WV has been employed for several purposes since ancient times (Tiilikkala et al. 2010). There 841 are millenary reports of its use in the treatment of diseases in China and India (Campos 2007); 842 salt substitute in 1862 to preserve meats (Kurlansky 2002); soil disinfection (Doran, 1932), 843 among other applications. This broad variety of applications has led to increasing interest in 844 this wood-pyrolysis bioproduct by researchers around the world, with several studies focused 845 on its antimicrobial action and other properties (Araújo et al. 2017; Souza et al. 2018; Chen et 846 al. 2015; Maliang et al. 2020). The role of phenols and other compounds on the antimicrobial 847 activity of WV hasbeen well established in recent works, such as Suresh et al. (2019) and 848 Suresh et al. (2020), for instance. In these works, the authors assessed WV in both acidic and 849 neutral forms and demonstrated that even after neutralization, the product had antimicrobial 850 activity, albeit weaker, but not absent. More than that, since after neutralization, the acetic 851 acid is no longer present in WV, Suresh et al. (2019) highlighted that the antimicrobial effect 852 cannot be attributed to the presence of this compound alone, and instead must be attributed to 853 the combined action with several other compounds. 854 However, the previous research works involving the antimicrobial activity of 855 neutralized WV were carried out directly with the acidic and neutral versions, without 856 verifying what happens to that activity during progressive neutralization. Thus, from the 857 original acidic pH to neutrality, there is a gap in information about the antimicrobial activity 858 of WV in the pH range from 2.5 to 7.0. In this context, the present work aimed to assess the 859 31 effect of increasing pH (from the original pH of 2.5 until 7.0) on the antimicrobial activity of 860 wood vinegar (pyroligneous extract) from eucalyptus urograndis – clone I144 on 861 Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, Streptococcus 862 agalactiae, and Candida albicans. 863 MATERIAL AND METHODS 864 865 Production and purification of WV 866 Wood samples from Eucalyptus urograndis trees (usual denomination of hybrids of 867 Eucalyptus urophylla x Eucalyptus grandis in Brazil), clone I144, were collected. These 868 samples were collected from 8-year-old plantations in the experimental area of the Science 869 Unit Agrárias, Agricultural School of Jundiaí, Federal University of Rio Grande do Norte 870 (coordinates of 05° 51' 30" S and 35° 21' 14" W). Tree selection, harvesting, and wood sample 871 collection followed the procedures described by Carneiro et al. (2013). The wood samples 872 consisted of 3 cm thick disks, and before carbonization, they were cut into wedges and oven-873 dried at 103 °C (+ 2 °C) under forced ventilation until constant weight. The carbonization 874 runs were performed in a laboratory muffle furnace (Labor SP-1200, SP LABOR, São Paulo, 875 Brazil) with cry wood samples weighing about 500 g in each run. Twenty runs were 876 conducted. In each run, the wood samples were placed inside an externally-heated steel 877 container and submitted to a heating rate of 0.7 °C min-1 from room temperature to 450 °C. 878 The liquid fraction from the carbonization was recovered using a water-cooled steel 879 condenser (25 °C). The composite sample of the raw liquids was decanted and the aqueous 880 supernatant was separated and bi-distilled until 100 – 103 °C to obtain the purified WV. The 881 purified WV was vacuum filtered through a 0.2 μm filter (MF-Millipore, Merck, Darmstadt, 882 Germany). 883 Neutralization of WV 884 20 mL aliquots from the purified WV resulting from the previous step were obtained 885 with two replicates of each one. The first ones were kept at their original pH of 2.5. Then, two 886 by two, the other aliquots were increasingly neutralized to obtain pH values of 3.0, 3.5, 4.0, 887 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, or 7.5. For neutralization, a 2 mol L-1 NaOH solution was employed 888 and the final pH of the aliquots was monitored with a pHmeter (PG 2000, Gehaka, São Paulo, 889 SP, Brazil). Thus, 11 types of samples of WV with different pH values were obtained. 890 32 In vitro evaluation of the antimicrobial activity 891 The assays were carried out by the broth microdilution method with 96-well 892 microplates, according to the procedures of the CLSI (2012) routine. For the assessment tests, 893 five microorganisms were employed: four bacterial strains, P. aeruginosa (ATCC 27853), S. 894 enteritidis (ATCC 13076), S. aureus (ATCC 25923), and S. agalactiae (CEPA CLINICA), and 895 a strain of the yeast C. albicans (ATCC 10231). All the microorganisms were kept in BHI 896 (brain heart infusion, Kasvi, São José dos Pinhais-PR, Brazil) under refrigeration, and just 897 before each assay, they were cultivated in a bacteriological oven (Fanem model 50, 898 Guarulhos, SP, Brazil) at 37 °C (± 1 °C) for 24 hours with the same culture media. Then the 899 microbial inocula were prepared. The adjustment of the concentration of bacterial and fungal 900 cells in the culture media was achieved by employing a spectrophotometer (Biospectro SP-22, 901 Labmais, Curitiba, PR, Brazil) at the wavelength of 530 nm with reading values from 0.08 to 902 0.1, corresponding to 0.5 in the MacFarland scale (density of 1.5 x 108 cells mL-1). 903 Then in each well of the microplates, 100 µL of BHI culture media was added. After 904 that, serial dilutions were performed for each pH in the BHI medium, as follows: in the first 905 well, 100 µL of WV was added until reaching a dilution of 50%. From that point onward, a 906 constant volume of 100 µL was collected from the first well and added to the following one to 907 reach 25% dilution. The procedure was repeated until reaching a concentration of 0.78123%. 908 The 100 µL volume extracted from the last well was discarded. Therefore, seven 909 concentrations of WV at each pH value were obtained: 50, 25, 12.5, 6.25, 3.125, 1.5625, and 910 0.78123% (always half of the previous concentration starting from a dilution of 50%). For 911 each concentration and each pH, three replicates were conducted. This way, 231 wells for 912 observation were obtained (7 concentrations x 11 pH x 3 replicates, or 77 experimental 913 treatments x 3 replicates). 914 After the dilutions, 0.5 µL of each microbial inoculum was added to each well. Next, 915 the microplates were incubated in a bacteriological oven at 37 °C (± 1 °C) for 24 hours. After 916 that time, the tubes were read visually and the first triplicates of each experimental treatment 917 that were completely translucid were considered to establish the minimum inhibitory 918 concentration (MIC). The visual reading was employed since the colorimetric method usually 919 applied using resazurin was inefficient. After the visual assessment, the microplates were read 920 in an ELISA microplate reader (model 660, URIT Medical Electronic, Nanshan, Shenzhen, 921 China) to determine the absorbances, a way to quantify the microbial growth according to the 922 33 concentration and pH. For each experimental treatment, three replicates were read. The 923 positive control for the readings was achieved with chlorhexidine (Vic Pharma by Shülke, 924 Taquaritinga, SP, Brazil) at 0.2%. The minimum bactericidal concentration (MBC) and 925 minimum fungicidal concentration (MFC) were determined from the MIC value measured for 926 each combination of microorganism and pH levels, where the solution of the MIC well and 927 those of higher concentration were inoculated in Petri dishes containing BHI culture medium. 928 The Petri dishes were incubated in a bacteriological oven at 37 °C (± 1 °C) for 24 hours. After 929 this period, the presence or absence of microbial colonies was assessed. 930 Statistical analysis 931 The experimental data from the readings of absorbance were subjected to regression 932 analysis by employing the R software (version 4.1.3) at the moment of the inoculation (zero 933 hours) and after 24 hours. For each type of microorganism, at each pH level, a regression 934 model was fitted to describe and predict the behavior of absorbance (Y) as a function of WV 935 concentration (X). The best statistical prediction models were selected based on the following 936 decision criteria: high correlation coefficient (R) between experimental and estimated values, 937 the significance of the model parameter, biological realismof the model, and root-mean-938 square deviation (RMSE). Among several models assessed, the logistic model [Y= β1 ln(X) + 939 β0 + ε, recommended by Gujarati and Porter (2009)] was the best to explain the behavior of 940 the absorbances after 24 hours. The data on absorbances were graphically plotted on zero time 941 only to demonstrate their pattern of behavior after inoculation. For the absorbance after 24 942 hours of incubation of the microbial cultures, a specific model was adjusted for each 943 combination of pH level and concentration. After the adjustment of the equations, the curves 944 of the factor pH for the same microorganism were compared to each other using the model 945 identity test, according to the routine described by Regazzi (1993, 1996, 1999) and previously 946 applied in a similar experiment (Araújo et al. 2017). 947 RESULTS 948 Antimicrobial activity: determination of MIC, MBC, and MFC 949 Table 1 contains the results obtained for the MIC at each pH for the five 950 microorganisms. The pattern observed was a decrease in the antimicrobial effect as the pH got 951 closer to neutral. The results obtained for MBC and MFC, also displayed in Table 1 (numbers 952 in italics), follow the same trend as the MIC. At lower pH levels, the concentrations required 953 to inhibit the microbial growth were lower and as the pH approached neutral, the 954 34 concentrations needed to achieve the same effect were higher. The value of MIC, MBC and 955 MFC of chlorhexidine (positive control) was constant, presenting a value of 0.003%. 956 Table 1. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) values against the microorganisms according to increasing pH levels Microorganism WV concentration (%) pH 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 P. aeruginosa 3.12 3.12 3.12 6.25 6.25 12.5 12.5 25 25 50 25 12.5 6.25 6.25 12.5 12.5 12.5 25 50 50 50 50 S. enteritidis 3.12 3.12 3.12 6.25 6.25 6.25 25 25 25 50 25 3.12 6.25 6.25 25 12.5 12.5 25 50 50 >50 50 S. aureus 6.25 6.25 6.25 6.25 12.5 12.5 25 50 50 >50 50 6.25 6.25 6.25 12.5 12.5 25 25 50 >50 >50 >50 S. agalactiae 6.25 6.25 6.25 6.25 12.5 12.5 25 50 50 >50 >50 6.25 6.25 12.5 12.5 25 25 25 50 50 >50 >50 C. albicans 3.12 3.12 3.12 6.25 6.25 12.5 25 25 25 25 25 3.12 3.12 3.12 6.25 6.25 25 25 25 25 50 50 Where: *In Table body, for each microorganism, the first line corresponds to the MIC and the numbers in italics are the MBC; **For Candida albicans, the numbers in italics are the minimum fungicidal concentrations; ***The sign > is employed to suggest the possibility that a concentration higher than 50% can result in inhibition Antimicrobial activity: behavior of the absorbances 957 Figure 1 contains the graphs based on the models fitted from the regression analysis of 958 the absorbances, each one corresponding to a single microorganism. In all components 959 displayed in Figure 1, graphs identified with the letter A are representations of the behavior of 960 the absorbances of the culture media at the 0 hours (just after the inoculation) and after 24 961 hours of incubation (B). Although the MIC, MBC, and MFC values could not be determined 962 from the graphs in Figure 1, the knowledge of the absorbances was still a valuable tool to 963 quantify precisely the interaction between pH, WV concentration, and microbial growth, as 964 will be discussed in the next section. In the graphs marked with the B letter, at the same pH, 965 higher absorbances are associated with lower efficacy of the WV. 966 35 36 Figure 1. Graphs representing the effect of the pH of WV on the growth of Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, Streptococcus agalactiae, and Candida albicans as a function of the concentration at zero time (A) and 24 hours (B) after incubation In Table 2, the regression models that were adjusted to each microorganism are 967 presented. As can be observed in the figures, as the concentration decreased and the pH 968 increased, the absorbances rose. A higher value of absorbance indicates that the culture 969 medium became more turbid due to the higher concentration of microbial cells that 970 developed. For the models that were adjusted to explain the effect of pH in the growth of P. 971 aeruginosa (Table 2), a low value of the coefficient of correlation was determined to the pH 972 of 2.5, which implicates a relatively high dispersion of the experimental data having the 973 regression as reference. However, a trend of behavior is reflected by the regression line and 974 for the other pH values, this pattern is confirmed since the values of R2 for the same type of 975 model are higher with a maximum value of 0.8348 for the pH of 5.5. 976 Table 2. Regression models that were adjusted to explain the behavior of absorbances from cultures of Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, Streptococcus agalactiae, and Candida albicans after 24 hours of incubation at each pH level according to WV concentration Pseudomonas aeruginosa pH Regression Model R2 2.5 Y = – 0.266 ln X + 0.9922 0.5539 3.0 Y = – 0.287 ln X + 1.0194 0.6047 3.5 Y = – 0.284 ln X + 1.0201 0.6416 4.0 Y = – 0.344 ln X + 1.2765 0.8074 4.5 Y = – 0.358 ln X + 1.2777 0.7514 5.0 Y = – 0.384 ln X + 1.3839 0.7885 5.5 Y = – 0.379 ln X + 1.4791 0.8348 6.0 Y = – 0.346 ln X + 1.5663 0.8170 6.5 Y = – 0.323 ln X + 1.5487 0.7152 7.0 Y = – 0.292 ln X + 1.5721 0.7252 7.5 Y = – 0,337 ln X + 1,4743 0.8003 Salmonella enteritides 2.5 Y = – 0.063 ln X + 0.4273 0.3095 37 3.0 Y = 0.0369 ln X – 0.0014 0.2296 3.5 Y = – 0.099 ln X + 0.5175 0.6156 4.0 Y = – 0.136 ln X + 0.6351 0.7253 4.5 Y = – 0.164 ln X + 0.6957 0.7816 5.0 Y = – 0.224 ln X + 0.8705 0.8319 5.5 Y = – 0.243 ln X + 0.9836 0.9399 6.0 Y = – 0.213 ln X + 0.9241 0.8866 6.5 Y = – 0.253 ln X + 1.1261 0.9470 7.0 Y = – 0.223 ln X + 1.1013 0.9591 7.5 Y = – 0.217 ln X + 0.9850 0.9623 Staphylococcus aureus 2.5 Y = – 0.014 ln X + 0.1428 0.1089 3.0 Y = – 0.094 ln X + 0.4339 0.6699 3.5 Y = – 0.109 ln X + 0.4865 0.7822 4.0 Y = – 0.140 ln X + 0.5964 0.8711 4.5 Y = – 0.121 ln X + 0.5055 0.7285 5.0 Y = – 0.146 ln X + 0.5980 0.8722 5.5 Y = – 0.144 ln X + 0.6379 0.9417 6.0 Y = – 0.154 ln X + 0.7425 0.8401 6.5 Y = – 0.158 ln X + 0.7783 0.9051 7.0 Y = – 0.110 ln X + 0.6978 0.8046 7.5 Y = – 0.114 ln X + 0.5974 0.9420 Streptococcus agalactiae 2.5 Y = – 0.100 ln X + 0.5120 0.5393 3.0 Y = – 0.098 ln X + 0.4993 0.6694 3.5 Y = – 0.114 ln X + 0.5509 0.7903 4.0 Y = – 0.122 ln X + 0.5932 0.8116 4.5 Y = – 0.130 ln X + 0,5996 0.8130 5.0 Y = – 0.155 ln X + 0.7264 0.8039 5.5 Y = – 0.150 ln X + 0.7993 0.7223 6.0 Y = – 0.089 ln X + 0.7560 0.3874 6.5 Y = – 0,100 ln X + 0.7058 0.6428 7.0 Y = – 0.064 ln X + 0.7066 0.5442 7.5 Y = – 0,080 ln X + 0.6972 0.5923 Candida albicans 2.5 Y = – 0.014 ln X + 0.0513 0.2943 3.0 Y = – 0.066 ln X + 0.3515 0.5429 3.5 Y = – 0.084 ln X + 0.3891 0.7021 4.0 Y = – 0.056 ln X + 0.2616 0.2572 4.5 Y = – 0.106 ln X + 0.4449 0,5773 5.0 Y = – 0.142 ln X + 0.6274 0.7734 5.5 Y = – 0.149 ln X + 0.6668 0.7814 6.0 Y = – 0.083 ln X + 0.5174 0,3000 6.5 Y = – 0.123 ln X + 0.6511 0.5792 7.0 Y = – 0.146 ln X + 0.7763 0.7761 7.5 Y = – 0.158 ln X + 0.7951 0.7770 *Y = absorbance; X = WV concentration; R2 = coefficient of determination Regarding the models that were adjusted to predict the growth of S. enteritides 977 (Table 2) under the effect of variable concentrations of WV in different pH, for the values of 978 pH of 2.5 and 3.0, the coefficients of correlation were low, 0.3095 and 0.2296, respectively. 979 From pH 3.0 ahead, the values of R2 were higher reaching 0.9623 at pH 7.0. For S. 980 enteritides, as a general trend, the values of R2 from pH of 5.5 until7.5 were the highest 981 among the microorganisms assessed, which represents good power of predictability of growth 982 pattern by the logistic model. 983 38 For the growth of S. aureus, the value of R2 at the pH 2.5 was the lowest among all the 984 microorganisms that were assessed with a value of 0.1089 (Table 2). However, from this point 985 ahead, the values of the coefficient of correlation were higher than 0.700, except at the pH of 986 3.0 where the value was 0.6699. Once again, some variation in the growth of the 987 microorganism at these values of pH (and included in the error of the adjustment) resulted in 988 lower values of R2. As displayed in Table 2, the growth of S. agalactiae was best explained by 989 the logistic model in the pH range of 3.5 to 5.5, which is reflected by the higher values of the 990 coefficient of correlation in this range. Despite presenting good coefficients of correlation in 991 general, the logistic model was not so effective to explain the growth of the yeast C. albicans 992 at the pH values of 2.5, 4.0, and 6.0. At these points, the R2 had low values which shows a 993 variable response of the microorganism to the action of WV as pH was varying. 994 Reported in Table 3 are the results of the identity test of the regression models. As a 995 general trend, the identity tests demonstrated that as pH increased, the quality of the WV as an 996 antimicrobial changed, most likely due to the differential neutralization of its phenolic 997 components. This difference in the quality of WV in each pH was positively determined by 998 the statistical dissimilarity among the models compared through the identity test. 999 39 Table 3. Results of the identity test applied to the regression models adjusted for the absorbances of the microbial cultures after 24 hours of incubation (A): Pseudomonas aeruginosa, Salmonella enteritides, Staphylococcus aureus, and Streptococcus agalactiae; (B): Candida albicans A B Comparisons 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Comparisons 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 2.5 ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 2.5 ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 3.0 ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 3.0 ≠ = ≠ ≠ ≠ ≠ ≠ ≠ ≠ 3.5 ≠ ≠ ≠ ≠ ≠ ≠ ≠ ≠ 3.5 = ≠ ≠ ≠ ≠ ≠ ≠ ≠ 4.0 ≠ ≠ ≠ ≠ ≠ ≠ ≠ 4.0 ≠ ≠ ≠ ≠ ≠ ≠ ≠ 4.5 ≠ ≠ ≠ ≠ ≠ ≠ 4.5 ≠ ≠ ≠ ≠ ≠ ≠ 5.0 ≠ ≠ ≠ ≠ ≠ 5.0 ≠ ≠ ≠ ≠ ≠ 5.5 ≠ ≠ ≠ ≠ 5.5 ≠ ≠ ≠ ≠ 6.0 ≠ ≠ ≠ 6.0 ≠ ≠ ≠ 6.5 ≠ ≠ 6.5 ≠ ≠ 7.0 ≠ 7.0 ≠ Where: symbol for different (≠): the statistical modes differ statistically; equal symbol (=): the models do not differ statistically 40 DISCUSSION 1000 Antimicrobial activity: determination of MIC, MBC, and MFC 1001 The data displayed in Table 1 corroborate the results of the positive antimicrobial 1002 effects achieved by several researchers listed in the review published by Tiilikkala et al. 1003 (2010), and more recently by Souza et al. (2018). Other studies have demonstrated the 1004 antibacterial and antifungal properties of WV from varied lignocellulosic sources (Ibrahim et 1005 al. 2013; Araújo et al. 2013; Abas et al. 2018, Souza et al. 2018). The experimental results 1006 presented here corroborate the results reported by Velmurugan et al. (2009) and Suresh et al. 1007 (2019), who assessed the antimicrobial effect of different types of WV both in their original 1008 acid form and after neutralization. Both those studies described the antimicrobial effect of 1009 WV before and after neutralization and found a decrease in the activity but not the 1010 disappearance of the biological effect when pH became neutral. 1011 As can be observed in Table 1, the results demonstrated that as the neutralization 1012 increased and the pH approached 7.0, the concentration of WV required for microbial 1013 inhibition increased. Even at neutral pH, the WV still had antimicrobial activity, although 1014 needing higher concentrations for this purpose. For P. aeruginosa, the MIC of WV at pH 2.5 1015 was 3.12% and increased to 50% at neutral pH. When the pH reached 7.5, the MIC returned 1016 to the same value of 25% observed for pH 6.5. The same relationship between MIC and pH 1017 was determined for S. enteritides. For C. albicans, the MIC at pH 2.5 was 3.12% and 1018 increased to 25% at pH 5.5, after which it remained constant until the pH reached 7.5. The 1019 pattern of inhibition as a function of the concentration and pH of the WV is different for each 1020 microorganism. As commented by Suresh et al. (2019), the activity of neutralized WV 1021 indicates that the antibacterial property of the product is due to its complex chemical 1022 composition, and not the presence of acetic acid. Citing other authors, Suresh et al. (2019) 1023 highlighted that the inhibition of the WV against microorganisms, especially fungi, is caused 1024 by the antioxidative property of the phenolic compounds. In this respect, previous studies 1025 have reported that the inhibition of lipid oxidation caused by phenolics is enhanced at acidic 1026 pH. 1027 However, for S. aureus and S. agalactiae, a different pattern of inhibition was 1028 observed. For the first microorganism, when the pH was equal to 7.0 (neutral), no inhibition 1029 in the growth of the culture was observed. When the pH became slightly alkaline (7.5), the 1030 MIC was 50%, which is the same concentration required to inhibit completely the culture 1031 41 growth at pH 6.5. In the case of S. agalactiae, for both pH levels, 7.0 and 7.5, a WV 1032 concentration of 50% was not enough to inhibit the microbial growth. Is important to 1033 highlight that both microorganisms required higher WV concentration to inhibit growth 1034 starting with the original pH, which was 2.5. For the other three microorganisms, the initial 1035 MIC value was 3.12%. There are several compounds (phenolics and ketones) in WV’s 1036 chemical composition that have antimicrobial activity, so most likely they interact differently 1037 with one or another microorganism due to differences in cell wall structure and composition. 1038 These differences among microorganisms combined with the degree of response to the action 1039 of one or another compound in the chemical composition of WV probably explain why the 1040 product does not inhibit the microbial growth with the same inhibition results at the same 1041 concentration. In the present study, S. aureus and S. agalactiae were the most resistant species 1042 to the inhibitory effect of WV, while C. albicans was the most sensitive one (Table 1). 1043 The work from Suresh et al. (2019) reported a decrease in the effect of the product 1044 after neutralization but not complete disappearance, the same trend reported in the present 1045 work. Still, based on their experimental data, those authors stated categorically that the 1046 antimicrobial effect of the WV even after neutralization indicated that the antibacterial 1047 property of the product was due to its complex chemical composition rather than the large 1048 presence of acetic acid. In their experiments assessing the antimicrobial action on Escherichia 1049 coli, Enterobacter aerogenes, P. aeruginosa, Listeria monocytogenes, and Enterococcus 1050 faecalis, the authors found a loss of activity ranging from 10 to 24%, with the degree of loss 1051 varying according to the species. 1052 Antimicrobial activity: behavior of the absorbances 1053 The pattern of increasing values of absorbance in the graphs in Figure 1 reflects the 1054 intensity of the microbial growth, which means more cells could develop in the medium, 1055 making it more turbid and preventing light from passing through (Cunha and Vieira 2014). On 1056 the right side of the figures, the different pH levels are identified by colors that are the same 1057 as the plottedcurves. In Table 2, the regression models fitted to explain the effect of the pH of 1058 WV on each microorganism according to the concentration are displayed. The models can 1059 predict the behavior of the absorbance (Y) as a function of WV concentration (X). 1060 From the curves displayed in Figure 1, it is possible to verify that at lower pH levels, 1061 the concentrations of WV required to achieve the antimicrobial effect were lower, 1062 corroborating the experimental data on MIC described previously. As the pH of WV 1063 42 increased, the requirement for higher concentrations of the product to inhibit microbial growth 1064 also increased, reflected by higher absorbance values when WV low concentrations were not 1065 effective. Another trend that corroborates the behavior of the data displayed in Table 1 is that 1066 the absorbances at pH of 7.0 were always higher than those at pH 7.5. That fact indicates that 1067 the statement that the antimicrobial properties are not solely related to the effect of acetic acid 1068 is correct (Suresh et al. 2019). The acetic acid present in a given aqueous solution is 1069 completely converted to sodium acetate at pH 7.0 and remains that way at alkaline pH levels. 1070 Consequently, there is no possibility of its being responsible for the antimicrobial effect of 1071 WV found in this work, at both pHs of 7.0 and 7.5. The same pattern was found by other 1072 authors cited previously. 1073 Therefore, the pH of the WV undoubtedly influences its antimicrobial activity but does 1074 not cause it alone. The chemical composition of the WV reported in the literature shows a 1075 product composed of around 200 compounds (Schnitzer et al. 2015; Araújo et al. 2017; 1076 Pimenta et al. 2018). Among these components, alcohols, furans, ketones, organic acids, 1077 phenols, and pyrans are the most representative and abundant (Theapparat et al. 2018). The 1078 phenolic compounds are the main group with which antimicrobial properties are closely 1079 associated, a fact is long proven by scientific reports (Abas et al. 2018). Also, Suresh et al. 1080 (2019) highlighted that fact and also mentioned that each component has a different mode of 1081 action. Because of this, according to the authors, WV is even more interesting for use as an 1082 antimicrobial agent, since it is unlikely the microorganisms will develop any mechanism of 1083 resistance against all the components of the product at the same time. 1084 In the present work, what varies regarding a particular microorganism are the pH of 1085 the WV and the concentration of this product. Thus, for each microorganism, regression 1086 models were fitted, one model for each pH level, where the independent variable is the 1087 absorbance and the dependent one is the WV concentration. This way, for each 1088 microorganism subjected to the action of WV, the models fitted for each pH could be 1089 compared to detect differences in the antimicrobial action depending on pH. The importance 1090 of this comparison is not only to determine the effectiveness of the WV itself at each pH level 1091 but also to provide information about the interaction between the microorganism and the WV 1092 at a given pH when the concentration is varied. 1093 Then, as displayed in Table 3 (A), the quality of WV changed as pH increased, since 1094 the comparison among the models was different from one pH to another. In other words, for 1095 43 each microorganism, the variation of pH could result in a different effect of WV and 1096 concomitantly a specific type of interaction. Something in the WV was decreasing and 1097 making it weaker, so as the pH of the WV increased, higher concentrations of the product 1098 were required to continue inhibiting the growth of the five microorganisms in the culture 1099 medium. This pattern corroborates the results of Setiawati et al. (2019), cited previously, who 1100 observed that changes in the composition occur with different pH levels. A slightly different 1101 pattern was observed in Table 3 (B), where the identity test, when applied to the models fitted 1102 for C. albicans, determined that the effect of WV at pH of 3.0 and 3.5 was equal to that at pH 1103 4.0, probably meaning the presence of an interaction of the inhibitory product with this 1104 microorganism. Nevertheless, for all other pH levels, the regression models were different 1105 from each other. 1106 As commented by Pimenta et al. (2018), the partial loss of the antimicrobial activity 1107 can probably be attributed to the reaction of the sodium hydroxide with the phenolic 1108 compounds, turning them into salts, a type of chemical change that deactivates their hydroxyl 1109 groups, which are responsible for the antiseptic properties presented by most of them in the 1110 pristine form. Phenols are acids with pKa around 10.0, so they are weak acids. There are at 1111 least 20 types of phenols in WV’s chemical composition (Araújo et al. 2017; Pimenta et al., 1112 2018), and since each compound is different, as the pH increases, their hydroxyl groups are 1113 not equally neutralized because of the substituent groups that are present in the aromatic ring. 1114 This way as the pH increases, most likely different chemical species are generated in aqueous 1115 media, ones more available than others to exert an antimicrobial effect. 1116 The results of Setiawati et al. (2019) and the results of the present work corroborate 1117 the points raised in the previous paragraph. The cited authors, when evaluating neutralized 1118 WV, found some change in the percentage of phenolic compounds in the chemical 1119 composition of the product obtained from durian wood. According to them, in the acidic 1120 version, the main compound was guaiacol, while in the neutralized product, pyrocatechol was 1121 the prevailing substance. The explanation presented by the authors was that in the neutralized 1122 form, alkyl groups in the para position (carbon 4) of phenolics accept electrons and that 1123 behavior decreases the ionization of the compounds due to the addition of NaOH in WV. The 1124 changes in the proportion of phenolic compounds in the neutral version of WV explain why 1125 the product becomes less effective when compared to the acidic versions in terms of the 1126 power to inhibit the growth of microorganisms. These results were expected to a certain 1127 44 extent because according to Brown et al. (1997), acid and basic solutions can differ greatly 1128 from each other in their chemical properties so products obtained from the reaction after 1129 neutralization do not have the same characteristics as the original solution. However, since 1130 WV is a solution containing many kinds of compounds, even with its acid fraction completely 1131 neutralized, there are still other compounds preserving the bioactive characteristic of the 1132 product. 1133 Further research should be performed to understand the specific chemical species of 1134 WV that prevail as inhibitors at each pH level when increasing neutralization as carried out. 1135 This could enable predicting the behavior of the product when employed in varied 1136 applications as a natural antibiotic or parasiticide. For example, if the product is employed as 1137 an additive for animal feed, the WV after being swallowed will find strong acidic conditions 1138 in the digestive tract of poultry and swine. In this condition, the inhibitory power of WV on 1139 microorganisms is maximized. However, if the intention is to use the product to compose drug 1140 formulations for external uses such as ointments and creams, or to deter parasites like ticks, 1141 the importance of the pH in the final use may be important to maximize the action of the 1142 product. 1143 CONCLUSIONS 1144 1145 The eucalyptus WVmaintained its antimicrobial effect even at neutral and slightly 1146 alkaline pH, which runs counter to the claims in other studies that the inhibitory action of the 1147 product versus microorganisms is related just to the presence of acetic acid in its chemical 1148 composition. Our experimental data indicate the potential of the possible antibacterial and 1149 antifungal use of WV. However, it is important to highlight that all the experiments reported 1150 here were conducted in vitro so other research works should investigate the behavior of WV 1151 under in vivo conditions. Another important aspect is the degree of purification of the AP for 1152 such applications. The model identity test was a valuable tool to detect different responses of 1153 microorganisms at each pH level, validating the attribution of the bioactive action of WV to 1154 the set of components as a whole and not only to a single compound. 1155 ACKNOWLEDGEMENTS 1156 This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de 1157 Nível Superior – Brasil (CAPES) – Finance Code 001 and CNPq (National Research Council, 1158 Brazil). 1159 45 REFERENCES 1160 Abas FZ, Zakaria ZA, Ani FN. Antimicrobial properties of optimized microwave-assisted 1161 pyroligneous acid from oil palm fiber. Journal of Applied Pharmacology Sciences 2018; 1162 8(7):065-071. 1163 Araújo ES, Pimenta AS, Feijó FMC, Castro, RVO, Fasciotti M, Monteiro TVC, Lima KMG. 1164 Antibacterial and antifungal activities of pyroligneous acid from the wood of Eucalyptus 1165 urograndis and Mimosa tenuiflora. Journal of Applied Microbiology 2017; 124(1):85-96. 1166 Aubin H, Roy C. Study on the corrosiveness of wood pyrolysis oils. Fuel Science and 1167 Technology International 1990, 8(1):77-86. 1168 Brown TL, Lemay Jr HE, Bursten BE, Murphy C, Woodward P, Langford S, Sagatys D, 1169 George A. Chemistry: The Central Science, 3rd ed. 1997, Pearson, Australia. 1170 Campos AD. Técnicas para produção de extrato rodução pirolenhoso para uso agricola. 1171 Pelotas-RS, Brazil, EMBRAPA – Brazilian Agricultural Research Corporation 2007, 1172 Technical report. 1173 Carneiro ACO, Santos RC, Castro RVO, Castro AFNM, Pimenta AS, Pinto EM, Alves ICN. 1174 Estudo da decomposição térmica da madeira de oito espécies da região do Seridó, Rio Grande 1175 do Norte. Revista Árvore 2013; 37(6):1-12. 1176 Chen J, Wu JH, Si HP, Lin KY. Effects of adding wood vinegar to nutrient solution on the 1177 growth, photosynthesis, and absorption of mineral elements of hydroponic lettuce. Journal of 1178 Plant Nutrition 2015; 39(4):456-462. 1179 CLSI – Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial 1180 Susceptibility Testing. Twenty-Second Informational Supplement, 2012, ninth ed., NHI: 1181 Pennsylvania. 1182 Cunha AHN, Vieira JA. Detecção da bactéria Escherichia coli em águas residuárias 1183 empregando sistema em fluxo por turbidimetria. Revista Mirante 2014, 7(2). 1184 Dias Jr AF, Andrade CR, Protásio TP, Melo ICNA, Brito JO, Trugilho PF. Pyrolysis and wood 1185 by-products of species from the Brazilian semi-arid region. Scientia Forestalis 2018; 1186 46(117):65-75. 1187 46 Doran WL. Acetic acid and pyroligneous acid in comparison with formaldehyde as soil 1188 disinfectants. Journal of Agricultural Research 1932, 44(7):71-578. 1189 Gujarati DN, Porter DC. Basic Econometrics, 50nd ed., Editora McGraw-Hill 2009; Boston, 1190 MA, USA. 1191 Ibrahim D, Kassim J, Sheh-Hong L, Rusli W. Efficacy of pyroligneous acid from Rhizophora 1192 apiculata on pathogenic Candida albicans. Journal of Applied Pharmacology Science 2013; 1193 3(7)007-013. 1194 Kurlansky M. Salt: a world history. 6th ed., Ed Pinguin Books 2014; Los Angeles, CA, USA. 1195 Lebois M, Connil N, Onno B, Prévost H, Dousset X. (2004) Effects of divercin V41 1196 combined to NaCl content, phenol (liquid smoke) concentration and pH on Listeria 1197 monocytogenes ScottA growth in BHI broth by an experimental design approach. Journal of 1198 Applied Microbiology 2004; 96(5)931-937. 1199 Li R, Narita R, Nishimura H, Marumoto S, Yamamoto SP, Ouda R, Yatagai M, Fujita T, 1200 Watanabe T. Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, 1201 softwood, and bamboo. Sustainable Chemical Engineering 2017; 6(1):119-126. 1202 Maliang H, Tang L, Lin H, Chen A, Ma J. Influence of high-dose continuous applications of 1203 pyroligneous acids on soil health assessed based on pH, moisture content, and three 1204 hydrolases. Environmental Science and Pollution Research 2020; 27(20):15426-15439. 1205 Medeiros LCD, Pimenta AS, Braga RM, Carnaval TKA, Medeiros Neto PN, Melo DMA. 1206 Effect of pyrolysis heating rate on the chemical composition of wood vinegar from 1207 Eucalyptus urograndis and Mimosa tenuiflora. Revista Árvore 2020, 43(4):e430408. Doi: 1208 http://dx.doi.org/10.1590/1806-90882019000400008 1209 Pimenta AS, Fasciotti M, Monteiro TVC, Lima KMG. Chemical composition of pyroligneous 1210 acid obtained from eucalyptus GG100 clone. Molecules 2018; 23(2):426. 1211 Rahmat B, Pangesti D, Natawijaya D, Sufyadi D. Generation of wood-waste vinegar and its 1212 effectiveness as a plant growth regulator and pest insect repellent. Bioresources 2014, 1213 9(4):6350-6360. 1214 Regazzi AJ. Test to verify the identity of regression models and equality of some parameters 1215 in an orthogonal polynomial model. Revista Ceres 1993; 40:176-195 1216 47 Regazzi AJ. Test to verify identity of regression models. Pesquisa Agropecuária Brasileira 1217 1996; 31:1-17. 1218 Regazzi AJ. Test to verify the identity of regression models and the equality of parameters in 1219 the case of experimental designs. Revista Ceres 1999; 46:383-409. 1220 Schnitzer JA, Su MJ, Ventura MU, Faria RT. Doses de extrato pirolenhoso no cultivo de 1221 orquídea. Revista Ceres 2015; 62(1):101-106. 1222 Sena MFM, Andrade AM, Thode Filho S, Santos FR, Pereira LF. Potencialidades do extrato 1223 pirolenhoso: práticas de caracterização. Revista Eletrônica em Gestão, Educação e Tecnologia 1224 Ambiental 2014, 18(14):41-44. 1225 Setiawati E, Annisia W, Soedarmanto H, Iskandar T. Characterization of neutralized wood 1226 vinegar derived from durian wood (Durio zibethinus) and its prospect as pesticide in acidic 1227 soil. International Seminar and Congress of Indonesian Soil Science Society 2019; IOP 1228 Conference Series: Earth and Environmental Science, Bogor, Java Occidental, Indonesia. 1229 Sipilä K, Kuoppala E, Fagernaés L, Oasmaa A. Characterization of biomass-based flash 1230 pyrolysis oils. Biomass and Bioenergy 1998; 14(2):103-113. 1231 Soares WNC, Lira GPO, Santos CS, Dias GN, Pimenta AS, Pereira AF, Benício LDM, 1232 Rodrigues GSO, Amora SSA, Alves ND, Feijó FMC. Pyroligneous acid from Mimosa 1233 tenuiflora and Eucalyptus urograndis as an antimicrobial in dairy goats. Journal of Applied 1234 Microbiology 2020; 131(2):604-614. 1235 Souza JLS, Guimarães VBS, Campos AD, Lund RG. Antimicrobial potential of pyroligneous 1236 extracts – a systematic review and technological prospecting. Brazilian Journal of 1237 Microbiology 2018; 49(1):128-139. 1238 Suresh G, Pakdel H, Roussi T, Brar SK, Fliss I, Roy C. In vitro evaluation of antimicrobial 1239 efficacy of pyroligneous acid from softwood mixture. Biotechnology Research and Innovation 1240 2019; 3(1):47-53. 1241 Suresh G, Pakdel H, Roussi T, Brar SK, Diarra M, Roy C. Evaluation of pyroligneous acid as 1242 a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. 1243 Brazilian Journal of Microbiology 2020; 51:1309-1316. 1244 48 Theapparat Y, Chandumpai A, Leelasuphakul W, Faroongsarng D. Physicochemistry and 1245 utilization of wood vinegar from carbonization of tropical biomass waste. IntechOpen2018; 1246 Open Access Books (Chapter 8). 1247 Thurette J, Membre JM, Ching LH, Tailiez R, Catteau M. Behavior of Listeria spp. in smoked 1248 fish products affected by liquid smoke, NaCl concentration, and temperature. Journal of. Food 1249 Protection 1998; 61(11):1475–1479. 1250 Tiilikkala K, Fagernas L, Tiilikkala J. History and use of wood pyrolysis liquids as biocide 1251 and plant protection product. Open Agriculture Journal 2020; 4, 111-118. 1252 Velmurugan N, Han SS, Lee YS. Antifungal activity of neutralized wood vinegar with water 1253 extracts of Pinus densiflora and Quercus serrata sawdust. International Journal of 1254 Environmental Research 2009; 3(2):1735-6835. 1255 49 Capítulo 2 _____________________________ 50 5. CAPÍTULO 2 __________________________________________________________________________ ATIVIDADE ANTIMICROBIANA E PERFIL QUÍMICO DE ÁCIDOS PIROLENHOSOS DE BAMBU E EUCALIPTO 51 ATIVIDADE ANTIMICROBIANA E PERFIL QUÍMICO DE ÁCIDOS PIROLENHOSOS DE BAMBU E EUCALIPTO Gil Sander Próspero Gama1, Alexandre Santos Pimenta1, Francisco Marlon Carneiro Feijó2, Caio Sérgio dos Santos2, Bruno Caio Chaves Fernandes3, Moacir Franco de Oliveira2, Elias Costa de Souza4, Thays V. C. Monteiro5, Maíra Fasciotti5, Tatiane Kelly Barbosa de Azevedo1, Rafael Rodolfo de Melo2, Ananias Francisco Dias Júnior6 *Artigo submetido para publicação. Link para as normas da revista no anexo I RESUMO 1256 1257 A resistência microbiana a drogas é um problema de saúde pública; portanto, há uma busca por alternativas para 1258 substituir produtos convencionais com agentes naturais. Um dos potenciais agentes antimicrobianos é o vinagre 1259 (ácido pirolenhoso) derivado da carbonização de matérias-primas lignocelulósicas. Os objetivos do presente 1260 trabalho foram avaliar a ação antibacteriana e antifúngica de dois tipos de vinagre de carbonização, um de 1261 madeira de Eucalyptus urograndis e outra da biomassa de Bambusa vulgaris, e determinar seu perfil químico. O 1262 efeito antimicrobiano foi avaliado contra Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella 1263 enteritidis, Escherichia coli, Streptococcus agalactiae e Candida albicans. A concentração inibitória mínima e o 1264 poder bactericida e fungicida mínimo concentrações foram determinados. Micrografias dos microorganismos 1265 antes e depois da exposição a ambos os tipos de vinagre foram obtidos por microscopia eletrônica de varredura. 1266 O perfil químico do vinagre de eucalipto e bambu foi realizado por cromatografia gasosa e espectrometria de 1267 massa (GC/MS). Ambos os tipos de vinagre apresentaram significativa atividade antimicrobiana, tendo o vinagre 1268 de bambu uma maior eficiência. Ambos os extratos pirolenhosos estudados parecem promissores para o 1269 desenvolvimento de antimicrobianos naturais, devido à sua eficiência contra patógenos. Análises GC/MS 1270 demonstraram que os perfis químicos de ambos os tipos de vinagre eram semelhantes, mas com algumas 1271 diferenças significativas. O componente majoritário do vinagre de eucalipto foi o furfural (17,2%), enquanto o 1272 do vinagre de bambu foi o fenol (15,3%). O vinagre de bambu apresentou teor mais expressivo de ácidos 1273 orgânicos. Micrografias de microorganismos tiradas após a exposição aos dois tipos de vinagre apresentaram 1274 diversas modificações nas células. 1275 1276 Palavras-chave: madeira de eucalipto; biomassa de bambu; vinagre de carbonização; ácido pirolenhoso; 1277 processo de carbonização 1278 Pontos chave: 1279 1. Ácidos pirolenhosos (PA) de eucalipto e bambu possuem atividade antimicrobiana 1280 2. O PA de bambu tem um efeito antimicrobiano mais forte do que o de eucalipto 1281 3. O furfural é o principal componente do PA do eucalipto, e o fenol do bambu 1282 4. PA de bambu e eucalipto promoveram alterações nas células dos microrganismos 1283 52 ANTIMICROBIAL ACTIVITY AND CHEMICAL PROFILE OF PYROLIGNEOUS ACIDS FROM BAMBOO AND EUCALYPTUS Gil Sander Próspero Gama1, Alexandre Santos Pimenta1, Francisco Marlon Carneiro Feijó2, Caio Sérgio dos Santos2, Bruno Caio Chaves Fernandes3, Moacir Franco de Oliveira2, Elias Costa de Souza4, Thays V. C. Monteiro5, Maíra Fasciotti5, Tatiane Kelly Barbosa de Azevedo1, Rafael Rodolfo de Melo2, Ananias Francisco Dias Júnior6 ABSTRACT 1284 Microbial resistance to drugs is a public health problem; therefore, there is a search for alternatives to replace 1285 conventional products with natural agents. One of the potential antimicrobial agents is vinegar (pyroligneous 1286 acid) derived from the carbonization of lignocellulosic raw materials. The objectives of the present work were to 1287 evaluate the antibacterial and antifungal action of two kinds of vinegar from carbonization, one of Eucalyptus 1288 urograndis wood and another of Bambusa vulgaris biomass, and determine their chemical profile. The 1289 antimicrobial effect was assessed against Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella 1290 enteritidis, Escherichia coli, Streptococcus agalactiae, and Candida albicans. The minimum inhibitory 1291 concentration and the minimum bactericidal and fungicidal concentrations were determined. Micrographs of the 1292 microorganisms before and after exposure to both kinds of vinegar were obtained by scanning electron 1293 microscopy. The chemical profile of the eucalyptus and bamboo vinegar was carried out by gas chromatography 1294 and mass spectrometry (GC/MS). Both types of vinegar presented significant antimicrobial activity, with 1295 bamboo vinegar having a higher efficiency. Both studied pyroligneous extracts seem promising for developing 1296 natural antimicrobials due to their efficiency against pathogens. GC/MS analyses demonstrated that the chemical 1297 profiles of both kinds of vinegar were similar but with some significant differences. The major component of the 1298 eucalyptus vinegar was furfural (17.2%), while the one of bamboo vinegar was phenol (15.3%). Bamboo vinegar 1299 had a more expressive content of organic acids. Micrographs of microorganisms taken after exposure to both 1300 kinds of vinegar displayed several modifications in the cells. 1301 Key-words: eucalyptus wood; bamboo biomass; carbonization vinegar; pyroligneous acid; carbonization 1302 process 1303 Key points: 1304 1. Pyroligneous acids (PA) from eucalyptus and bamboo have antimicrobial activity 1305 2. Bamboo PA has a stronger antimicrobial effect than eucalyptus one 1306 3. Furfural is the main component of eucalyptus PA, and phenol of the bamboo one 1307 4. Bambo and eucalyptus PA promoted alterations in the microorganisms’ cells 1308 53 INTRODUCTION 1309 In Brazil, eucalyptus species and clones are the prevalent material that constitutes the basis of the planted forests 1310 for charcoal-making, mainly due to their fast growth, genetic plasticity, and high volumetric productivity (Silva 1311 and Ataíde 2019). There are, in the country, 9.55 million hectares of planted forests, 78% of which are 1312 represented by plants of the genus Eucalyptus and its clones (7.47 million hectares), intended for the productive 1313 sector in general (Ibá 2021). Clones from the hybrid Eucalyptus urophylla x Eucalyptus grandis (commonly so-1314 called Eucalyptus urograndis in Brazil) are some of the most used plant materials for charcoal production 1315 (Marchesan et al. 2019; Meira et al. 2021). These materials have favorable characteristics for this use, such as a 1316 considerable content of lignin (31.08%) (Silva and Ataíde 2019).In addition to the features of wood, charcoal 1317 made from this material has good quality, a satisfactory yield, low ash content, high calorific value, and good 1318 mechanical strength (Marchesan et al. 2019). Silva et al. (2018) mention in their review that among the 1319 Eucalyptus urograndis clones for charcoal-making, clones I144 and GG100 stand out due to their good-quality 1320 wood characteristics and high productivity. 1321 Bamboo is a term employed to define a group of woody grasses initially distributed in the tropics in hot and 1322 humid regions (Truong and Le 2014). Brazil has the most remarkable diversity of bamboo species in Latin 1323 America, with species that can reach up to 40 m in height, a diameter of 30 cm, and productivities from 25 to 30 1324 t ha-1 year-1 (Hernandez-Mena et al. 2014). Bamboo species are versatile, used in varied applications, and, in 1325 some countries, qualified as high-value species, contributing positively to the local economy as an income source 1326 for the populations (Lin et al. 2019). Among these applications, its use as an alternative source of biomass for 1327 charcoal production stands out, being widely studied for this purpose (Asada et al. 2002; Truong and Le 2014; 1328 Partey et al. 2017). This happens because bamboo biomass has properties similar to those of wood used in 1329 charcoal production, consisting mainly of cellulose, hemicellulose, and lignin (Hernandez-Mena et al. 2014), 1330 generating charcoal with fixed carbon between 55 and 59%, with a calorific value around 23.1 MJ kg-1 and 1331 gravimetric yields from 32 to 34%, depending on the carbonization system used (Tippayawong et al. 2010). 1332 Brazil is the largest producer of charcoal in the world, representing 12% of world production (IBÁ 2021). 1333 Carbonization is described as a process of chemical decomposition, by heat, of the molecules of the 1334 lignocellulosic raw material in an atmosphere with a controlled presence of oxygen or in the absence of it (Silva 1335 and Ataíde 2019). However, approximately 70% of the wood destined for charcoal production turns into vapors 1336 (smoke) during the carbonization process (Dias Jr. et al. 2018). It results in significant energy and economic loss 1337 since most of the money invested in the raw material goes away as smoke to the surrounding ambient, generating 1338 air pollution. Searching for solutions that benefit both the productive sector and the environment becomes very 1339 important. Finding ways to take advantage of the released smoke is a way to reverse this scenario and, at the 1340 same time, mitigate air pollution from the carbonization process. The recovery of raw pyrolysis liquids followed 1341 by a proper destination for them is an option to accomplish such a destination that can decrease roughly 40% of 1342 greenhouse gas emissions and generates a good product for several applications (Silva and Ataíde 2019). 1343 Wood vinegar, pyroligneous acid, also known as water-soluble liquid smoke, is an aqueous product that comes 1344 from the recovery of the liquefaction of part of the carbonization smoke after passing through adequate devices 1345 (Araújo et al. 2017; Soares et al. 2020). This aqueous fraction has an acidic character and results mainly from the 1346 cleavage of the chemical bonds of cellulose, hemicelluloses, and lignin (Li et al. 2017; Pimenta et al. 2018). 1347 Since pyroligneous acid can be converted into a product with several end-uses, its recovery and employment are 1348 essential to decrease air pollution and add value to the carbonization process by increasing the economic return 1349 of the charcoal production chain. The primary use of carbonization vinegar is the addition to foods of several 1350 types to give them the smoked flavor (Burdock 2010, Montazeri et al. 2013). Carbonization vinegar from 1351 different sources has been attracting the attention of researchers worldwide due to the biological effects and 1352 varied chemical composition, which results in a product that can be addressed to several end-uses (Tiilikkala et 1353 al. 2010; Araújo et al. 2017; Pimenta et al., 2018). On the chemical composition of carbonization vinegar, over 1354 200 chemical compounds could be identified (Schnitzer et al. 2015; Araújo et al. 2017), with the product being 1355 increasingly employed in agriculture applications such as an herbicide, seeds protector, and growth promoter for 1356 54 plants and animals (Chalermsan and Peerapan 2009; Tiilikkala et al. 2010; Mahmud et al. 2016); as nematicide 1357 (Charehgani 2020); and still acting as an insecticide, antioxidant, antiviral, anti-inflammatory, antibacterial, and 1358 antifungal agent (Harada t al. 2013; Li et al. 2017; Souza et al. 2018; Suresh et al. 2019) among several others 1359 uses. Also, a distilled-type bamboo vinegar has been patented as an anti-allergy valuable agent for inhibiting 1360 Type I allergies such as allergic rhinitis, hay fever, allergic conjunctivitis, atopic dermatitis, allergic asthma, 1361 urticaria, food allergy, and anaphylaxis (Imamura and Watanabe 2007). 1362 Microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, and Staphylococcus 1363 aureusare part of those that have developed resistance mechanisms to conventional drugs over time. They are 1364 the major causes of diseases in humans and animals (Kaper et al. 2004; Cabassi et al. 2017; Quan et al. 2019). 1365 For instance, illnesses caused by strains of E. coli include infections of the intestinal and urinary tracts, 1366 hemorrhagic colitis, hemolytic uremic syndrome, diarrhea, and meningitis (Kaper et al. 2004; Fairbrother and 1367 Nadeau 2006). Cattle and other ruminants are one of the most significant sources of these pathogens transmitted 1368 to humans through the consumption of water contaminated by the feces of these animals or through direct 1369 contact with them. (Fairbrother and Nadeau 2006; Meng et al. 2012). In its turn, some diseases caused by P. 1370 aeruginosa are otitis in cattle, mastitis in dairy herds, and endometritis in horses, as well as infections in 1371 domestic animals, such as those that occur in the urinary tract of dogs (Salomonsen et al. 2013; Haenni et al. 1372 2015). In humans, the most severe infections include meningitis, pneumonia, malignant otitis, and 1373 endophthalmitis, among others (Bodey et al. 1983; Klockgether et al. 2017); Contagion by S. enteritidis happens 1374 through the consumption of contaminated food, mainly eggs, and causes infections such as gastroenteritis 1375 (Gantois et al. 2009; Quan et al. 2019). As for infections with S. aureus, according to Tong et al. (2015), they 1376 can range from mild to severe infections, of which endocarditis and osteoarticular infections, in addition to skin 1377 and lung infections, can be mentioned. One of the biggest problems this species can generate in farm animals is 1378 the high economic loss caused by mammary mastitis affecting dairy cows (Saeed et al. 2022). As noted, also 1379 mastitis can be caused by more than one microorganism (and it is not limited to those mentioned here). This 1380 disease has resulted in significant economic losses in infected producing sites (Guimarães et al. 2017; Romero et 1381 al. 2018; Azooz et al. 2020). Still, results attained by Feijó et al. (2022) reported the successful employment of 1382 wood vinegar from Mimosa tenuiflora as a post-surgical antiseptic in cats subjected to 1383 ovariosalpingohysterectomy. The authors observed a significant improvement in the animals’ healing compared 1384 to those from the control group treated with chlorhexidine. An antiseptic that effectively prevents mastitis in 1385 dairy animals could be developed by having eucalyptus wood vinegar based on the results reported by Soares et 1386 al. 2020. The new product was recentlypatented (Pimenta et al. 2022). 1387 Nowadays, there is a seek for therapeutic alternatives against microorganisms that developed resistance to 1388 conventional drugs. Such resistance is a severe public health issue, as commented by Laxminarayan et al. (2013), 1389 and it has resulted mainly due to the indiscriminate use of conventional products, which accelerated the 1390 resistance process (Costa and Silva Jr. 2017, Palma et al. 2020). Antimicrobial drugs were discovered about 100 1391 years ago, and since then, they have been widely used in several areas, such as human medicine, veterinary 1392 medicine, and animal production (Kovanda et al. 2019). Then, the efforts to discover new antimicrobial products 1393 are intended to come from natural and environmentally appropriate sources. This direction is a function of the 1394 problem of microbial resistance and also the fact that the use of antimicrobials is essential for humanity. 1395 Therefore, several studies have evaluated carbonization kinds of vinegar as promising for developing a natural 1396 antimicrobial alternative (Tiilikkala et al. 2010; Araújo et al. 2017; Souza et al. 2018; Chukeatirote and Jenjai 1397 2018; Suresh et al. 2019; Desvita et al. 2022). With this, it is justified to evaluate the antibacterial and antifungal 1398 potential of species frequently used in charcoal production, aiming to combine the productivity of charcoal with 1399 a possible solution to the issue of microbial resistance and the reduction of greenhouse gas emissions. 1400 In the context discussed above, the present work aims: 1401 - To determine the antimicrobial activity of two kinds of vinegar from the carbonization of Eucalyptus 1402 urograndis wood and Bambusa vulgaris grown in Northeastern Brazil; 1403 - To attain the chemical profile of both types of vinegar and establish a comparison between their 1404 composition; 1405 55 - By using scanning electron microscopy to observe what modifications brought about the action of 1406 bamboo and eucalyptus vinegar on the microorganisms’ cells that inhibited their growth; and 1407 - Through a brief literature review, compare the results of antimicrobial activity and chemical profiling 1408 with published data and highlight similarities and differences between the assessed types of vinegar with those 1409 whose properties and chemical composition have been described in previous research works. 1410 1411 MATERIAL AND METHODS 1412 1413 Collection of samples of woody material 1414 Wood samples from Eucalyptus urophylla x Eucalyptus grandis hybrid (clone I144) were collected from 8-year-1415 old plantations in the experimental area of the Agricultural Sciences Unit, Universidade Federal do Rio Grande 1416 do Norte (05° 51' 30” S and 35° 21' 14” W), municipality of Macaíba, Rio Grande do Norte State, Brazil. 1417 Samples of bamboo (Bambusa vulgaris) were acquired from 3-year-old commercial plantations in Timon, 1418 Maranhão state, Brazil (05° 5' 42'' S and 42° 50' 13'' W). One hundred 3.0-cm wood disks were collected 1419 following the procedures established by Carneiro et al. (2013) and divided into four wedges each. The bamboo 1420 samples consisted of 100 sections from the stems measuring 10 cm long. The bamboo samples were collected at 1421 0, 25, 50, 75, and 100% of the stems’ commercial height. Both samples were oven-dried (Sterilifer, model SX 1422 cr/80, São Paulo, Brazil).at 103 + 2 °C for 48 hours until absolute dryness. 1423 Carbonization process, production, and refining of eucalyptus and bamboo vinegar 1424 For the carbonization runs, the dry samples of each material were placed separately in a steel container inside a 1425 laboratory muffle equipped with a condensation apparatus to collect the total pyrolysis liquids. The condensation 1426 device was water-cooled to maintain its temperature around 25 – 30 °C, providing conditions for the 1427 condensation of vapors from the carbonization bed. For each type of woody material, 15 carbonization runs were 1428 carried out with about 500 g of plant material each. After each was concluded, the liquid products were mixed to 1429 make one composite sample of vinegar from each woody material at the end of the experiment. The 1430 carbonization process was carried out from the ambient temperature until reaching 450 °C, with a heating rate of 1431 0.7 °C min-1 , totalizing 8 hours. Composite samples of eucalyptus and bamboo vinegar were distilled under a 1432 20 mmHg vacuum until 100 – 103 °C to remove tar and heavy oils. After the distillation, the products were 1433 stored in amber bottles, previously sanitized with boiling water, and refrigerated at 6 °C for further procedures. 1434 Gas chromatography/mass spectrometry (GC/MS) analyses 1435 For the GC/MS analyses, the protocols reported by Pimenta et al. (2018) were employed. For both types of WV 1436 samples, 5 mL aliquots were taken, and 1.5 mL of ammonium hydroxide (Caledon, Ammonia Solution UN 1437 2672, Canada) was added to each one. After this addition, the organic fraction of each sample was subjected to 1438 liquid-liquid extraction with 1 mL of ethyl acetate (HPLC grade, Merck, São Paulo, SP, Brazil). After this step, 1439 the samples were promptly analyzed. The GC/MS analyses were carried out in a SHIMADZY QP 2010 gas 1440 chromatography/mass spectrometer equipped with a DB-Wax 52 CB (Agilent, 30 m length, 0.25 mm diameter, 1441 0.25 μm film thickness). The injector was kept at 250 °C, and 1 µL of each sample was injected with a 1:10 split 1442 ratio. The oven was programmed with an initial temperature of 50 °C for 2 min, and after this, a heating rate of 2 1443 °C min-1 was applied until reaching 240 °C, keeping the final temperature for 2 min. Helium was used as carrier 1444 gas with a flow rate of 3 mL min-1 . The total time for each chromatography run was 99 min. The acquisition of 1445 the mass spectra was carried out from m/z 50 to 650 Da. The electronic ion Source (EI) and the MS interface 1446 were maintained at 250 °C. The solvent cut-off time was 3 min. Major (>1.5% area, in bold in Table 3) and 1447 minor (~0.2%) compounds were detected and identified based on their characteristic electron ionization mass 1448 56 spectra (EI, 70 eV) compared to those from the NIST library. All reported chemical compounds had a mass 1449 spectral similarity of at least 85%. The acetic acid content was determined quantitatively by GC/MS according to 1450 the procedure IPT number 4596, revision 13 (Instituto de Pesquisas Tecnológicas – São Paulo, SP, Brazil) using 1451 acetic acid (Sigma-Aldrich, São Paulo, SP, Brazil) as external standard. The samples’ water contents were 1452 determined using a Karl-Fischer compact titrator V10S (Mettler-Toledo, São Paulo, SP, Brazil). The organic 1453 fraction was obtained by subtracting the water content plus the acetic acid content from the total weight of the 1454 samples. 1455 Determination of the minimum inhibitory concentration (MIC) 1456 For the microbiological assays, bacterial strains of Staphylococcus aureus (ATCC 25923), Pseudomonas 1457 aeruginosa (ATCC 27853), and Salmonella enteritidis (ATCC 13076) were used. Two clinical strains of 1458 Escherichia coli, one previously isolated from an emu, were employed in the assays with a strain of 1459 Streptococcus agalactiae isolated from cows with diagnosed subclinical bovine mastitis. Still, a standard fungal 1460 strain of Candida albicans (ATCC 10231) was used. The microorganisms were maintained in BHI broth (Brain 1461 Heart Infusion – Kasvi) under refrigeration. The sensitivity of the microorganisms was evaluated in vitro to 1462 determine the MIC. The assays were performed by the broth microdilution method using 96-well microplates 1463 following the M07-A9 Methodology for Sensitivity Testing to Antimicrobial Agents by Dilutionfor Bacteria for 1464 Aerobic Growth from the Clinical and Laboratory Standards Institute (CLSI, 2012). All assays had chlorhexidine 1465 0.2% (Vic Pharma by Schülke, Taquaritinga, SP, Brazil) as the conventional reference product. Before each 1466 assay, the strains were cultivated in BHI broth in a bacteriological oven (Fanem, São Paulo, SP, Brazil) at 37 ± 1 1467 °C for 24 hours for bacterial strains and 48 hours for fungal strains. Subsequently, the process of preparing the 1468 microbial inocula was carried out. For this, aliquots of the culture from the last 24 and 48 hours were removed 1469 and transferred to new test tubes containing the same sterile culture medium. The adequacy of the concentration 1470 of microbial cells in the inoculum was carried out with the aid of a spectrophotometer (Biospectro, model SP-22, 1471 São Paulo, SP, Brazil) at a wavelength of 530 nm, where the reference value for absorbance reading was 1472 between 0.08 and 0.1, corresponding to the scale MacFarland number 0.5 (density 1.5 x 108 cells per mL). 1473 Then, 100 µL of sterile BHI culture medium was added to each well of the microplates. Subsequently, serial 1474 dilutions of each EP were performed, adding 100 µL of EP to the first microwell of each triplicate row, resulting 1475 in the first dilution. Thus, the first microwell now contained 200 µL. Subsequently, a 100 µL was removed from 1476 the first well and added to the second, and so on, constantly dropping the eucalyptus or bamboo vinegar in a 1477 concentration by half in each dilution. The assessed concentrations of the vinegar started from 50% until 1478 0.78125%, encompassing 50, 25, 12.5, 6.25, 3.125, 1.5625, and 0.78123% of each one. After the dilutions, a 1479 volume of 0.5 µL of the corresponding microbial inoculum was added to each microwell. Immediately after the 1480 inoculations, the microplates were read in an Elisa plate reader spectrophotometer (URIT Medical Electronic) at 1481 630 nm to base record the absorbance data (optical density) at the time of inoculation (0h). Then, the microplates 1482 were incubated in a bacteriological oven at 37 ± 1 °C for 24 hours for bacterial strains and 48 hours for fungal 1483 strains. After this time, a visual reading was performed to determine the minimum inhibitory concentration 1484 (MIC), considering the triple microwells completely translucent as the decisionmaking criterion to establish this 1485 parameter. After this first visual reading, the plates were read in a spectrophotometer to acquire the absorbances 1486 57 after the incubation period (24 and 48 hours), providing quantitative data on the microbial behavior under the 1487 effect of the type of vinegar and at the different concentrations of each one. 1488 Determination of the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) 1489 for bacterial and fungal strains, respectively, was carried out from microwells where there was no visible 1490 microbial growth (MIC and higher concentrations). Thus, an aliquot of 50 μL was removed from each well and 1491 seeded in a Petri dish containing a BHI culture medium. For all microorganisms, the Petri dishes were incubated 1492 at 37 ± 1 °C for 24 h, except those with the Candida albicans culture, which were incubated for 48 h. After this, 1493 the absence or presence of colonies growth was observed to define the minimum bactericidal and fungicidal 1494 concentrations. All tests to determine MIC, MBC, and MFC were performed in triplicate, each with three 1495 replicates. 1496 Analysis by scanning electron microscopy (SEM) 1497 The previously adjusted and incubated inoculums were used in this step. 1 mL of each of these inoculums was 1498 added to 1 mL of vinegar aqueous solution in the amount of twice the MIC corresponding to each 1499 microorganism. In addition, another 1 mL of inocula was added to the same culture medium without the vinegar 1500 to obtain healthy microorganisms’ cells for comparison purposes. Then, both were incubated in a bacteriological 1501 oven at 37 °C for 24 hours (C. albicans for 48 h). 1502 After incubation, the culture media were taken to the Laborline centrifuge (Omega P.I.C. Microprocess system) 1503 at 3000 rpm for 10 minutes to form the processing pellets. Then, the sample preparation steps were followed, 1504 according to the procedures reported by Mares (1989) and Ibrahim et al. (2013), with some modifications 1505 explained hereafter. For fixation, a fixative solution containing 25% glutaraldehyde, 0.2 M sodium phosphate 1506 buffer solution (PBS), and water (1.2, 5.0, and 3.8 mL, respectively) was used. The pelletized material was 1507 exposed to the fixative for 12 hours. After this time, each pellet was washed three times in PBS solution (0.1 M) 1508 for 30 min. 1509 Post-fixation was performed using osmium solution (1.0 g diluted in 100 mL of PBS) for 30 minutes. 1510 Subsequently, the material was washed with PBS thrice for 5 minutes. The dehydration step was performed with 1511 ethyl alcohol solution in different percentages ranging from 15 to 100% (15, 25, 30, 50, 70, and 100%). In 1512 percentages from 15 to 70%, the pelleted cells were exposed for 10 minutes. With pure alcohol (100%), the 1513 exposure time was only 5 minutes. The physical method, air drying carried out drying; that is, the microbial cells 1514 were exposed to air at room temperature until the material was dehydrated. Then, after all these steps, the 1515 samples were glued onto carbon tapes fixed on stubs and, subsequently, metalized by being exposed to a layer of 1516 9 nm gold (Quorum Technologies – Q150R) and later taken for observations. in a scanning electron microscope 1517 (Pfeiffer Vacuum – D-35614 Assiar) at an accelerated voltage rate of 30 KV to produce images saved in TIFF 1518 format. 1519 Statistical analyses 1520 Experimental data of absorbances versus concentrations of both types of vinegar were subjected to regression 1521 analyses using the R software, and statistical models were fitted for each microorganism. The best statistical 1522 58 prediction models were selected based on the following decision criteria: high correlation coefficient (R) 1523 between experimental and estimated values, the significance of the model parameter, biological realism of the 1524 model, and root-mean-square deviation (RMSE) as recommended by Gujarati and Porter (2009). A correlation 1525 coefficient closer to 1 and a lower RMSE indicate the best model estimation power. 1526 RESULTS 1527 Determination of the minimum inhibitory concentrations (MIC, MBC, and MFC) 1528 In Table 4, the values for minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), 1529 and minimum fungicidal concentration (MFC) determined for each microorganism are displayed. These values 1530 referring to the positive control (made with chlorhexidine) were constant, being 0.039%. Both types of vinegar 1531 from eucalyptus and bamboo were efficient as antimicrobial agents, inhibiting the growth of all tested strains (E. 1532 coli, P. aeruginosa, S. enteritidis, S. aureus, S. agalactiae, and C. albicans). Compared with the other 1533 microorganisms, C. albicans was more resistant to both products, with MIC values of 12.5 and 6.25%, for 1534 eucalyptus and bamboo vinegar, respectively. 1535 Table 4. Values of MIC, MBC, and MFC (%) for the microorganisms subjected to the action of Eucalyptus urograndis and Bambusa vulgaris vinegar Microorganisms Type of vinegar Eucalyptus urograndis Bambusa vulgaris MIC MBC MIC MBC Escherichia coli 6.25 25 3.125 3.125 Pseudomonas aeruginosa 6.25 12.5 3.125 3.125 Salmonella enteritidis 6.25 6.25 3.125 3.125 Staphylococcus aureus 6.25 12.5 1.562 3.125 Streptococcus agalactiae 6.25 6.25 1.562 6.25 Candida albicans* 12.5 - 6.25 12.5 Where:MIC: minimum inhibitory concentration; MBC: minimum bactericidal concentration; MFC: minimum inhibitory concentration; *: in C. albicans it is representing that in place of the initials MBC one must have the initials MFC; -: no inhibition observed in the assessed concentration Graphs containing the curves demonstrating the pattern of inhibition of microorganisms under the effect of the 1536 two types of vinegar are presented in Figure 2. The respective regression models fitted to predict the inhibition 1537 for each microorganism at different concentrations under the effect of both types of vinegar are shown in Table 1538 5. To highlight, the models were adjusted based on experimental data so the inhibition behavior for each 1539 microorganism subjected to the effect of each type of vinegar could be adequately predicted. These graphs were 1540 fitted by recording absorbances (optical density) at the time of inoculation (0 h) and after incubation (24 h for 1541 bacteria and 48 h for C. albicans) of each microorganism subjected to the effect of the kinds of vinegar assessed 1542 in this study. The shapes of the curves are similar, which means that the inhibition pattern of both types of 1543 vinegar is the same. However, the inhibition promoted by bamboo vinegar occurs at lower concentrations when 1544 compared to eucalyptus vinegar. 1545 59 60 Figure 2. Absorbances of microorganisms’ cultures as a function of the concentration of eucalyptus (orange curves) and bamboo (blue curves) vinegar; A1, B1, C1, D1, E1, and F1 – at the moment of inoculation – 0 h; and A2, B2, C2, D2, E2, and F2 – 24 h after inoculation (48 h for C. albicans) Table 5. Regression models to predict the behavior of microorganisms' growth as a function of the eucalyptus and bamboo vinegar concentrations Type of vinegar Regression Models R2 Escherichia coli Eucalyptus Y = – 0.3609 ln X + 1.1893 0.7658 Bamboo Y = – 0.2009 ln X + 0.6561 0.7560 Pseudomonas aeruginosa Eucalyptus Y = – 0.3556 ln X + 1.1463 0.7968 Bamboo Y = – 0.2203 ln X + 0.6869 0.7647 Salmonella enteritidis Eucalyptus Y = – 0.3225 ln X + 1.0631 0.8027 Bamboo Y = – 0.2262 ln X + 0.6924 0.7626 Staphylococcus aureus Eucalyptus Y = – 0.2617 ln X + 0.8822 0.7891 Bamboo Y = – 0.1905 ln X + 0.6094 0.6926 Streptococcus agalactiae Eucalyptus Y = – 0.3693 ln X + 1.2378 0.7497 Bamboo Y = – 0.2652 ln X + 0.7921 0.7617 Candida albicans Eucalyptus Y = – 0.1582 ln X + 0.5774 0.8614 Bamboo Y = – 0.1405 ln X + 0.5231 0.5762 *Where: Y = absorbance; X = vinegar concentration; R2 = coefficient of determination From the interpretation of the graphs, higher vinegar concentrations resulted in lower absorbance data which 1546 means a higher inhibitory effect, as expected. At the very moment of inoculation, the behavior of absorbances 1547 follows a constant pattern with values between 0.04 and 0.09 (Figure 2 – A1, B1, C1, D1, E1, and F1). However, 1548 after incubation, it is possible to notice the inhibitory effect that both kinds of vinegar had by observing the 1549 curves displaying the behavior of microorganisms' growth as a function of the inhibitory agents' action (Figure 2 1550 – A2, B2, C2, D2, E2, and F2). The curves registered the gradual decrease in cell density in the medium after the 1551 microorganisms were exposed to increasing concentrations of antimicrobial agents. 1552 61 Similar inhibition results were found by Araújo et al. (2017) using two kinds of vinegar from Mimosa tenuiflora 1553 and Eucalyptus urograndis (clone GG100) wood. In the present work, lower concentrations of bamboo vinegar 1554 were required compared to eucalyptus. For bamboo, MIC values varied between 1.562 and 6.25%, unlike the 1555 values found for eucalyptus, which were between 6.25 and 12.5%. A similar pattern was observed for MBC and 1556 CFM results. The discussion regarding the difference in action between the two types of vinegar is presented in 1557 the next topic. Other authors obtained similar results to those found in the present work when they evaluated 1558 bamboo and eucalyptus vinegar, corroborating the data of the current research (Wang et al. 2012; Harada et al. 1559 2013; Araújo et al. 2017; Rattanawut et al. 2017; Soares et al. 2020). However, the present work’s novelty is 1560 comparing the antimicrobial effect of eucalyptus and bamboo grown in Northeastern Brazil, establishing a 1561 relationship between the inhibition patterns with the chemical composition of each type of vinegar. 1562 In graphs displayed in Figure 2, the absorbances record the density of cells present in a given medium and, this 1563 way, the less dense the medium is, the lower the absorbance value will be, due to the lower proliferation of 1564 microbial cells in the solution, resulting in a lower optical density. The results followed the same pattern 1565 achieved by Cunha and Vieira (2014) and Gama et al. (2022). In Figure 2, in addition to presenting the microbial 1566 behavior subjected to the effect of both types of carbonization vinegar at different concentrations, a comparison 1567 between the antimicrobial activity of the two agents can be inferred. For all of the microorganisms, the bamboo 1568 vinegar had lower absorbance values corresponding to a higher antimicrobial effect, corroborating the MIC data 1569 presented in Table 4. This difference in antimicrobial activity may be closely related to the chemical constitution 1570 of each type of product. Differences in the expression of the antimicrobial effect of kinds of vinegar produced 1571 from different lignocellulosic materials are common and reported by several authors (Velmurugan et al. 2009; 1572 Araújo et al. 2017; Souza et al. 2018; Morales et al. 2019; Soares et al. 2020). 1573 As an illustrative example and to provide a basis of comparison, carbonization vinegar from cocoa husks 1574 (Theobroma cacao) resulted in zones of inhibition between 6 and 6.12 mm when tested against C. albicans 1575 (Desvita et al. 2022). However, when the same microorganism was exposed to the vinegar of Dimocarpus 1576 longan, the zone of inhibition was 17.56 ± 0.01 mm (Chukeatirote and Jenjai 2018). In the study by Araújo et al. 1577 (2017), the diameter values ranged from 8.3 to 25 mm when Mimosa tenuiflora vinegar was assessed against the 1578 same microorganism. This behavior is expected since each plant species, and each microorganism has its genetic 1579 peculiarities. Because of that, in terms of antimicrobial effects, no generalizations can be made for any 1580 carbonization vinegar. The correct strategy is to evaluate one by one and verify how intense its impact is on this 1581 or that microorganism. Also, Chai et al. (2013) proved such property of furfural by testing its effect on 1582 Salmonella sp. and Bacillus subtilis, demonstrating inhibition in different levels. Another research work reports a 1583 strong inhibitory potential of furfural against bacteria (strains of S. aureus, Proteus mirabilis, and Klebsiella 1584 pneumonia) and fungi (Wani et al., 2016). As Yang et al. (2020) commented, natural products containing 1585 furfural usually had an excellent antimicrobial effect on E. coli, C. albicans, and S. aureus. This information 1586 reasserts the potential of vinegar from the carbonization of varied lignocellulosic sources as antimicrobial agents. 1587 The models adjusted and presented in Table 2 are essential considering practical applications such as developing 1588 antiseptics. Bearing in mind the inhibition pattern as a function of the concentration of a given vinegar, antiseptic 1589 formulations can be tailored and directed for specific uses. This strategy was successfully employed by Pimenta 1590 et al. (2022) to tailor an antiseptic formulation to be used in the post-milking asepsis of dairy animals to prevent 1591 mastitis. Beforepatenting the new antiseptic, the authors also performed assays in field conditions for two years 1592 with goats and cows to certify the product’s performance against mastitis-causing pathogens. However, the 1593 primary laboratory assays were mandatory before the final formulation could be tailored together with 1594 surfactants and other adjuvants to achieve the best adherence and fixedness of the product on the animal’s teats. 1595 GC/MS analyses 1596 The total ion chromatograms attained for both types of vinegar are displayed in Figure 3. There are some 1597 differences between the chemical composition of the two products regarding the presence or absence of 1598 compounds and the intensity of the peaks as a percentage (Table 6). A total of 116 compounds were annotated, 1599 and among them, the phenols, furans, aldehydes, and organic acids stood out. Among the total compounds 1600 62 identified, 53 are common to both types of vinegar (blue boxes in Table 6), 33 occur exclusively in eucalyptus 1601 vinegar (green boxes), and 31 solely in bamboo (orange boxes). In the same table, compounds with exclusive 1602 occurrence in one or other types of vinegar were marked with a green box. For both products, the phenolic 1603 compounds and furfural are the main components. However, the eucalyptus vinegar had furfural as the majority 1604 compound with a peak area of 17.2%, while in bamboo vinegar, the area was 4.9%. Bamboo vinegar had phenol 1605 as its primary component, with an area of 15.3%, while in the eucalyptus vinegar, the value was 8.5%. 1606 Figure 3. Total ion chromatograms of Eucalyptus urograndis (A) and Bambusa vulgaris (B) carbonization vinegar 63 Table 6. Annotated compounds in the carbonization vinegar of Eucalyptus urograndis and Bambusa vulgaris Type of carbonization vinegar Eucalyptus urograndis Bambusa vulgaris Annotated Pick # Compound RT (min) Area (%) OC RT (min) Area (%) OC 1 2,3-Pentanedione 4.470 0.1 4.466 0.1 2 2-Propen-1-ol 5.770 0.0 * * * 3 Pyridine 7.790 1.0 7.816 1.8 4 Cyclopentanone, 2-methyl- 8.069 0.1 * * * 5 Pyridine, 2-methyl- 8.995 0.2 9.063 0.2 6 Pyridine, 2,6-dimethyl- * * * 10.254 0.1 7 3(2H)-Furanone, dihydro-2-methyl- * * * 11.086 0.2 8 Pyridine, 2-ethyl- * * * 11.789 0.1 9 1,4-Dioxin, 2,3-dihydro- 12.094 0.1 12.076 0.1 10 Pyridine, 3-methyl- 12.221 0.1 12.297 0.2 11 N-Nitrosodimethylamine 12.877 0.2 12.846 0.3 12 2-Cyclopenten-1-one, 2,3-dimethyl- 14.339 0.1 * * * 13 3-Pentanol * * * 14.726 0.1 14 2-Cyclopenten-1-one 15.200 1.9 15.193 0.8 15 4-Hexen-3-ol, 2-methyl- 15.381 0.2 * * * 16 2-Furanmethanol, tetrahydro- * * * 15.385 0.2 17 2-Hydroxy-3-pentanone * * * 15.612 0.1 18 Cyclopentanol, 3-methyl- 15.636 0.1 * * * 19 2-Cyclopenten-1-one, 2-methyl- 15.809 1.5 15.812 0.4 20 1-Hydroxy-2-butanone 16.510 1.0 16.495 3.4 21 Butanoic acid, 2-hydroxy-, methyl ester 16.894 0.0 * * * 22 2H-Pyran-3(4H)-one, dihydro- 17.928 0.1 * * * 23 4-Hydroxy-3-hexanone * * * 18.265 0.1 64 24 2-Cyclohexen-1-one 19.100 0.1 * * * 25 Butanoic acid, 2-propenyl ester * * * 19.578 0.1 26 2-Cyclopenten-1-one, 2,3-dimethyl- 19.966 0.3 19.982 0.1 27 2-Furanmethanol, tetrahydro- 20.192 1.0 * * * 28 Acetic acid * * * 20.884 12.5 29 Furfural 21.468 17.2 21.402 4.9 30 2-Cyclopenten-1-one, 2,3,4-trimethyl- 22.541 0.2 * * * 31 2-Furanmethanol, tetrahydro- * * * 23.017 0.2 32 2,5-Hexanedione 23.390 0.3 23.369 0.2 33 Ethanone, 1-(2-furanyl)- 23.503 1.5 23.485 0.8 34 2-Cyclopenten-1-one, 3-methyl- 23.663 2.4 23.637 1.2 35 2-Cyclopenten-1-one, 2,3-dimethyl- 24.813 1.4 24.801 0.8 36 2,3-Pentanedione 25.330 0.6 * * * 37 2-Butanone, 1-(acetyloxy)- 25.568 0.5 * * * 38 1-Buten-3-yne, 1-(1,1-dimethylethoxy)-, (Z)- * * * 25.572 0.2 39 Propanoic acid 26.413 0.7 26.149 5.8 40 Bicyclo[2.2.2]octane, 2-methyl- 26.654 0.2 * * * 41 Bicyclo[3.3.1]nonane * * * 26.685 0.2 42 2-Furancarboxaldehyde, 5-methyl- 27.301 4.4 27.281 0.9 43 3,6-Heptanedione * * * 27.437 0.2 44 Pyridine, 3-methoxy- 27.540 0.4 27.515 0.5 45 1,3-Dimethyl-1-cyclohexene * * * 27.669 0.1 46 Methyl 2-furoate 27.677 0.3 * * * 47 2(3H)-Furanone, dihydro-5-methyl- * * * 28.993 0.3 48 Furan, tetrahydro-2,5-dimethyl- 29.018 0.2 * * * 49 Cyclohexane, (1-methylethylidene)- 29.241 0.2 29.236 0.2 50 2-Acetyl-5-methylfuran 29.435 0.2 29.454 0.1 51 2-Cyclopenten-1-one, 3-ethyl- 29.634 0.5 29.621 0.4 52 Butyrolactone 30.027 0.8 30.077 2.2 53 2-Furanone, 2,5-dihydro-3,5-dimethyl 31.166 1.0 31.147 0.6 54 Butanoic acid 31.339 0.6 31.252 1.8 65 55 Bicyclo[2.2.2]octane, 1,2,3,6-tetramethyl- 33.060 0.1 * * * 56 3-Decen-1-ol, acetate, (Z)- 33.381 0.1 * * * 57 Pentanoic acid, 3-methyl- 33.555 0.1 33.506 0.2 58 Bicyclo[4.1.0]heptan-3-one, 4,7,7-trimethyl-, [1R-(1.alpha.,4.beta.,6.alpha.)]- * * * 34.035 0.1 59 2(5H)-Furanone, 3-methyl- 34.822 0.5 34.784 0.4 60 4-Hepten-3-one, 4-methyl- 35.161 0.2 35.148 1.2 61 3-Nonen-1-ol, (Z)- * * * 35.374 0.1 62 E-1,9-Hexadecadiene * * * 35.825 0.1 63 Benzene, 1,2-dimethoxy- 35.970 0.1 * * * 64 E,Z-2,13-Octadecadien-1-ol * * * 36.595 0.1 65 2(5H)-Furanone 36.894 0.1 36.840 0.1 66 Pentanoic acid 37.240 0.2 37.187 0.2 67 1,4-Cyclooctanedione * * * 38.482 0.1 68 Crotonic acid * * * 39.157 0.3 69 2,3-Dimethoxytoluene 40.224 0.2 * * * 70 Cyclopentane, 1-acetyl-1,2-epoxy- 40.377 0.2 40.343 0.5 71 4-Methyloctanoic acid * * * 40.581 0.1 72 3-Heptenoic acid 40.618 0.1 * * * 73 2-Methylcyclopropanecarboxylic acid * * * 41.020 0.2 74 1,2-Cyclopentanedione, 3-methyl- 41.294 3.3 41.242 2.3 75 Cyclopentanone, 2-methyl-3-(1-methylethyl)- * * * 41.571 0.0 76 2-Hydroxy-3-propyl-2-cyclopenten-1-one 42.496 0.2 42.461 0.2 77 Phenol, 2-methoxy- 42.748 9.4 42.720 9.5 78 Phenol, 2-methoxy-4-methyl- 43.217 0.4 * * * 79 Cycloheptanone, 2-ethyl- * * * 43.523 0.3 80 Cyclopentanone, 2-methyl-3-(1-methylethyl)- 43.550 0.3 * * * 81 2-Pentenoic acid * * * 44.248 0.3 82 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 44.566 1.0 44.525 1.0 83 Benzyl oxy tridecanoic acid * * * 45.235 0.1 84 Phenol, 2,6-dimethyl- 45.567 0.2 * * * 85 2-Heptenal, 2-propyl- 46.242 0.1 46.211 0.1 66 86 2-Methoxy-5-methylphenol 46.759 0.5 * * * 87 Phenol, 2-methoxy-4-methyl- 47.488 4.4 47.462 2.2 88 Maltol * * * 47.812 1.5 89 2-Hydroxy-3-propyl-2-cyclopenten-1-one * * * 48.348 0.5 90 1H-Inden-1-one, 2,3-dihydro- 49.085 0.3 49.073 0.2 91 Phenol 50.403 8.5 50.327 15.3 92 1H-Pyrrole-2-carboxaldehyde 50.826 0.1 50.769 0.2 93 Phenol, 4-ethyl-2-methoxy- 51.041 1.8 51.023 1.7 94 Benzene, 1,2,3-trimethoxy-5-methyl- 52.166 0.3 * * * 95 Phenol, 2-ethyl- 53.660 0.2 53.625 0.1 96 Phenol, 2,3-dimethyl- 53.820 0.5 * * * 97 Phenol, 4-methyl- 53.996 2.3 53.936 3.5 98 Phenol, 3-methyl- 54.335 3.3 54.291 1.3 99 Phenol, 2-methoxy-4-propyl- 54.703 0.3 54.687 0.2 100 Phenol, 2,3-dimethyl- 57.030 0.2 56.994 0.1 101 Phenol, 2-methoxy-3-(2-propenyl)- 57.327 0.1 57.302 0.1 102 Phenol, 2-(1-methylethyl)-, methylcarbamate * * * 57.840 0.1 103 Phenol, 3-(1-methylethyl)- 57.877 0.1 * * * 104 Phenol, 4-ethyl- * * * 58.142 5.8 105 Phenol, 3,4-dimethyl- 58.188 0.8 * * * 106 Phenol, 3-ethyl- 58.500 0.3 58.451 0.1 107 1,2,3-Trimethoxybenzene 58.906 0.1 * * * 108 Phenol, 2,4,5-trimethyl- 59.670 0.1 * * * 109 Phenol, 2,4-dimethyl- 60.162 0.4 60.134 0.3 110 Phenol, 2,6-dimethoxy- 61.859 10.7 61.827 6.0 111 1,2,3-Trimethoxybenzene 65.477 3.5 65.448 0.4 112 Benzene, 1,2,3-trimethoxy-5-methyl- 67.877 1.9 67.843 0.3 113 1H-2-Benzopyran-1-one, 3,4-dihydro-8-hydroxy-3-methyl-* * * 69.368 0.1 114 2,4-Hexadienedioic acid, 3,4-diethyl-, dimethyl ester, (Z,Z)- 70.695 0.4 70.681 0.1 115 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester 72.799 0.2 72.805 0.2 67 116 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 73.125 0.1 * * * RT = retention time; OC: occurrence of the compound; Blue box = occurrence in both types of vinegar; Green box – exclusive occurrence in eucalyptus vinegar; Orange box = exclusive occurrence in bamboo vinegar; (*) Negative occurrence 68 Araújo et al. (2017) also reported a varied chemical composition (also reported furfural and phenol as 1607 the most significant component in Eucalyptus urograndis (GG100 clone). They observed furfural and phenol as 1608 the most critical components in Mimosa tenuiflora vinegar. Ribeiro et al. (2012) commented that furfural is 1609 formed during carbonization through the cleavage of cellulose and pentosans molecules in the lignocellulosic 1610 raw materials. It has a solid inhibitory effectivity on several kinds of microorganisms. Another difference to 1611 highlight about the chemical composition of the two types of vinegar assessed here (Table 3) is the more 1612 expressive presence of organic acids in the bamboo vinegar compared to the product from eucalyptus. In the 1613 bamboo vinegar, acetic (12.5%), propionic (5.8%), and butanoic (1.8%) are present in higher quantities. In 1614 contrast, in the second type of vinegar, the contents of propionic and butanoic acids are significantly lower, 0.7 1615 and 0.6%, respectively, while acetic acid is not present. However, the acid acetic takes part in the chemical 1616 composition of eucalyptus carbonization vinegar. 1617 As standardized by Pimenta et al. (2018), adding ammonium hydroxide in the samples of eucalyptus 1618 vinegar before the liquid-liquid extraction with organic solvents is enough to neutralize the acetic acid present in 1619 them. In this work, the total contents of acetic acid in the eucalyptus and bamboo vinegar after adding 1620 ammonium hydroxide were 1.01 and 1.92% (weight/weight), and the water contents were 97.17 and 98.03%, 1621 respectively. The organic fractions were 0.96 and 0.91% for the respective types of vinegar. The addition of 1622 hydroxide ammonium before GC/MS analyses cited above was employed to suppress the peak of the acetic acid 1623 that tended to be so strong in the chromatograms that the other peaks underwent a decrease enough to make it 1624 challenging to attain their percentage areas. Since the method was standardized specifically to the eucalyptus 1625 vinegar, in the case of bamboo vinegar, adding the base most likely was not sufficient to suppress the acetic acid 1626 peak due to its higher concentration in the product. Organic acids play an essential role against pathogenic 1627 microorganisms, and their application dates back over 100 years with several sorts of assessments (Tamblyn and 1628 Conner 1997; Gómez-García et al. 2019; Peh et al. 2020; Rossi et al. 2021). 1629 The main advantages of the presence of organic acids in potential antimicrobial natural products 1630 concern their efficiency of these compounds in the inhibition of microorganisms' growth and also their non-1631 toxicity to humans (Zhitnitsky et al. 2017). Acetic and propionic acids had a proven antimicrobial effect on E. 1632 coli and S. aureus (Raftari et al. 2009). The employment of acetic acid efficiently controlled the action of 1633 biofilm-forming bacteria isolated from patients with burn injuries (Halstead et al. 2015). Other studies report the 1634 efficiency of acetic acid as an antimicrobial agent in several applications, including as a food preservative and 1635 control of bovine mastitis (Fraise et al. 2013; Wali and Abed 2019; Pangprasit et al. 2020). Likewise, propionic 1636 acid also plays a vital role in microbial control as an individual agent and modulator (Haque et al. 2009; Wang et 1637 al. 2014; El-Adawy et al. 2018). However, in the case of different types of vinegar derived from the 1638 carbonization of other lignocellulosic raw materials, their biological effectcomes not only due to the presence of 1639 organic acids but, above all, a synergistic presence of organic acids, phenolic compounds, and furfural (Setiawati 1640 et al. 2019; Suresh et al. 2019; Suresh et al. 2020). 1641 The higher antimicrobial activity of the bamboo vinegar evaluated in this work is most likely associated 1642 with its higher content of different organic acids. The combined effect of organic acids can enhance the 1643 inhibitory action of some microorganisms (Wu et al. 2017). For instance, Peh et al. (2020) demonstrated that the 1644 combination of different organic acids brought about higher values of MIC, which was not found when the acids 1645 were assessed individually. That finding reinforces the statement that the higher performance of bamboo vinegar 1646 as an inhibition agent can be associated with a synergistic effect of a mixture of organic acids. However, even 1647 with a lower content of organic acids, eucalyptus vinegar also had a significant antimicrobial impact since other 1648 compounds in its composition have this effect. 1649 In addition to the organic acid content, both types of vinegar assessed here are rich in phenolic 1650 compounds in their chemical constitution. The presence of phenolic compounds is one characteristic of 1651 explaining the antimicrobial properties of pyroligneous acids from different sources (Li et al. 2019). These 1652 compounds are antimicrobial agents proven by several researchers in the literature (Tyagi et al. 2015; Jang et al. 1653 2018; Nascimento et al. 2021). Some studies have demonstrated the high potential of pyroligneous acids as 1654 69 microbial inhibitors by expressing their ability to control the development of bacterial biofilms (Ariffin et al. 1655 2017; Macé et al. 2017; Nassima et al. 2019). However, as displayed in Table 3, the phenolic content of the 1656 products tested in this research varied. This may be another possible explanation for the variability of 1657 antimicrobial action demonstrated between the products assessed here and within the same type of vinegar 1658 against different microorganisms. The literature reports that the other phenolic compounds and their varied 1659 structural arrangements have various antimicrobial capacities (Maddox et al. 2010). This is reinforced by 1660 Bouarab-Chibane et al. (2019), who found that the same phenolic compound can act differently against different 1661 microorganisms. These authors also emphasize the fact that the antimicrobial effect of a product may not be 1662 linked solely to the presence of a class of phenolic compounds, as demonstrated by their research. 1663 Other compounds present in EPs also play an essential role as bioactive molecules against bacteria and 1664 viruses, such as butyrolactone, capable of inhibiting Erwinia carotovora (Cazar et al. 2005); maltol, used both as 1665 a flavoring agent and as an effective antimicrobial adjuvant (Saud et al. 2019; Naqvi et al. 2021; Ziklo et al. 1666 2021); and 1,2,4- trimethoxybenzene, a bioactive molecule that has the selective ability to inhibit the activation 1667 of the NLRP3 inflammasome and thus reduce autoimmune encephalomyelitis (Pan et al. 2021). Pyridine 1668 compounds with several applications, including antimicrobial and antiviral (Marinescu and Popa 2022). All cited 1669 compounds are present to a greater or lesser extent in the products assessed in this work. With this, it is 1670 emphasized that the antimicrobial action performed by eucalyptus and bamboo vinegar is due to a set of 1671 substances and that it would be difficult to assign the role of a single class in such an effect. With what has been 1672 exposed so far, the great potential that pyroligneous acids have for developingalternative antimicrobial agents 1673 has been increasingly proven, aiming to attenuate the pressure exerted by the emergence of microbial resistance. 1674 Suresh et al. (2019) commented that this potential is due to their chemical constitution being expressly varied, 1675 which can hinder the development of resistance mechanisms of microorganisms against it. 1676 Scanning electron microscopy (SEM) analyses 1677 At this stage, only carbonization vinegar obtained from bamboo was used, due to its greater efficiency and the 1678 high costs of microscopic analyses. Furthermore, the micrographs of Staphylococcus aureus, Streptococuus 1679 agalactiae, and Candida albicans were the best attained and are presented hereafter. For these three 1680 microorganisms, the changes caused by the products were similar. To avoid redundancy, only the micrographs of 1681 them before and after being subjected to the action of bamboo vinegar are presented in this section. However, it 1682 is essential to highlight that despite being similar, the changes in the cell walls of the microorganisms treated 1683 with bamboo vinegar were achieved in lower concentrations than those resulting from the action of eucalyptus 1684 vinegar. As displayed in Figures 4, 5 and 6, there were significant changes in the cell walls of the 1685 microorganisms after exposure to the action of bamboo vinegar compared to the non-exposed cells. The 1686 magnification employed in the micrographs varied according to the characteristics of each microorganism. 1687 Figure 4. SEM micrographs of Staphylococcus aureus before (A) and after 24-h exposure (B) to bamboo vinegar. Magnification: 30.000 X 70 Figure 5. SEM micrographs of Streptococcus agalactiae before (A) and after 24-h exposure (B) to bamboo vinegar. Magnification: 13,400 X Figure 6. SEM micrographs of Candida albicans before (A), after 24 h (B), and 48 h (C) of exposure to bamboo vinegar. Magnification: 5,000 and 7,410 X (arrows in the micrographs indicate cell budding) Figures 4, 5 and 6, parts 4A, 5A, and 6A, display the control treatments on which the microorganisms grew 1688 without the influence of the pyroligneous acid. In the 4A and 5A parts, the S. aureus and S. agalactiae have their 1689 cell wall surfaces regular, turgid, and with the typical spherical shape of the coccus (Jankowsky et al. 2018). The 1690 C. albicans cells (Figure 6A) are unscathed and have an oval shape, a characteristic of this microorganism. See 1691 in the arrows; the cell budding is represented by the circular structure in the cell edges, which is another species 1692 characteristic (Grela et al. 2019). However, after exposure to the bamboo vinegar, all microorganisms’ cell walls 1693 underwent morphological alterations compared to the respective controls. The microorganism more extensively 1694 affected was S. agalactiae (Figure 4B), with practically all cells damaged. For the other strains, some cells 1695 remained unaltered (Figures 4B, 5B, and 6C), especially C. albicans, 24 h after exposure (Figure 6B). This 1696 observation corroborates the data from the previous sections, where it was determined that this microorganism 1697 was more resistant to the effect of both types of vinegar compared to the other strains. Most likely, the 1698 explanation for the higher susceptibility of the different microorganisms is related to the structural characteristics 1699 of their cell walls and their internal organization. C. albicans is a yeast, a eukaryotic microorganism, while the 1700 others are prokaryotic bacteria (Ibrahim et al. 2013). This fact may make it easier for C. albicans to resist the 1701 effect of the pyroligneous acids. As cited in the literature, one of the essential effects of PA and organic acids is 1702 to promote damage to the genetic material inside the microbial cell due to acid stress in low pHs (Jeong et al., 1703 2008; Lund et al. 2020). 1704 71 In Figure 6C, treated C. albicans cells (Figure 6C), it can be seen that the cells in budding, that is, in cell 1705 multiplication, there was more damage than the other cells of this species because these cells are more 1706 vulnerable during the multiplication process (Deng et al. 2021). In contrast to these damaged cells, both for S. 1707 aureus and for C. albicans, some cells remained with their structure relatively preserved, without such severe 1708 deformations (Figures 4B, 5B, and 6C). The study by Cherrington et al. (1991) reported the same behavior, 1709 where the action of organic acids was able to inhibit microorganisms such as E. coli and Salmonella spp., 1710 without disturbing its membrane, which suggests that there are other forms of PA action on microorganisms but 1711 the single disorganization of the cell wall. Organic acids in the chemical profile of bamboo and eucalyptus 1712 vinegar can acidify the cytoplasm and lead to cell lysis (Wang et al. 2014). These authors proved that propanoic 1713 acid, one of the PA constituents, lowered the intracellular pH of S. aureus, which is lethal for the microorganism. 1714 Maltol, another chemical constituent of bamboo vinegar, was able to cause severe changes in C. albicans cells, 1715 observed in the form of pores and extravasated cells (Ziklo et al. 2021), which are also observed in this research. 1716 In addition to the substances already mentioned, carbonization vinegar has various phenolic compounds in its 1717 chemical constitution. The antimicrobial action caused by this group of compounds has been established in the 1718 literature (Jang et al., 2018; Bouarab-Chibane et al. 2019; Nassima et al. 2019; Nascimento et al. 2021). 1719 According to a review by Bouarab-Chibane et al. (2019), these compounds can have different types of action on 1720 the microorganism, including modifying the natural structure of the membrane and the microbial cell wall and, 1721 consequently, the permeability of the membrane and the rigidity of the wall. These modifications may be one of 1722 the responses to the morphological changes shown in the SEM images. In addition, these compounds are capable 1723 of causing punctual ruptures in these structures, resulting in the impairment of their functions, which results in 1724 extravasation of cellular content, causing irreparable damage to the microorganism (Piekarska-Radzik and 1725 Klewicka 2021). Therefore, this is another factor that may explain the results shown in this research. 1726 CONCLUSIONS 1727 1728 In the context discussed above, both types of vinegar obtained from eucalyptus and bamboo grown in 1729 Northeastern Brazil have a real potential to be employed as a basis for the production of antimicrobial agents 1730 because of their chemical composition and the proven inhibitory effect on pathogenic microorganisms. Both 1731 products, for the most part, had the same chemical compounds in their chemical composition. However, even 1732 with the similarity, there were significant differences that are believed to have resulted in the demonstrated 1733 inhibition differences between them. Bamboo vinegar had a higher content of organic acids and greater 1734 inhibitory efficiency when compared to eucalyptus. Besides eucalyptus wood from sustainable forests, bamboo 1735 biomass has been increasingly employed to produce charcoal on a large scale, so the harnessing of liquid 1736 products from its carbonization constitutes an important alternative to add value to the charcoal-making chain. 1737 Still, the increasing production of bamboo vinegar in industrial conditions is creating a basis to establish formal 1738 ways to include it in new products for agricultural use or animal health. 1739 AUTHORS’ CONTRIBUTIONS 1740 G.S.P. Gama accomplished the carbonization runs; prepared and refined the pyroligneous acids; conducted all of 1741 the experiments; collected and tabulated theexperimental data; interpreted the experimental data; drafted the 1742 manuscript; and prepared the final version of the manuscript in Portuguese. A.S. Pimenta was responsible for the 1743 general coordination of research activities and fundraising; allocated inputs and reagents; interpreted 1744 experimental data; interpreted statistical data; translated the manuscript from Portuguese to English; and 1745 reviewed the English of the manuscript until getting the submission version. F.M.C. Feijó coordinated the 1746 microbiological assays, allocated inputs and reagents, interpreted experimental data, and reviewed the draft and 1747 final versions of the manuscript. C.S. dos Santos trained the staff in microbiological assays, allocated inputs and 1748 reagents, and supervised the microbiological assays. E.C. de Souza interpreted experimental data; ran the 1749 statistical analyses; adjusted and selected the best regression models; and carried out charting. T.V.C. Monteiro 1750 performed the gas chromatography and mass spectrometry (GC/MS) analyses, acquired the chromatograms and 1751 mass spectra and tabulated the experimental data. M. Fasciotti coordinated GC/MS analysis; interpreted 1752 72 chromatograms and mass spectra; elaborated the table with GC data; interpreted the experimental data; and 1753 reviewed the final version of the manuscript. T.K.B. de Azevedo assisted in fundraising; supported the allocation 1754 of inputs and reagents; assisted in collecting experimental data; and reviewed the final version of the manuscript. 1755 R.R. de Melo assisted in fundraising, supported in collecting experimental data, interpreted the experimental 1756 data, and reviewed the final version of the manuscript. A.F. Dias Júnior assisted in fundraising and collecting 1757 experimental data, interpreted the experimental data, and reviewed the final version of the manuscript. 1758 ETHICAL STATEMENT 1759 This article does not contain any studies with either human participants or animals performed by any authors. 1760 ACKNOWLEDGEMENTS 1761 1762 The present research work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – 1763 Brazil (CAPES) – Finance code 001 and National Council for Scientific and Technological Development 1764 (CNPq), a foundation linked to the Ministry of Science and Technology (MCT), and FAPERN (Fundação de 1765 Apoio à Pesquisa do Estado do Rio Grande do Norte). 1766 1767 COMPETING INTERESTS AND FUNDING 1768 1769 The authors inform that no competing or conflicting interests are associated with the funders of the present 1770 research work. All authors agree with the submission and publishing of the article. 1771 REFERENCES 1772 1773 Araújo ES, Pimenta AS, Feijó FMC, Castro RVO, Fasciotti M.; Monteiro TVC, Lima KMG. (2017) 1774 Antibacterial and antifungal activities of pyroligneous acid from the wood of Eucalyptus urograndis and Mimosa 1775 tenuiflora. J. Appl. Microbiol., 124(1):85-96. https://doi.org/10.1111/jam.13626 1776 Ariffin SJ, Yahayu M, El-Enshasy H, Malek RA, Aziz AA, Hashim NM, Zakaria ZA. (2017) Optimization of 1777 pyroligneous acid production from palm kernel shell and its potential antibacterial and antibiofilm activities. 1778 Indian J. Exp. Biol., 55:427-435. 1779 Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K. (2002) Science of bamboo charcoal: study on 1780 carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J. Health Sci., (48)6:473-1781 479. https://doi.org/10.1248/jhs.48.473 1782 Azooz MF, El-Wakeel SA, Yousef HM. (2020) Financial and economic analyses of the impact of cattle mastitis 1783 on the profitability of Egyptian dairy farms. Vet. World, 13(9): 1750-1759. 1784 https://doi.org/10.14202/vetworld.2020.1750-1759 1785 Bodey JP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis., 1786 5(2):279- 313, 1983. https://doi.org/10.1093/clinids/5.2.279 1787 Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, Oulahal N, Degraeve P, BordesC. 1788 (2019) Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure–activity 1789 relationship) models. Front. Microbiol., (10)829. https://doi.org/10.3389/fmicb.2019.00829 1790 Burdock GA. (2010) Fenaroli’s Handbook of Flavor Ingredients, 6th Edition, CRC Press, Boca Raton-FL, USA. 1791 2,162 p. 1792 73 Cabassi CS, Sala A, Santospirito D, Alborali JL, Carretto E, Ghibaudo G,Taddei S. (2017) Activity of AMP2041 1793 against human and animal multidrug resistant Pseudomonas aeruginosa clinical isolates. Ann. Clin. Microbiol. 1794 Antimicrob., 16(17). https://org.doi.10.1186/s12941-017-0193-1 1795 Carneiro ACO, Santos RC, Castro RVO, Castro AFNM, Pimenta AS, Pinto EM, Alves ICN. (2013) Estudo da 1796 decomposição térmica da madeira de oito espécies da região do Seridó, Rio Grande do Norte. Rev. Árvore, 1797 37(6):20-33. DOI: https://doi.org/10.1590/S0100-67622013000600017 1798 Cazar ME, Schmeda-Hirschmann G, Astudillo L. (2005) Antimicrobial butyrolactone I derivatives from the 1799 Ecuadorian soil fungus Aspergillus terreus Thorn. var terréus. World Journal of Microbiology & Biotechnology, 1800 21:1067-1075. https://doi.org/10.1007/s11274-004-8150-5 1801 Chai WM, Liu X, Hu YH, Feng WL, Jia YL, Guo YJ, Zhou HT, Chen QX. (2013) Antityrosinase and 1802 antimicrobial activities of furfuryl alcohol, furfural, and furoic acid. Int. J. Biol. Macromol., 57:151-155. 1803 http://dx.doi.org/10.1016/j.ijbiomac.2013.02.019 1804 Charehgani H. (2020) Effect of wood vinegar, humic acid and effective microorganisms against Meloidogyne 1805 javanica on tomato. Plant Pathol. Sci., 9(2). 1806 Chalermsan Y and Peerapan S. (2009) Wood vinegar: by-product from rural charcoal kiln and its role in plant 1807 protection. Asian J. Food Agro-Ind., 2: S189-S195. DOI: 1808 https://www.cabdirect.org/cabdirect/abstract/20123113805 1809 Cherrington CA, Hinton M, Pearson GR, Chopra I. (1991) Short-chain organic acids at pH 5.0 kill Escherichia 1810 coli and Salmonella spp. without causing membrane perturbation. J. App. Bacteriol., 70:161-16. 1811 https://doi.org/10.1111/j.1365- 2672.1991.tb04442. 1812 Chukeatirote E and Jenjai N. (2018) Antimicrobial activity of wood vinegar from Dimocarpus longan. Environ. 1813 Asia, 11(3):161-169. http://dx.doi.org/10.14456/ea.2018.45 1814 CLSI. Clinical and Laboratory Standards Institute. (2012) Methods for dilution antimicrobial susceptibility tests 1815 for bacteria that grow aerobically: Approved Standard-Ninth Edition. CLSI document M07-A9, Clinical and 1816 Laboratory Standards Institute, Wayne, PA, USA. 1817 Costa ALP and Silva Jr. ACS. (2017) Resistência bacteriana aos antibióticos e saúde pública: uma breve revisão 1818 de literatura. Estação Ciência (UNIFAP), 7(2):45-57. http://dx.doi.org/10.18468/estcien.2017v7n2.p45-57 1819 Cunha AHN and Vieira JA. (2014) Detecção da bactéria Escherichia coli em águas residuárias empregando 1820 sistema em fluxo por turbidimetria. Ver. Mirante, 7(2). 1821 Desvita H, Faisal M, Mahidin, Suhendrayatna. (2022) Antimicrobial potential of wood vinegar from cocoa pod 1822 shells (Theobroma cacao L.) against Candida albicans and Aspergillus niger. Materials Today: Proceedings, 1823 2214-7853. https://doi.org/10.1016/j.matpr.2022.02.410 1824 Dias Jr. AF, Andrade CR, Protásio TP, Melo ICNA, Brito JO, Trugilho PF. (2018) Pyrolysis and wood by-1825 products of species from the Brazilian semi-arid region. Sci. For., 46(117):65-75. 1826 https://doi.org/dx.doi.org/10.18671/scifor.v46n117.06 1827 El-Adawy M, El-Aziz MA, El-Shazly K, Ali NG, El-Magd MA. (2018) Dietary propionic acid enhances the 1828 antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Env. Sci. 1829 Pollut.Res., 25:34200-34211. https://doi.org/10.1007/s11356-018-3206-5 1830 Fairbrother JM, Nadeau E. (2006) Escherichia coli: on-farm contamination of animals. Rev. Sci. Tech., 1831 25(2):555-69. 1832 74 Feijó FM, Fernandes FC, Alves ND, Pimenta AS, Santos CS, Rodrigues GSO, Pereira AF, Benício LDM, Moura 1833 YBF. (2022) Efficiency of pyroligneous extract from jurema-preta (Mimosa tenuiflora [Willd.] Poiret) as an 1834 antiseptic in cats (Felix catus) subjected to ovariosalpingohysterectomy. Animals, 12:2325. 1835 https://doi.org/10.3390/ani12182325 1836 Fraise AP, Wilkinson MAC, Bradley CR, Oppenheim B, Moiemen N. (2013) The antibacterial activity and 1837 stability of acetic acid. J. Hosp. Infect., 84:29-331. http://dx.doi.org/10.1016/j.jhin.2013.05.001 1838 Gama GSP, Pimenta AS, Feijó FMC, Santos CS, Castro RVO, Azevedo TKB, Medeiros LCD. (2022) Effect of 1839 ph on the antimicrobial activity of wood vinegar (pyroligneous extract) from eucalyptus. Preprint – Europe 1840 PMC. https://doi.org/10.21203/rs.3.rs-1635253/v1 1841 Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, Immerseel FV. (2009) Mechanisms of 1842 egg contamination by Salmonella enteritidis. FEMS Microbiol. Rev., 33(4):718-738. 1843 https://doi.org/10.1111/j.1574- 6976.2008.00161. 1844 Gómez-García M, Sol C, Nova PJG, Puyalto M, Mesas L, Puente H, Mencía-Ares O, Miranda R, Arguello H, 1845 Rbio P, Carvajal A. (2019) Antimicrobial activity of a selection of organic acids, their salts and essential oils 1846 against swine enteropathogenic bacteria. Porc. Health Manag., 5(3). https://doi.org/10.1186/s40813-019-0139-4 1847 Grela E, Zkazdybicka-Barabas A, Pawlikowska-Pawlega P, Zatacytrynska M, Wlodarczyk M, Grudzinski W, 1848 Luchowski R, Gruszecki WI. (2019) Modes of the antibiotic activity of amphotericin B against Candida 1849 albicans. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-53517-3 1850 Guimarães JLB, Brito MAV, Lange CC, Silva MR, Ribeiro JB, Mendonça LC, Mendonça JFM, Souza GM. 1851 (2017) Estimate of the economic impact of mastitis: A case study in a Holstein dairy herd under tropical 1852 conditions. Prev. Vet. Med., 142:46-50. https://doi.org/10.1016/j.prevetmed.2017.04.011 1853 Gujarati DN, Porter DC. (2009) Basic econometrics. McGraw-Hill, Boston, MA, USA. 1854 Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec J, Bertrand X. (2015) Population structure and 1855 antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet. Res., 1856 11(9). https://doi.org/10.1186/s12917-015-0324-x 1857 Halstead FD, Rauf M, Moiemen N, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA. 1858 (2015) The Antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burn 1859 patients. Plosone, 10(9). https://doi.org/10.1371/journal.pone.0136190 1860 Haque MN, Chowdhury R, Islam KMS, Akbar MA. (2009) Propionic acid is an alternative to antibiotics in 1861 poultry diets. Bang. J. Anim. Sci., 38:115-122. 1862 Harada K, Iguchi A, Yamada M, Hasegawa K, Nakata T, Hikasa Y. (2013) Determination of maximum 1863 inhibitory dilutions of bamboo pyroligneous acid against pathogenic bacteria from companion animals: an in 1864 vitro study. J. Vet. Adv., 3(11):300-305. 1865 Hernandez-Mena LE, Pécora AAB, Beraldo AL. (2014) Slow pyrolysis of bamboo biomass: analysis of biochar 1866 properties. Chem. Eng. Trans., 37:115-120. https://doi.org/10.3303/CET1437020 1867 Huang W, Wang JQ, Song HY, Zhang Q, Liu GF. (2017) Chemical analysis and in vitro antimicrobial effects 1868 and mechanism of action of Trachyspermum copticum essential oil against Escherichia coli. Asian Pac. J. Trop. 1869 Med., 10(7):663-669. https://doi.org/10.1016/j.apjtm.2017.07.006 1870 Ibá. (2021) Brazilian Tree Industry. Annual Report 2020. Brasília, DF, Brazil. Available at 1871 http://www.centralflorestal.com.br/2021/12/relatorio-anual-2021-da-iba-ja-esta.html 1872 75 Imamura E, Watanabe Y. (2007) Anti-Allergy Composition Comprising Wood vinegar or bamboo vinegar 1873 distilled solution. Yamanashiyagen Corporation, Patent US20050136133A1, USA. Available at 1874 https://patents.google.com/patent/US20050136133A1/en 1875 Jang JY, Shin H, Lin J, Ahn JH, Jo YH, Li KY, Hwang BY, Jung SJ Kang SY, Lee MK. (2018) Comparison of 1876 antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua. Plosone, 1877 13(7). https://doi.org/10.1371/journal.pone.0200257 1878 Jankowsky L, Lira SP, Tanaka FAO, Jankowsky IP, Brito JO. Antimicrobial activity of the methanolic fraction 1879 of bamboo pyroligneous liquor. Journal of Pharmacy and Pharmacology, v.6, p.924-934, 2018. 1880 https://doi.org/10.17265/2328-2150/2018.10.005 1881 Kaper JB, Nataro JP, Mobley HLT. (2004) Pathogenic Escherichia coli. Nat. Rev. Microbiol., 2:123-140. 1882 https://doi.org./10.1038/nrmicro818 1883 Klockgether J, Burkhard T. (2017) Recent advances in understanding Pseudomonas aeruginosa as a pathogen. 1884 F1000 Research, 6:1261. https://doi.org/10.12688/f1000research.10506.1 1885 Kovanda L, Zhang W, Wei X, Luo J, Wu X, Atwill EW, Vaessen S, Li X, Liu Y. (2019) In Vitro Antimicrobial 1886 activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. 1887 Molecules, 24. https://doi.org/10.3390/molecules24203770 1888 Laxminarayan R. (2013) Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 13(12):1057-1889 1098. http://dx.doi.org/10.1016/ S1473-3099(13)70318-9 1890 Li R, Naryta R, Nishimura H, Marumoto S, Yamamoto SP, Ouda R, Yatagai M, Fujita T, Watanabe T. (2017) 1891 Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, softwood, and bamboo. Sustain. 1892 Chem. Eng., 6(1):119-126, 2017. https://doi.org/10.1021/acssuschemeng.7b01265 1893 Li Z, Zhang Z, Wu L, Zhang H, Wang Z. (2019) Characterization of five kinds of wood vinegar obtained from 1894 agricultural and forestry wastes and identification of major antioxidants in wood vinegar. Chem. Res. Chinese 1895 Universities. https://doi.org/10.1007/s40242-019-8207-5 1896 Lin J, Gupta S, Loos TK, Birner R. (2019) Opportunities and challenges in the Ethiopian bamboo sector: market 1897 analysis of the bamboo-based value web. Sustainability, 11:1644. https://doi.org/10.3390/su11061644 1898 Macé S, Hansen LT, Rupasinghe HPV. (2017) Anti-bacterial activity of phenolic compounds against 1899 Streptococcus pyogenes. Medicines, 4(25). https://doi.org/10.3390/medicines4020025 1900 Maddox CE, Laur LM, Tian L. (2010) Antibacterial Activity of Phenolic compounds against the phytopathogen 1901 Xylella fastidiosa. Curr. Microbiol., 60(1):53-58. https://doi.org/10.1007/s00284-009-9501-0 1902 Mahmud KN, Yahayu M, Sarip SHM, Husan NH, Min CB, Mustafa NF, Ngadiran S, Ujang S, Zacaria ZA. 1903 (2016) Evaluation on efficiency of pyroligneous acid from palm kernel shell as antifungal and solid pineapple 1904 biomass as antibacterial and plant growth promoter. Sains Malaysiana, 45(10):1423-1434. 1905 https://core.ac.uk/download/pdf/84306792.pdf 1906 Marinescu M, Popa CV. (2022) Pyridine compounds with antimicrobial and antiviral activities. Int. J. Mol. Sci., 1907 23(10):5659. https://doi.org/10.3390/ijms23105659 1908 Marchesan R, Mendonça D, Dias ACC, Silva RC, Pereira JF, Almeida VC. (2019) Quality of Eucalyptus 1909 urograndis charcoal produced in the southern region of Tocantins. Floresta, 49(4):691-700. 1910 http://dx.doi.org/10.5380/rf.v49i4.57702 1911 76 Meira AM, Nolasco AM, Klingenberg D, Souza EC, Dias Jr. A.F. (2021) Insights into the reuse of urban forestry 1912 wood waste for charcoal production. Clean Technol Environ Policy, 23:2777-2787. DOI: 1913 https://doi.org/10.1007/s10098-021-02181-1 1914 Meng J, LejeuneJT, Zhao T, Doyle MP. (2013) Enterohemorrhagic Escherichia coli. In: Doyle MP, Buchanan 1915 RL. Food Microbiology: Fundamentals and Frontiers. ASM Press, 4 th ed. 1916 https://doi.org/10.1128/9781555818463.ch12 1917 Montazeri N, Oliveira ACM, Himelbloom BH, Leigh MB, Crapo CA (2013) Chemical characterization of 1918 commercial liquid smoke products. Food Sci. Nutr., 1(1):102-115. 1919 Morales MM, Marcílio MR, Silva BR, Sartori WW, Ferreira A, Capareda SC. (2019) Elucidating the chemical 1920 properties and potential applications of wood vinegars produced by controlled thermal treatments. IJAERS, 6. 1921 https://dx.doi.org/10.22161/ijaers.6.5.71 1922 Naqvi SS, Anwer H, Siddiqui A, Zohra RR, Ali SA, Shah MR, Hashim S. (2021) Novel synthesis of maltol 1923 capped copper nanoparticles and their synergistic antibacterial activity with antibiotics. Plasmonics, 16:1915-1924 1928. DOI: https://doi.org/10.1007/s11468-021-01452-3 1925 Nascimento VHA, Sobrinho ACG, Souza CO, Souza JNS, Sousa CL. (2021) Determination of phenolic 1926 compounds with antimicrobial activity of Byrsonima crassifolia and Inga edulis leaves extracts. Ensaios e 1927 Ciência, 25(1):21-28. https://doi.org/10.17921/1415-6938.2021v25n1p21-28 1928 Nassima B, Nassima B, Riadh K. (2019) Antimicrobial and antibiofilm activities of phenolic compounds 1929 extracted from Populus nigra and Populus alba buds (Algeria). Braz. J. Pharm. Sci., 55. 1930 https://doi.org/10.1590/s2175- 97902019000218114 1931 Quan G, Xia P, Zhao J, Zhu C, Meng X, Yang Y, Wang Y, Tian Y, Ding X, Zhu G. (2019) Fimbriae and related 1932 receptors for Salmonella enteritidis. Microb. Pathog., 126:357-362. DOI: 1933 https://doi.org/10.1016/j.micpath.2018.10.025 1934 Palma E, Tilocca B, Ronacada P. (2020) Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. 1935 Mol. Sci., 21(6):1914. https://doi.org/10.3390/ijms21061914 1936 Pangprasit N, Srithanasuwan A, Suriyasathaporn W, Pikulkaew S, Bernard JK, Chaisri W. (2020) Antibacterial 1937 activities of acetic acid against major and minor pathogens isolated from mastitis in dairy cows. Pathogens, 1938 9(961). https://doi.org/10.3390/pathogens9110961 1939 Pan RY, Kong XX, Cheng Y, Du L, Wang ZC, Yuan C, Cheng JB, Yuan ZQ, Zhang HY, Liao YJ. (2021) 1,2,4- 1940 Trimethoxybenzene selectively inhibits NLRP3 inflammasome activation and attenuates experimental 1941 autoimmune encephalomyelitis. Acta Pharmacol. Sin., 42:1769-177. https://doi.org/10.1038/s41401-021-00613-1942 8 1943 Partey ST, Frith OB, Kwaku MY, Sarfo DA. (2017) Comparative life cycle analysis of producing charcoal from 1944 bamboo, teak, and acacia species in Ghana. Int. J. Life Cycle Assess., 22:758-766. 1945 https://doi.org/10.1007/s11367-016- 1220-8 1946 Peh E, Kittler S, Reich F, Kehrenberg C. (2020) Antimicrobial activity of organic acids against Campylobacter 1947 spp. and development of combinations—A synergistic effect? Plosone, 15(9). 1948 https://doi.org/10.1371/journal.pone.0239312 1949 Pimenta AS, Fasciotti M, Monteiro TVC, Lima KMG. (2018) Chemical composition of pyroligneous acid 1950 obtained from Eucalyptus GG100 clone. Molecules, 23(2):426. https://doi.org/10.3390/molecules23020426 1951 https://doi.org/10.1038/s41401-021-00613- https://doi.org/10.1038/s41401-021-00613- 77 Pimenta AS, Feijó FMC, Alves ND, Santos CS, Azevedo TKB, Pereira AF, Gama GSP, Silva BA, Soares WNC, 1952 Andrade GS. (2022) Antiseptic based on wood vinegar, its process for obtaining and, use of the product. 1953 Brazilian Patent BR 10.2022.012532.5, INPI (National Institute of Industrial Property), São Paulo, SP, Brazil. 1954 https://www.gov.br/inpi/pt-br 1955 Piekarska-Radzik L, Klewicka E. (2021) Mutual infuence of polyphenols and Lactobacillus spp. bacteria in 1956 food: a review. European Food Research and Technology, 247:9-24. https://doi.org/10.1007/s00217-020-03603-1957 y 1958 Raftari M, Azizi-Jalilian F, Abdulamir AS, Son R, Sekawi Z, Fatimah AB. (2009) Effect of organic acids on 1959 Escherichia coli O157:H7 and Staphylococcus aureus contaminated meat. Open Microbiol., 3:121-127. 1960 Rattanawut J, Todsadee A, Yamauchi K. (2017) Effects of bamboo charcoal powder including vinegar 1961 supplementation on performance, eggshell quality, alterations of intestinal villi and intestinal pathogenic bacteria 1962 populations of aged laying hens. Ital. J. Anim. Sci., 16(2):259-265. 1963 http://dx.doi.org/10.1080/1828051X.2017.1283544 1964 Ribeiro PR, Carvalho JRM, Geriz R, Queiroz V, Fascio M. (2012) Furfural – da biomassa ao laboratório de 1965 química orgânica. Quím. Nova, 35(5). https://doi.org/10.1590/S0100-40422012000500033 1966 Romero J, Benavides E, Meza C. (2018) Assessing financial impacts of subclinical mastitis on Colombian dairy 1967 farms. Front. Vet. Sci. https://doi.org/10.3389/fvets.2018.00273 1968 Rossi B, Esteban MA, García-Beltran JM, Giovagnoni G, Cuesta A, Piva A, Crilli E. (2021) Antimicrobial 1969 power of organic acids and nature-identical compounds against two Vibrio spp.: an in vitro study. 1970 Microorganisms, 9(966). https://doi.org/10.3390/microorganisms9050966 1971 Saeed MM, Yasir JOA, Hussein AN, Hassan RM. (2022) A review of animal diseases caused by staphylococci. 1972 Rev. Latinoam. Hipertens., 17(1). http://doi.org/10.5281/zenodo.6481584 1973 Salomonsen CM, Themudo GE, Jelsbak L, Molin S, Hoiby N, Hammer AS. (2013) Typing of Pseudomonas 1974 aeruginosa from hemorrhagic pneumonia in mink (Neovison vison). Vet. Microbiol., 163:103-109. 1975 http://dx.doi.org/10.1016/j.vetmic.2012.12.003 1976 Saud R, Pokhrel S, Yadav PN. (2019) Synthesis, characterization and antimicrobial activity of maltol 1977 functionalized chitosan derivatives. J. Macromol. Sci, 56. https://doi.org/10.1080/10601325.2019.1578616 1978 Schnitzer JA, Su MJ, Ventura MU, Faria RT. (2015) Doses de extrato pirolenhoso no cultivo de orquídea. Rev. 1979 Ceres, 62(1):101-106. http://dx.doi.org/10.1590/0034-737X201562010013 1980 Silva FTM, Ataíde CH. (2019) Valorization of Eucalyptus urograndis wood via carbonization: Product yields 1981 and characterization. Energy, 172(509-516). https://doi.org/10.1016/j.energy.2019.01.159 1982 Silva MF, Fortes MM, Sette Jr. CR. (2018) Characteristics of wood and charcoal from Eucalyptus clones. 1983 Floresta e Ambiente, 25(3). https://doi.org/10.1590/2179-8087.035016 1984 Soares WNC, Lira GPO, Santos CS, Dias GN, Pimenta AS, Pereira AF, Benício LDM, Rodrigues GSO, Amora 1985 SSA, Alves ND, Feijó FMC. (2020) Pyroligneous acid from Mimosa tenuiflora and Eucalyptus urograndis as an 1986 antimicrobial in dairy goats. J. Appl. Microbiol., 131(2):604-614 https://doi.org/10.1111/jam.14977 1987 Souza JLS, Guimarães VBS, Campos AD, Lund RG. (2018) Antimicrobial potential of pyroligneous extracts – a 1988 systematic review and technological prospecting. Braz. J. Microbiol., 49(1):128-139. 1989 https://doi.org/10.1016/j.bjm.2018.07.001 1990 78 Suresh G, Pakdel H, Roussi T, Brar SK, Fliss I, Roy C. (2019) In vitro evaluation of antimicrobial efficacy of 1991 pyroligneous acid from softwood mixture. Biotechnol. Res. Innov., 3(1):47-53. 1992 https://doi.org/10.1016/j.biori.2019.02.004 1993 Suresh G, Pakdel H, Roussi T, Brar SK, Diarra M, Roy C. (2020) Evaluation of pyroligneous acid as a 1994 therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. Braz. J. Microbiol., 51:1309-1995 1316. 1996 Setiawati E, Annisia W, Soedarmanto H, Iskandar T. Characterization of neutralized wood vinegar derived from 1997 durian wood (Durio zibethinus) and its prospect as pesticide in acidic soil. International Seminar and Congress of 1998 Indonesian Soil Science Society 2019; IOP Conference Series: Earth and Environmental Science, Bogor, Java 1999 Occidental, Indonesia. 2000 Tamblyn KC, Conner DE. (1997) Bactericidal activityof organic acids in combination with transdermal 2001 compounds against Salmonella typhimurium attached to broiler skin. Food Microbiol., 14:477-484. 2002 https://doi.org/10.1006/fmic.1997.0112 2003 Tiilikkala K, Fagernas L, Tiilikkala J. (2010) History and use of wood pyrolysis liquids as biocide and plant 2004 protection product. Open Agric., 4:111-118. https://doi.org/10.2174/1874331501004010111 2005 Tippayawong N, Saengow N, Chaiya E, Srisang N. (2010) Production of charcoal from woods and bamboo in a 2006 small natural draft carbonizer. Int. J. Energy Environ., 1(5):911-918. 2007 Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler Jr. VG. (2015) Staphylococcus aureus infections: 2008 epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 28(3). 2009 https://doi.org/10.1128/CMR.00134-14 2010 Truong H, Le TMA. (2014) Overview of bamboo biomass for energy production. Preprint – Hal open Science. 2011 https://halshs.archives-ouvertes.fr/halshs-01100209 2012 Tyagi B, Dubey A, Verma AK, Tiware S. (2015) Antibacterial activity of phenolics compounds against 2013 pathogenic bacteria. Int. J. Pharm. Sci. Rev. Res., 35(4):16-18. 2014 https://www.researchgate.net/publication/287521153 2015 Velmurugan N, Han SS, Lee YS. (2009) Antifungal activity of neutralized wood vinegar with water extracts of 2016 Pinus densiflora and Quercus serrata saw dusts. Int. J. Environ. Res., 3(2):167-176. 2017 Wali MK, Abed MM. (2019) Antibacterialactivity ofacetic acid against different types of bacteria causes food 2018 spoilage. Plant Arch., 19(1):1827-1831. 2019 Wang HF, Wang JL, Wang C, Zhang WM, Liu JX, Dai B. (2012) Effect of bamboo vinegar as an antibiotic 2020 alternative on growth performance and fecal bacterial communities of weaned piglets. Livest. Sci., 144:173-180. 2021 https://doi.org/10.1016/j.livsci.2011.11.015 2022 Wani MA, Farooqi JA, Shah WA. (2016) Synthesis and antimicrobial activity of some furfural substituted 2023 bisdimedone derivatives. J. Pharm. Appl. Chem., 2(2):53-57. https://doi.org/10.18576/jpac/020204 2024 Wu H, Wu L, Zhu Q, Wang J, Qin X, Xu J, Kong L, Chen J, Lin S, Khan MU, Amjad H, Lin W. (2017) The role 2025 of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous 2026 monoculture regimes. Sci. Rep., 7(3497). https://doi.org/10.1038/s41598-017-03793-8 2027 Yang PF, Lu H, Wang QB, Zhao ZW, Liu Q, Zhao X, Yang J, Huang S, Chen ZF, Mao DB. (2020) Chemical 2028 composition and antimicrobial activities of the essential oil from the leaves of Pterocephalus hookeri. Nat. Prod. 2029 Commun., 15(12): 1-5. https://doi.org/10.1177/1934578X20981239 2030 79 Zhitnitsky D, Rose J, Lewinson O. (2017) The highly synergistic, broad spectrum, antibacterial activity of 2031 organic acids and transition metals. Sci. Rep., 7: 44554. https://doi.org/10.1038/srep44554 2032 Ziklo N, Bibi M, Salam P. (2021) The antimicrobial mode of action of maltol and its synergistic efficacy with 2033 selected cationic surfactants. Cosmetics, 8(86). https://doi.org/10.3390/cosmetics8030086 2034 80 Considerações Finais _____________________________ 6. CONSIDERAÇÕES FINAIS __________________________________________________________________________ Constata-se que os extratos pirolenhosos de Eucalyptus urograndis e Bambusa 2035 vulgaris apresentaram ação antibiótica e antifúngica satisfatórias, inibindo o crescimento de 2036 E. coli, P. aeruginosa, S. enteritidis, S. aureus, S. agalactiae e C. albicans. Ambos os EPs se 2037 mostraram como fontes promissoras ao desenvolvimento de alternativas antimicrobianas 2038 naturais. O pH em que o EP é utilizado influencia no seu potencial antimicrobiano, no 2039 entanto, o EP extraído de E. urograndis desempenhou papel antimicrobiano mesmo em pH 2040 neutro, requerendo concentrações mais elevadas conforme a neutralização avançava, para 2041 resultar em inibição. Sendo assim, pode-se afirmar que a acidez deste produto influencia a 2042 sua ação antimicrobiana, no entanto, não é a única responsável por tal ação. Vale ressaltar 2043 a necessidade de testes in vivo para melhor estruturação de utilização dos EPs. Estudos 2044 81 posteriores são necessários para um maior conhecimento a respeito da aplicação deste 2045 produto como antimicrobiano e as manipulações necessárias para melhorar suas condições. 2046 82 Anexos _____________________________ 7. ANEXOS __________________________________________________________________________ ANEXO I Link de acesso às normas das revistas Capítulo 1: Revista Árvore http://revistaarvore.org.br/2857- 2/#:~:text=As%20principais%20diretrizes%20s%C3%A3o %3A,de%20rodap%C3%A9%20n%C3%A3o%20s%C3% A3o%20aceitas. http://revistaarvore.org.br/2857-2/#:~:text=As%20principais%20diretrizes%20s%C3%A3o%3A,de%20rodap%C3%A9%20n%C3%A3o%20s%C3%A3o%20aceitas http://revistaarvore.org.br/2857-2/#:~:text=As%20principais%20diretrizes%20s%C3%A3o%3A,de%20rodap%C3%A9%20n%C3%A3o%20s%C3%A3o%20aceitas http://revistaarvore.org.br/2857-2/#:~:text=As%20principais%20diretrizes%20s%C3%A3o%3A,de%20rodap%C3%A9%20n%C3%A3o%20s%C3%A3o%20aceitas http://revistaarvore.org.br/2857-2/#:~:text=As%20principais%20diretrizes%20s%C3%A3o%3A,de%20rodap%C3%A9%20n%C3%A3o%20s%C3%A3o%20aceitas 83 Capítulo 2: World Journal of Microbiology and Biotechnology https://www.springer.com/journal/11274/submission- guidelines#Instructions%20for%20Authors_Format. https://www.springer.com/journal/11274/submission-guidelines#Instructions%20for%20Authors_Format https://www.springer.com/journal/11274/submission-guidelines#Instructions%20for%20Authors_Format