Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

<p>See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233500605</p><p>Lochkovian (earliest Devonian) miospores from the Solimões Basin, northern</p><p>Brazil</p><p>Article  in  Review of Palaeobotany and Palynology · January 2005</p><p>DOI: 10.1016/j.revpalbo.2004.09.003</p><p>CITATIONS</p><p>90</p><p>READS</p><p>424</p><p>3 authors:</p><p>Claudia Viviana Rubinstein</p><p>National Scientific and Technical Research Council</p><p>117 PUBLICATIONS   1,919 CITATIONS</p><p>SEE PROFILE</p><p>José Henrique G Melo</p><p>Petróleo Brasileiro S.A.</p><p>112 PUBLICATIONS   3,506 CITATIONS</p><p>SEE PROFILE</p><p>Philippe Steemans</p><p>University of Liège</p><p>323 PUBLICATIONS   4,812 CITATIONS</p><p>SEE PROFILE</p><p>All content following this page was uploaded by José Henrique G Melo on 24 December 2017.</p><p>The user has requested enhancement of the downloaded file.</p><p>https://www.researchgate.net/publication/233500605_Lochkovian_earliest_Devonian_miospores_from_the_Solimoes_Basin_northern_Brazil?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/publication/233500605_Lochkovian_earliest_Devonian_miospores_from_the_Solimoes_Basin_northern_Brazil?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Claudia-Rubinstein?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Claudia-Rubinstein?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/institution/National_Scientific_and_Technical_Research_Council?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Claudia-Rubinstein?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Jose-Melo-28?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Jose-Melo-28?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/institution/Petroleo_Brasileiro_SA?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Jose-Melo-28?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Philippe-Steemans?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Philippe-Steemans?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/institution/University-of-Liege?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Philippe-Steemans?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf</p><p>https://www.researchgate.net/profile/Jose-Melo-28?enrichId=rgreq-fc4170dfd3eede3ba3cca43a1b92e809-XXX&enrichSource=Y292ZXJQYWdlOzIzMzUwMDYwNTtBUzo1NzUxODg0MTg1MzU0MjRAMTUxNDE0NzAxMzQ2OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf</p><p>Lochkovian (earliest Devonian) miospores from the</p><p>Solimões Basin, northwestern Brazil</p><p>Claudia Rubinsteina, José Henrique G. Melob, Philippe Steemansc,*</p><p>aCONICET, Unidad de Paleopalinologı́a, IANIGLA, CRICYT, C.C. 131, 5500 Mendoza, Argentina</p><p>bPETROBRAS/CENPES/PDEXP/BPA, Cid. Universit, Q. 7, I. Fundão, 21949-900 Rio de Janeiro, RJ, Brazil</p><p>cService de Paléobotanique–Paléopalynologie–Micropaléontologie, Bât. B-18,</p><p>Université de Liège, B-4000 Liège 1, Belgium</p><p>Received 5 June 2003; accepted 9 September 2004</p><p>Abstract</p><p>Eighteen core samples from PETROBRAS well 1-JD-1-AM (Jandiatuba area, Solimões Basin, northwestern Brazil) have</p><p>been studied for miospores. Fifty-three species are identified. This assemblage is tentatively correlated with the Z Phylozone of</p><p>the BZ Oppel Zone (Steemans, P., 1989. Palynostratigraphie de l’Eodévonien dans l’ouest de l’Europe. Professional Paper.</p><p>Mémoires Explicatifs pour les Cartes Géologiques and Minéralogiques de la Belgique, 27, pp. 453.), dated late Lochkovian.</p><p>This is in accordance with previous age determinations based on chitinozoans and acritarchs. Numerous representatives of the</p><p>miospore genus Dictyotriletes are observed. These enable recognition of the Dictyotriletes emsiensis morphon, an informal</p><p>classification unit which includes Dictyotriletes granulatus, D. emsiensis, Dictyotriletes cf. subgranifer, specimens previously</p><p>misassigned to D. subgranifer and some Dictyotriletes spp. provisionally left in open nomenclature. Since all intermediate</p><p>forms from typical D. granulatus to typical D. emsiensis coexist, it is currently difficult to determine the base of bEQ Interval</p><p>Biozone in South America as originally defined in Western Europe. It is suggested, therefore, that the base of the bEmsQ</p><p>Biozone defined in Brazil cannot be correlated with the base of the bEQ Biozone. Instead, it should be included in an interval of</p><p>uncertainty ranging from the European bSiQ to bEQ Biozones. Indeed, the underlying bNsZQ Biozone from South America</p><p>contains species not known below the bSiQ Biozone. Here, the D. emsiensis morphon Assemblage Zone is erected, which may</p><p>be coeval with the bNQ through bEQ Biozones of Western Europe. The PISA palynoflora from the Paraná Basin is also attributed</p><p>to this new biozone. However, in the absence of species observed in the bBZQ Biozone (and also in the Solimões Basin), the</p><p>PISA assemblage could be somewhat older than that of well 1-JD-1-AM.</p><p>D 2004 Elsevier B.V. All rights reserved.</p><p>Keywords: miospore; Brazil; biostratigraphy; Lochkovian; Solimões Basin</p><p>0034-6667/$ - see front matter D 2004 Elsevier B.V. All rights reserved.</p><p>doi:10.1016/j.revpalbo.2004.09.003</p><p>* Corresponding author. Fax: +32 4 366 53 38.</p><p>E-mail addresses: crubinstein@arlinkbbt.com.ar (C. Rubinstein)8 jhmelo@cenpes.petrobras.com.br (J.H.G. Melo)8 p.steemans@ulg.ac.be</p><p>(P. Steemans).</p><p>Review of Palaeobotany and Palynology 133 (2005) 91–113</p><p>www.elsevier.com/locate/revpalbo</p><p>1. Introduction</p><p>The aim of this contribution is the detailed</p><p>description and biostratigraphic analysis of Lochko-</p><p>vian miospore assemblages from well 1-JD-1-AM</p><p>(Jandiatuba locality, State of Amazonas) in the</p><p>Solimões Basin, northwestern Brazil (Fig. 1). This</p><p>palynological contribution is of high interest as very</p><p>few published data are available on Early Devonian</p><p>miospores</p><p>from South America.</p><p>The Solimões Basin (formerly named Upper</p><p>Amazonas Basin) is delimited by the Iquitos High in</p><p>the west and the Purus High in the east. The Carauari</p><p>High divides the main basin into two depositional</p><p>centres, the Jandiatuba Sub-basin in the west and the</p><p>Juruá Sub-basin in the east. No palyniferous rocks</p><p>older than Middle Devonian are currently known from</p><p>the latter, so the discussion in this paper will</p><p>concentrate on the Jandiatuba Sub-basin, where</p><p>Ordovician, Late Silurian and earliest Devonian</p><p>marine strata also occur in addition to younger</p><p>sediments.</p><p>Fig. 2 summarizes previous Silurian–Early Car-</p><p>boniferous lithostratigraphic and biozonal schemes of</p><p>the Solimões Basin according to selected authors.</p><p>Note that, prior to Grahn’s (1992) biostratigraphic</p><p>study, Silurian and Devonian rocks older than Emsian</p><p>were unknown in the Jandiatuba Sub-basin. Grahn</p><p>was the first to recognize the presence of Lochkovian</p><p>strata, based on chitinozoans. He also established a</p><p>new, informal stratigraphy by defining six depositio-</p><p>nal cycles within Silva’s (1987, 1988) formations of</p><p>Silurian–Devonian age. In terms of the Solimões</p><p>Basin lithostratigraphic scheme, Cycles 1 to 3 make</p><p>up the Jutaı́ Formation, and the remaining cycles are</p><p>included in the Marimari Group as redefined by Eiras</p><p>et al. (1994) (i.e., comprising only the Uerê and</p><p>Jandiatuba Formations). Cycles 1 and 2 are restricted</p><p>to more central parts of the Jandiatuba Sub-basin, and</p><p>were assigned a Late Silurian age (respectively: late</p><p>Wenlock–early Ludlow, and late Ludlow–earliest</p><p>Pridoli). Cycle 3, dated early Lochkovian by Grahn</p><p>(1992), is widely distributed in the Jandiatuba Sub-</p><p>basin and over much of the Carauari High, where it</p><p>Fig. 1. Location map of well 1-JD-1-AM in the Solimões Basin (after Grahn et al., 2003).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–11392</p><p>F</p><p>ig</p><p>.</p><p>2</p><p>.</p><p>P</p><p>re</p><p>v</p><p>io</p><p>u</p><p>s</p><p>li</p><p>th</p><p>o</p><p>st</p><p>ra</p><p>ti</p><p>g</p><p>ra</p><p>p</p><p>h</p><p>ic</p><p>sc</p><p>h</p><p>em</p><p>es</p><p>,</p><p>d</p><p>at</p><p>in</p><p>g</p><p>s</p><p>an</p><p>d</p><p>p</p><p>al</p><p>y</p><p>n</p><p>o</p><p>zo</p><p>n</p><p>at</p><p>io</p><p>n</p><p>s</p><p>o</p><p>f</p><p>S</p><p>il</p><p>u</p><p>ri</p><p>an</p><p>th</p><p>ro</p><p>u</p><p>g</p><p>h</p><p>E</p><p>ar</p><p>ly</p><p>C</p><p>ar</p><p>b</p><p>o</p><p>n</p><p>if</p><p>er</p><p>o</p><p>u</p><p>s</p><p>ro</p><p>ck</p><p>u</p><p>n</p><p>it</p><p>s</p><p>o</p><p>f</p><p>th</p><p>e</p><p>S</p><p>o</p><p>li</p><p>m</p><p>õ</p><p>es</p><p>B</p><p>as</p><p>in</p><p>ac</p><p>co</p><p>rd</p><p>in</p><p>g</p><p>to</p><p>se</p><p>le</p><p>ct</p><p>ed</p><p>au</p><p>th</p><p>o</p><p>rs</p><p>.</p><p>C</p><p>o</p><p>lu</p><p>m</p><p>n</p><p>s</p><p>se</p><p>p</p><p>ar</p><p>at</p><p>ed</p><p>b</p><p>y</p><p>v</p><p>er</p><p>ti</p><p>ca</p><p>l</p><p>d</p><p>as</p><p>h</p><p>ed</p><p>li</p><p>n</p><p>es</p><p>re</p><p>fe</p><p>r</p><p>to</p><p>w</p><p>o</p><p>rk</p><p>s</p><p>th</p><p>at</p><p>ad</p><p>o</p><p>p</p><p>t</p><p>si</p><p>m</p><p>il</p><p>ar</p><p>o</p><p>r</p><p>in</p><p>te</p><p>rr</p><p>el</p><p>at</p><p>ed</p><p>b</p><p>io</p><p>st</p><p>ra</p><p>ti</p><p>g</p><p>ra</p><p>p</p><p>h</p><p>ic</p><p>/l</p><p>it</p><p>h</p><p>o</p><p>st</p><p>ra</p><p>ti</p><p>g</p><p>ra</p><p>p</p><p>h</p><p>ic</p><p>in</p><p>te</p><p>rp</p><p>re</p><p>ta</p><p>ti</p><p>o</p><p>n</p><p>s.</p><p>T</p><p>h</p><p>e</p><p>p</p><p>re</p><p>se</p><p>n</p><p>t</p><p>p</p><p>ap</p><p>er</p><p>fo</p><p>cu</p><p>se</p><p>s</p><p>o</p><p>n</p><p>th</p><p>e</p><p>m</p><p>io</p><p>sp</p><p>o</p><p>re</p><p>st</p><p>ra</p><p>ti</p><p>g</p><p>ra</p><p>p</p><p>h</p><p>y</p><p>o</p><p>f</p><p>th</p><p>e</p><p>E</p><p>ar</p><p>ly</p><p>D</p><p>ev</p><p>o</p><p>n</p><p>ia</p><p>n</p><p>(L</p><p>o</p><p>ch</p><p>k</p><p>o</p><p>v</p><p>ia</p><p>n</p><p>)</p><p>p</p><p>ar</p><p>t</p><p>o</p><p>f</p><p>th</p><p>e</p><p>Ju</p><p>ta</p><p>ı́</p><p>F</p><p>o</p><p>rm</p><p>at</p><p>io</p><p>n</p><p>.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 93</p><p>makes up the upper part of the Jutaı́ Formation.</p><p>According to the lithostratigraphic revision by Eiras et</p><p>al. (1994), the Jutaı́ Formation (including the Biá</p><p>Member on the Carauari High) is excluded from the</p><p>Marimari Group and encompasses the entire Late</p><p>Silurian to Early Devonian sequence of the Jandiatuba</p><p>Sub-basin. It consists mainly of dark grey to brownish</p><p>shales with interbedded white, fine-grained sand-</p><p>stones and greyish siltstones, with minor dolomitic</p><p>limestone lenses, all deposited in a transgressive</p><p>marine environment.</p><p>The Silurian–Devonian chitinozoan biostratigra-</p><p>phy of the Solimões Basin was recently reviewed</p><p>by Grahn et al. (2003), who recognized three</p><p>chitinozoan biozones in the Jutaı́ Formation. The</p><p>oldest of these is the Ancyrochitina ancyrea–</p><p>Ancyrochitina aff. A. libyensis Concurrent Range</p><p>Zone, of Pridoli s.l. age, which corresponds to the</p><p>former Cycles 1 and 2 sensu Grahn (1992). The</p><p>other two biozones correspond to Cycle 3, and</p><p>account for practically the entire Lochkovian stage</p><p>in the Solimões Basin, namely: the Angochitina</p><p>filosa Interval Zone (early Lochkovian), and the</p><p>Urochitina loboi–Ramochitina jutaiense Concurrent</p><p>Range Zone (late Lochkovian). Beside this work,</p><p>detailed stratigraphic and palynological information</p><p>is also available from Quadros (1988) and Grahn</p><p>(1992). The Devonian–Carboniferous miospore</p><p>stratigraphy of the Solimões Basin was discussed</p><p>and updated by Loboziak et al. (1994a,b) and Melo</p><p>and Loboziak (2003).</p><p>This paper is part of a collective project carried</p><p>out by the authors and Dr. Alain Le Hérissé</p><p>(University of Brest, France), concerning the paly-</p><p>nology of Silurian–Devonian boundary strata of the</p><p>North Gondwanan margin. The Brazilian basins are</p><p>investigated in the context of a scientific collabo-</p><p>ration with PETROBRAS, the main purpose of</p><p>which is to contribute to the refinement of the</p><p>Upper Silurian–Lower Devonian biostratigraphy of</p><p>Brazil.</p><p>2. Palynological results from well 1-JD-1-AM</p><p>The 18 productive core samples studied here are</p><p>from depth interval 2428.40–2445.20 m of well 1-</p><p>JD-1-AM (core 4, between 2428 and 2446 m),</p><p>drilled by PETROBRAS in the deepest part of the</p><p>Jandiatuba Sub-basin of the Solimões Basin. In this</p><p>same well, the Jutaı́ Formation ranges from ca. 2415</p><p>m through 2541 m (Grahn et al., 2003, text–fig. 2),</p><p>so core 4 is within the uppermost part of that rock</p><p>unit. Fig. 3 gives a brief lithological account of core</p><p>4. The reference section of Grahn’s (1992) early</p><p>Lochkovian Cycle 3 in this same well ranges from</p><p>2427 m down to 2475 m, thus including the interval</p><p>studied herein. Grahn et al. (2003) also chose about</p><p>the same depth range of well 1-JD-1-AM (2423–</p><p>2470 m) as the reference section of their late</p><p>Lochkovian Urochitina loboi–Ramochitina jutaiense</p><p>Biozone.</p><p>According to Grahn et al. (2003), the chitino-</p><p>zoan fauna in core 4 of well 1-JD-1-AM is typical</p><p>for the Urochitina loboi–Ramochitina jutaiense</p><p>Concurrent Range Zone, and comprises: Ancyrochi-</p><p>tina fragilis, Angochitina filosa, Cingulochitina</p><p>ervensis, Cingulochitina serrata, U. loboi s.s. and</p><p>closely related forms, Pterochitina megavelata,</p><p>Sphaerochitina cf. patula, Ramochitina jutaiense</p><p>and Margachitina catenaria. Those authors now</p><p>admit a late Lochkovian age in place of the early</p><p>Lochkovian age first assigned by Grahn (1992) to</p><p>this same chitinozoan assemblage (then attributed to</p><p>Cycle 3). Core 4 also contains a rich palynomorph</p><p>assemblage comprising acritarchs and miospores.</p><p>Among the associated acritarchs, Demorhethium</p><p>lappaceum, Riculasphaera fissa, Thysanoprobolus</p><p>polykion, Schizocystia pilosa and Winwaloeusia</p><p>distracta have been observed (Rubinstein and Le</p><p>Hérissé, in preparation). They confirm the Lochko-</p><p>vian age indicated by the chitinozoans.</p><p>Miospores are numerous but very poorly pre-</p><p>served. All specimens are flattened, partly carbonized</p><p>and corroded. For this reason, identifications proved</p><p>extremely difficult, and most taxa have been recorded</p><p>on the basis of a limited number of recognizable</p><p>specimens. Nevertheless, 53 miospore species have</p><p>been identified (Appendix A). Trilete spores largely</p><p>outnumber cryptospores both in diversity and abun-</p><p>dance in all samples studied. Moreover, the percent-</p><p>age of cryptospores in the total palynoflora decreases</p><p>from the lowest to the highest levels, and they tend to</p><p>disappear upward. Fig. 4 shows the vertical distribu-</p><p>tion of the most significant miospore taxa along the</p><p>sampled interval.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–11394</p><p>Palynological slides are housed in the Palaeonto-</p><p>logical Collections of the University of Liège.</p><p>3. Reassessment of earliest Devonian miospore</p><p>biostratigraphy</p><p>Previous knowledge of Lochkovian palynofloras is</p><p>limited. Well-documented assemblages have been</p><p>reported from a few regions such as Britain</p><p>(Richardson and Lister, 1969; Richardson et al.,</p><p>1984; Wellman, 1993; Wellman and Richardson,</p><p>1996; Wellman et al., 2000; etc.), the Ardenno-</p><p>Rhenish region (Streel et al., 1981; Steemans, 1989,</p><p>etc.), Spain (Rodriguez, 1978a,b, 1983; Richardson et</p><p>al., 2001, etc.), Poland (Turnau, 1986; Turnau and</p><p>Jakubowska, 1989) and North Africa (Jardiné and</p><p>Yapaudjian, 1968; Massa and Moreau-Benoit, 1976;</p><p>Rubinstein and Steemans,</p><p>2002, etc.). In North</p><p>America, coeval assemblages have been described</p><p>Fig. 3. Schematic lithological log of core 4 of well 1-JD-1-AM (after PETROBRAS data).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 95</p><p>Fig. 4. Stratigraphic distribution of miospores in core 4 of well 1-JD-1-AM. Black dots and white dots refer to confirmed and doubtful (bcf.Q)</p><p>species identifications, respectively.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–11396</p><p>from Canada (McGregor, 1973; McGregor and Cam-</p><p>field, 1976). In South America, studies of Lochko-</p><p>vian miospore assemblages are particularly focused</p><p>on the intracratonic basins of Brazil (Dino and</p><p>Rodrigues, 1995; Dino et al., 1995; Loboziak et al.,</p><p>1995, 1998; Rubinstein et al., 2000; Melo and</p><p>Loboziak, 2001, 2003), together with valuable data</p><p>from Bolivia (McGregor, 1984) and the Argentinian</p><p>Precordillera (Le Hérissé et al., 1996).</p><p>Richardson and McGregor (1986) established the</p><p>first spore zonal scheme for the Silurian and Devon-</p><p>ian of the Old Red Sandstone Continent and adjacent</p><p>basins. On the other hand, Streel et al. (1987) and</p><p>Steemans (1989) erected a standard Devonian mio-</p><p>spore biozonation for Western Europe. The correla-</p><p>tion between the Euramerican and Western European</p><p>zonal schemes is discussed in Streel et al. (1987,</p><p>2000).</p><p>In general, the miospore biozonations originally</p><p>described for the Devonian of Western Europe and the</p><p>Old Red Sandstone Continent have been successfully</p><p>applied to Brazilian sequences. However, owing to</p><p>certain inaccuracies in the correlation of regional</p><p>miospore successions with Euramerican palynozones,</p><p>a new Devonian–Early Carboniferous miospore zona-</p><p>tion for the Amazon Basin was recently proposed by</p><p>Melo and Loboziak (2001, 2003), which is also</p><p>applicable to the Parnaı́ba and Paraná basins of Brazil</p><p>and other Western Gondwanan regions where similar</p><p>palynofloras occur. According to the latter biozona-</p><p>tion, two zones correspond to the Lochkovian. The</p><p>Non-spinose Zonates Interval Zone (NsZ), of pre–</p><p>latest Lochkovian age, is defined by the first</p><p>occurrence of the eponymous informal miospore</p><p>group. Biornatispora salopiensis, Chelinospora cas-</p><p>sicula and Cirratriradites diaphanus (incorrectly</p><p>named rarus in Melo and Loboziak, 2001) are among</p><p>the characteristic taxa. The overlying Dictyotriletes</p><p>emsiensis Interval Zone (Ems), of latest Lochkovian</p><p>through latest Pragian or early Emsian age, is defined</p><p>by the first occurrence of the eponymous species.</p><p>Verrucosisporites cf. polygonalis, Dictyotriletes cf.</p><p>subgranifer and Perotrilites sp. cf. Zonotriletes 2 in</p><p>Jardiné and Yapaudjian (1968) (the latter two first</p><p>appearing well above D. emsiensis) are other charac-</p><p>teristic taxa of this zone.</p><p>In the Paraná Basin, palynological data are</p><p>available from the uppermost Furnas Formation both</p><p>in outcrops (PISA locality, Jaguariaı́va area) and the</p><p>subsurface of the southeastern part of the basin, and</p><p>also from the lower part of the overlying Ponta Grossa</p><p>Formation in outcrops and wells in the southeastern</p><p>and northern parts of the basin. In the PISA locality,</p><p>the Furnas Formation palynoflora is rich (Dino and</p><p>Rodrigues, 1995; Dino et al., 1995), including</p><p>Amicosporites miserabilis, Synorisporites tripapilla-</p><p>tus, Synorisporites verrucatus, Chelinospora pseu-</p><p>doreticulata, Brochotriletes foveolatus, Dictyotriletes</p><p>emsiensis and Dictyotriletes subgranifer among the</p><p>identified species. These authors did not assign the</p><p>miospore assemblage to any definite biozone, but they</p><p>considered a possible Pragian age (Dino and</p><p>Rodrigues, 1995) or a late Lochkovian–earliest</p><p>Emsian age range (Dino et al., 1995). According to</p><p>Loboziak et al. (1995), uppermost Furnas strata in</p><p>core 23 of well 2-CN-1-SC have yielded an abundant,</p><p>low-diversity miospore assemblage constituted by</p><p>small-sized forms such as D. emsiensis, Dictyotriletes</p><p>cf. granulatus, Dibolisporites cf. eifeliensis, Tholis-</p><p>porites chulus, S. cf. verrucatus, Amicosporites sp.,</p><p>Chelinospora cf. cassicula and Chelinospora cf.</p><p>retorrida. This assemblage has been dated late</p><p>Lochkovian or earliest Pragian due to the presence</p><p>of: (a) D. emsiensis, a species that first appears in the</p><p>Interval Zone E, within the upper breconensis–</p><p>zavallatus (BZ) Oppel Zone in Western Europe; and</p><p>(b) the presence of biform-sculptured miospores like</p><p>Dibolisporites, then believed to first occur close to the</p><p>Lochkovian–Pragian boundary (Dino et al., 1995;</p><p>Loboziak et al., 1995). The other Early Devonian</p><p>miospore assemblage from the Paraná Basin has been</p><p>described from the basal part of the overlying Ponta</p><p>Grossa Formation. This younger palynoflora has</p><p>lower diversity and stratigraphic resolution than the</p><p>Furnas assemblage. In addition to some pre-existing</p><p>species also found in the Furnas Formation, it contains</p><p>Emphanisporites rotatus, Dibolisporites sp., Cymbo-</p><p>sporites sp., Dictyotriletes sp. cf. D. richardsonii and</p><p>Cirratriradites sp. cf. C. diaphanus. This lower Ponta</p><p>Grossa assemblage has been considered as pre-</p><p>Emsian due to the absence of Emsian index species</p><p>(Dino et al., 1995; Loboziak et al., 1995, 1998).</p><p>Afterwards Dino (1999), on the basis of previously</p><p>published data, proposed the Spore–Assemblage 2 for</p><p>the uppermost Furnas Fm. and the lowermost Ponta</p><p>Grossa Fm., which he assigned a late Lochkovian–</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 97</p><p>Pragian age range, corresponding to the BZ through</p><p>PoW Oppel Zones of Streel et al. (1987) and</p><p>Steemans (1989).</p><p>Studies of Bolivian Early Devonian palynomorphs</p><p>concern the Cordillera Oriental and Precordilleran</p><p>regions of southern Bolivia, and the Madre de Dı́os</p><p>Basin of northern Bolivia. In the Madre de Dı́os</p><p>Basin, Vavrdová et al. (1996) found Early Devonian</p><p>palynomorph assemblages in the Tequeje Formation.</p><p>They assigned the lower part of that unit to the</p><p>tripapillatus–spicula and the micrornatus–newpor-</p><p>tensis Biozones, based on the presence of Apiculir-</p><p>etusispora spicula and tripapillate forms. However,</p><p>they incorrectly attributed those biozones respec-</p><p>tively to the Lochkovian and the Pragian, as in fact</p><p>they are respectively Pridoli and Lochkovian in age.</p><p>The upper part of the Tequeje Formation was dated</p><p>Pragian because of the appearance of Brochotriletes</p><p>hudsonii, but this species is of poor stratigraphic</p><p>value. A Lochkovian to Pragian age range is</p><p>supported by microphytoplankton and chitinozoan</p><p>data.</p><p>Palynological studies carried out by McGregor</p><p>(1984) in the Cordillera Oriental, Tarabuco locality,</p><p>assigned a bGedinnianQ age to the lower part of the</p><p>Santa Rosa Formation, especially due to the first</p><p>occurrence of interradially papillate spores and the</p><p>proliferation of Aneurospora spp. Nevertheless, the</p><p>author indicated that the increase upward in</p><p>the abundance of reticulate forms, particularly of</p><p>Dictyotriletes emsiensis, was unusual below the</p><p>bSiegenianQ. The upper part of the unit has been</p><p>interpreted by McGregor as Emsian, owing to the</p><p>first appearance of Dibolisporites spp. and Apicula-</p><p>tisporites microconus. Melo (2000) pointed out some</p><p>differences between his results and previous palyno-</p><p>logical studies of the Santa Rosa Formation, in the</p><p>context of an evaluation and correlation of Silurian–</p><p>Devonian sections from southern Subandean Bolivia.</p><p>He suggested that the top of that unit is not younger</p><p>than the Lochkovian–Pragian transition, whereas</p><p>lower parts of the formation remain poorly dated</p><p>(Lochkovian to ?Pridoli). He found no evidence of</p><p>Emsian rocks, nor of an intraformational gap from</p><p>latest Lochkovian to late Pragian, and was therefore</p><p>in disagreement with the interpretation of McGregor</p><p>(1984). According to Melo (2000) the Santa Rosa</p><p>Formation is coeval with Grahn’s (1992) Cycle 3 of</p><p>the Solimões Basin. Melo also indicated that</p><p>Schizocystia spp. are rare in sections studied by</p><p>him, although large numbers</p><p>of this acritarch had</p><p>been previously reported from Lochkovian–Pragian</p><p>strata of Bolivia.</p><p>Le Hérissé et al. (1996) reported palynomorph</p><p>assemblages recovered from the Talacasto Formation,</p><p>in the Argentinian Central Precordillera Basin. The</p><p>lower part of the formation comprises diagnostic</p><p>miospores such as Dibolisporites echinaceus and</p><p>Dictyotriletes emsiensis. It has been assigned to the</p><p>upper Lochkovian in agreement with acritarch and</p><p>chitinozoan results.</p><p>4. Biostratigraphic results</p><p>All samples investigated from well 1-JD-1-AM</p><p>are within Cycle 3 of Grahn (1992), previously dated</p><p>early Lochkovian on the basis of chitinozoan studies,</p><p>particularly in view of the presence of Urochitina</p><p>loboi Volkheimer, 1986. In more recent works</p><p>(Grahn, 1999; Grahn et al., 2000, 2001), the U.</p><p>loboi Zone has been considered as late Lochkovian,</p><p>so corresponding to a stratigraphic interval that</p><p>ranges from the micrornatus–newportensis (MN)</p><p>Oppel Zone to the Z Phylozone, within the lower</p><p>breconensis–zavallatus (BZ) Oppel Zone. Indeed, an</p><p>identical age is now also admitted by Grahn et al.</p><p>(2003) for the Solimões Basin equivalent of that</p><p>chitinozoan biozone, i.e., the newly described U.</p><p>loboi–Ramochitina jutaiense Concurrent Range</p><p>Zone, which corresponds to the main part of the</p><p>former Cycle 3.</p><p>The miospore species chosen for analysis are</p><p>among those deemed more relevant to the biostrati-</p><p>graphic evaluation of the palynoflora.</p><p>Among the species with oldest stratigraphic incep-</p><p>tions, Amicosporites miserabilis and Cymbosporites</p><p>echinaceus first occur in the tripapillatus–spicula</p><p>Biozone of Pridoli age (Richardson and McGregor,</p><p>1986). Hispanaediscus irregularis and Aneurospora</p><p>geikiei first appear in the Apiculiretusispora sp. E</p><p>Zone of earliest Lochkovian age, in the bLower Old</p><p>Red SandstoneQ of Scotland (Wellman and Richard-</p><p>son, 1996). It should be taken into account that</p><p>Chelinospora retorrida, Cymbosporites paulus, Cym-</p><p>bosporites dittonensis, Iberoespora cantabrica and</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–11398</p><p>Synorisporites papillensis , previously unknown</p><p>below the Lochkovian MN Biozone (Steemans,</p><p>1989), were later found in Libya, in levels assigned</p><p>to the lower and middle parts of the Pridoli by</p><p>chitinozoans and acritarchs (Jaglin and Paris, 2002; Le</p><p>Hérissé, 2002; Rubinstein and Steemans, 2002).</p><p>Aneurospora geikiei is also present in middle Pridoli</p><p>rocks of Libya.</p><p>More typical of the MN Oppel Zone are</p><p>Streelispora granulata, Aneurospora isidori and</p><p>Iberoespora glabella, which first appear in the N</p><p>Interval Zone. Chelinospora favosa has not been</p><p>recorded below the M Interval Zone. Aneurospora</p><p>tojoides var. B, Apiculatasporites perpusillus and</p><p>Brochotriletes? foveolatus first occur in the Si</p><p>Phylozone. Cymbosporites dammamensis first</p><p>appears in Si to Z Phylozones of Saudi Arabia</p><p>(Steemans, 1995). Dibolisporites echinaceus, Dibo-</p><p>lisporites eifeliensis and Chelinospora baculoreticu-</p><p>lata, which are unknown below the Z Phylozone of</p><p>the breconensis–zavallatus (BZ) Oppel Zone, occur</p><p>already in the lowest levels investigated in core 4 of</p><p>1-JD-1-AM. Dictyotriletes emsiensis is considered as</p><p>an important marker species for different miospore</p><p>zonations. It is an index species of the polygonalis–</p><p>emsiensis Assemblage Zone (Richardson and</p><p>McGregor, 1986), of the E Interval Zone (Steemans,</p><p>1989), and of the Ems Biozone in the Amazon Basin</p><p>(Melo and Loboziak, 2001, 2003). According to all</p><p>these zonal schemes the species first occurs in the</p><p>latest Lochkovian. In our opinion, D. emsiensis</p><p>cannot be considered as a significant biostratigraphic</p><p>species in the particular case of the Solimões Basin,</p><p>and the same could probably also apply to other</p><p>Brazilian and Bolivian basins. Indeed, on the basis of</p><p>the present and previous works (Dino et al., 1995;</p><p>Loboziak et al., 1995, 1998; Melo, 2000; Gerrienne et</p><p>al., 2001) and unpublished data, the first appearance</p><p>level of D. emsiensis sensu (Allen) McGregor, 1973</p><p>in the biostratigraphic scale of South America cannot</p><p>be accurately determined because all intermediate</p><p>forms from btrueQ D. emsiensis to other species of</p><p>Dictyotriletes exist. Even if btrueQ D. emsiensis is</p><p>observed, it could be erroneous to consider that its</p><p>first occurrence in South America is coeval with the</p><p>species’ stratigraphic inception in Avalonia, where the</p><p>E Interval Zone is defined by D. emsiensis in the</p><p>absence of any other intermediate forms. The D.</p><p>emsiensis morphon (see Appendix B) occurs in the</p><p>Nh Sub-zone in Brittany (Dictyotriletes granulatus in</p><p>Steemans, 1989), and therefore its stratigraphic value</p><p>is limited. Therefore, we provisionally place (Fig. 5)</p><p>the base of the D. emsiensis Interval Zone sensu Melo</p><p>and Loboziak (2001), as defined in the Amazon</p><p>Basin, within an interval of uncertainty ranging from</p><p>the Nh Sub-zone to the E Interval Zone defined by</p><p>Steemans (1989). This interval of uncertainty is</p><p>probably restricted to the Si–E zonal span, because</p><p>Cirratriradites diaphanus, which appears in the Si</p><p>Biozone (Steemans, 1989), is one of the characteristic</p><p>taxa of the Non-spinose Zonates Interval Zone (NsZ</p><p>Zone in Melo and Loboziak, 2001). In addition, we</p><p>provisionally erect a D. emsiensis morphon Assem-</p><p>blage Zone, characterized by the joint occurrence of</p><p>numerous, morphologically inter-related and often</p><p>poorly distinguishable species of Dictyotriletes partly</p><p>akin to D. emsiensis. It should be emphasized that this</p><p>new zone corresponds to only the lower part</p><p>(Lochkovian in age) of the Ems Interval Zone sensu</p><p>Melo and Loboziak (2001).</p><p>Consequently, the miospore assemblage from core</p><p>4 of well 1-JD-1-AM belongs to the emsiensis</p><p>morphon Assemblage Zone. All the above discussed</p><p>facts, combined with the absence of characteristic</p><p>miospore species of the PoW Oppel Zone or younger</p><p>biozones, suggest a restricted attribution of the studied</p><p>Solimões palynoflora to the Z Phylozone of the</p><p>breconensis–zavallatus (BZ) Oppel Zone, of late—</p><p>though not latest—Lochkovian age (Steemans, 1989).</p><p>This is in agreement with recent age determinations</p><p>by Grahn et al. (2003), corresponding to the late</p><p>Lochkovian Urochitina loboi–Ramochitina jutaiense</p><p>Concurrent Range Zone (former Cycle 3) of the</p><p>Solimões Basin.</p><p>The PISA miospore assemblage also belongs to</p><p>the emsiensis morphon Assemblage Zone. However,</p><p>in absence of species like Dibolisporites eifeliensis</p><p>or Dibolisporites echinaceus, which occur in core 4</p><p>of well 1-JD-1-AM, the Furnas palynoflora is</p><p>probably older and could be correlated with the</p><p>MN Biozone as suggested by Gerrienne et al.</p><p>(2001).</p><p>It is important to highlight the high frequency of</p><p>the acritarch Schizocystia in the studied levels</p><p>(Rubinstein and Le Hérissé, in preparation), in the</p><p>same way as already reported from Lochkovian–</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 99</p><p>Pragian strata of Bolivian basins and the Paraná</p><p>Basin of southern Brazil. In the latter, Schizocystia</p><p>spp. have been previously reported from the upper-</p><p>most Furnas Formation (PISA locality, Dino and</p><p>Rodrigues, 1995). Besides, they are also locally</p><p>common in higher parts of the Jatapu Member of the</p><p>Maecuru Formation in the Amazon Basin, within the</p><p>younger (Pragian–early Emsian) section of the Ems</p><p>Interval Zone (J.H.G. Melo, unpublished data,</p><p>2002).</p><p>In addition, the Urochitina loboi Zone, present in</p><p>the Solimões Basin, has been also recognized in</p><p>Bolivia and Argentina, namely in the lower Tequeje,</p><p>Santa Rosa and lower Talacasto Formations.</p><p>5. Conclusions</p><p>Lochkovian miospore assemblages from the Sol-</p><p>imões Basin are documented in detail for the first</p><p>time.</p><p>Miospores, considered together with acritarchs</p><p>and chitinozoans, greatly improve the calibration of</p><p>the Lochkovian biostratigraphy of the Solimões</p><p>Basin.</p><p>The studied interval, comprising core 4 of well 1-</p><p>JD-1-AM, is situated in the uppermost part of the</p><p>Jutaı́</p><p>Formation in the Jandiatuba Sub-basin. It is within the</p><p>reference section of both Cycle 3 sensu Grahn (1992)</p><p>and Grahn et al.’s (2003) Urochitina loboi–Ramochi-</p><p>tina jutaiense Concurrent Range Zone. In terms of the</p><p>Devonian miospore stratigraphy of Euramerica, this</p><p>same interval can be correlated with the Z Phylozone</p><p>of late Lochkovian age, within the lower breconensis–</p><p>zavallatus (BZ) Oppel Zone. The new Solimões</p><p>miospore data contribute to the refinement of the</p><p>Lower Devonian part of the palynozonal scheme</p><p>proposed for the Amazon Basin by Melo and</p><p>Loboziak (2001, 2003), which is also applicable to</p><p>other Brazilian basins.</p><p>Acknowledgements</p><p>This paper is a part of a joint collaboration</p><p>supported by the CONICET in Argentina and the</p><p>Fig. 5. Integrated correlation of (1) standard lowest Devonian stages, (2) Euramerican miospore zonal schemes by Steemans (1989), (3) the</p><p>Amazon Basin miospore zonation by Melo and Loboziak (2001, 2003), (4) miospore data from well 1-JD-1-AM (present work), and PISA</p><p>locality in the Paraná Basin (Dino and Rodrigues, 1995; Gerrienne et al., 2001).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113100</p><p>FNRS in Belgium. The authors publish with the</p><p>permission of PETROBRAS–Petróleo Brasileiro S.A.</p><p>We thank Drs. P. Gerrienne (University of Liège),</p><p>B. Owens (Sheffield), C.C. Lana and A.A. Scarparo</p><p>Cunha (both with PETROBRAS/CENPES/PDEXP/</p><p>BPA, Rio de Janeiro), H. Visscherand (Editor-in</p><p>Chief, RPP) and an anonymous RPP reviewer for</p><p>critically reading and improving the manuscript.</p><p>Appendix A. Annoted list of miospores</p><p>Ambitisporites avitus/dilutus morphon Steemans, Le</p><p>Hérissé and Bozdogan 1996 (Plate I,1).</p><p>Ambitisporites tripapillatus Moreau-Benoit 1976</p><p>(Plate I,2).</p><p>Ambitisporites cf. bRetusotriletes cf. goensisQ in</p><p>Rodriguez 1983 (Plate I,3).</p><p>Description: Amb subcircular to subtriangular. Equa-</p><p>torial crassitude 2–5 Am. Trilete mark distinct,</p><p>with straight sutures that extend to the inner</p><p>margin of the crassitude. Thickened apical area,</p><p>subcircular to subtriangular in shape, 8–14 Am in</p><p>diameter. Dimensions: 26 (32) 40 Am (seven</p><p>specimens measured).</p><p>Remark: These specimens, as well as those described</p><p>by Rodriguez (1983), have an equatorial crassitude.</p><p>For this reason, they are herein assigned to the</p><p>genus Ambitisporites.</p><p>Amicosporites miserabilis Cramer 1966 (Plate I,4).</p><p>Aneurospora cf. A. geikiei Wellman and Richardson</p><p>1996 (Plate I,5).</p><p>Description: Amb subcircular. Trilete mark indistinct.</p><p>Equatorial crassitude 2–3 Am. Proximal face</p><p>destroyed. Distal and equatorial exine covered by</p><p>spines and ornaments with a slightly tapering basal</p><p>part topped by a small spine (biform elements), less</p><p>than 1 Am high, 1 Am wide, 1 Am apart.</p><p>Dimensions: 71 Am (one specimen measured).</p><p>Remark: This specimen is essentially comparable with</p><p>Aneurospora geikiei Wellman and Richardson 1996</p><p>in shape and dimension of ornaments, but the</p><p>characteristics of the proximal face are not</p><p>observable.</p><p>Aneurospora isidori (Cramer and Dı́ez) Richardson et</p><p>al. 1982 (Plate I,6).</p><p>Aneurospora cf. A. tojoides (Cramer) Steemans 1989</p><p>var. B Steemans 1989 (Plate I,7).</p><p>Aneurospora cf. A. tojoides (Cramer) Steemans 1989</p><p>var. C Steemans 1989.</p><p>Aneurospora sp. B in Steemans 1989 (Plate I,9).</p><p>Aneurospora sp. 1 (Plate I,8).</p><p>Description: Amb rounded triangular to subcircular.</p><p>Trilete mark distinct, straight or sinuous. Sutures</p><p>reach the inner margin of the equatorial thickening,</p><p>simple or with lips, 1 Am in combined width.</p><p>Equatorial thickening up to 3 Am wide. Contact</p><p>areas smooth. Two of the three specimens with a</p><p>slightly darkened subcircular area at the proximal</p><p>pole, up to 9 Am in diameter. Distal and equatorial</p><p>areas covered with coni or coni with rounded apices</p><p>and blunt elements, length up to 1.5 Am, basal</p><p>diameter up to 2 Am, 1–3 Am apart. Dimensions:</p><p>25–35 Am (three specimens measured).</p><p>Remark: Aneurospora sp. B in Steemans 1989 has</p><p>only blunted or rounded coni that are more</p><p>regularly distributed.</p><p>Aneurospora sp. 2 (Plate I,10).</p><p>Description: Amb subtriangular. Equatorial thickening</p><p>irregular, up to 2.5 Am wide. Trilete mark distinct.</p><p>Sutures simple, extending almost to the spore</p><p>margin. Exine laevigate in contact areas with a</p><p>thickened apical area, subtriangular in shape, up to</p><p>15 Am in diameter. Exine distally and equatorially</p><p>sculptured with fine spines, less than 1 Am high,</p><p>less than 0.5 Am wide and up to 1 Am apart.</p><p>Dimensions: 30 Am (one specimen measured).</p><p>Remark: Aneurospora sp. 1 in McGregor 1984,</p><p>although very similar, is ornamented with coni or</p><p>setae that may be joined at their bases by low ridges.</p><p>Apiculatasporites perpusillus (Naumova ex Chibri</p><p>kova) McGregor 1973 (Plate I,12).</p><p>Archaeozonotriletes chulus (Cramer) (Plate I,13).</p><p>Biornatispora sp.1 (Plate I,14).</p><p>Description: Amb rounded triangular. Sutures reach or</p><p>nearly reach the equator, accompanied by narrow</p><p>lips, 1 Am in combined width. Exine equatorially</p><p>and distally ornamented with coni, 1–1.5 Am high, 1</p><p>Am wide at base and 1–3 Am apart. Coni are</p><p>interconnected by low and very thin muri (less than</p><p>0.5 Am width) forming a delicate and incomplete</p><p>reticulum. Dimensions: 33 Am (one specimen</p><p>measured).</p><p>Remark: It differs from Biornatispora dubia (McGre-</p><p>gor) Steemans 1989 in having a more delicate</p><p>reticulum (less than 0.5Am in height and width).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 101</p><p>?Biornatispora sp. 2 (Plate II,1).</p><p>Description: Amb subcircular. Trilete mark not</p><p>visible. Exine thickened at equator up to 3 Am.</p><p>Exine equatorially and distally ornamented with an</p><p>irregular reticulum. Lumina of reticulum vary in</p><p>form and dimensions, from polygonal to irregular</p><p>and from 2 to 4 Am in diameter. Muri bear closely</p><p>spaced elements as coni, truncated coni and grana,</p><p>up to 1 Am high and up to 1 Am wide, width of</p><p>muri 1 Am. Dimensions: 45�63 Am (one specimen</p><p>measured).</p><p>Remark: Because no trilete mark can be distinguished,</p><p>the attribution of this form to a trilete spore genus</p><p>is questionable.</p><p>cf. Breconisporites breconensis Richardson, Streel,</p><p>Hassan and Steemans 1982 (Plate II,2).</p><p>Description: Amb rounded triangular. Trilete mark</p><p>distinct. Sutures accompanied by folds, up to 3 Am</p><p>in width, extending to the equatorial crassitude.</p><p>The equatorial margin is divided into an inner</p><p>crassitude, 2–3 Am wide, and an outer thinner and</p><p>diaphanous zone, up to 4 Am wide. Distal annular</p><p>thickening 3 Am wide, partly coincident with the</p><p>crassitude. Proximal and distal faces laevigate.</p><p>Dimensions: 40 Am (one specimen measured).</p><p>Remark: Because of the absence of proximal plicate</p><p>ridges surrounding the apical area, the attribution</p><p>of the Solimões form to B. breconensis is doubtful.</p><p>cf. Brochotriletes? foveolatus Naumova 1953 (Plate</p><p>II,3).</p><p>Description: Amb rounded triangular to subcircular.</p><p>Proximal face absent. Exine equatorially and distally</p><p>foveolate. Foveae circular or subcircular in plane</p><p>view, 2–10 Am in diameter. Dimensions: 45–85 Am</p><p>(six specimens measured).</p><p>Chelinospora favosa (McGregor and Camfield) Stee-</p><p>mans 1989 (Plate II,4).</p><p>Chelinospora baculoreticulata Steemans 1989 (Plate</p><p>II,5).</p><p>Chelinospora cf. C. retorrida Turnau 1986 (Plate</p><p>II,6).</p><p>Description: Amb subtriangular with rounded</p><p>apies. Proximal face absent. Exine relatively</p><p>thick equatorially and distally (2 Am thick at</p><p>equator), with low convolute and anastomosing</p><p>muri, 2 to 3 Am wide, less than 1 Am high, 1</p><p>Am apart. Dimensions: 39 Am (one specimen</p><p>measured).</p><p>Concentricosisporites agradabilis (Rodriguez) Rodri-</p><p>guez 1983 (Plate II,10).</p><p>Convolutispora sp. 1 (Plate II,8).</p><p>Description: Amb subtriangular with rounded apices.</p><p>Trilete mark distinct, bordered by low and broad</p><p>lips, 2–3 Am in combined width. Sutures 3/4 of</p><p>spore radius. Exine relatively thick, ornamented</p><p>with closely spaced, convoluted muri, 1 Am wide,</p><p>0.5 Am high, that seem to be formed by fused low,</p><p>subcircular</p><p>grana. Channels between muri up to 1</p><p>Am wide. Dimensions: 35 Am in diameter (one</p><p>specimen measured).</p><p>Remark: This specimen seems to be close to Convolu-</p><p>tispora sp. A figured by Tekbali and Wood (1991).</p><p>Cymbohilates sp. 1 (Plate III,3).</p><p>Description: Amb subcircular. Equatorial crassitude 2</p><p>to 3 Am wide. Proximal hilum thin and generally</p><p>collapsed. Distal surface ornamented with densely</p><p>packed, variable biform elements consisting of</p><p>spines and coni with thin, enlarged or bifurcate</p><p>apical terminations, 1Am high, 1 Am wide, and up</p><p>to 1 Am apart. Ornament elements are partially</p><p>fused forming muri. Dimensions: 32 (40) 42 Am</p><p>(five specimens measured).</p><p>Remark: The sculptural elements partially coalescent</p><p>forming muri distinguish Cymbohilates sp. 1 from</p><p>other species of this genus.</p><p>Cymbosporites cf. C. dammamensis Steemans 1995</p><p>(Plate II,9).</p><p>Description: Amb subcircular. Sutures extending to</p><p>the inner margin of the equatorial thickening,</p><p>accompanied by folds. Exine relatively thick</p><p>equatorially and distally (3 Am at equator).</p><p>Sculpture of patina consists of bacula and pila,</p><p>with straight or concave sides and rounded or</p><p>bifurcate tips. Ornaments are 1 Am high, up to</p><p>1.5 Am wide and 1 Am apart. Dimensions: 36</p><p>Am (one specimen measured).</p><p>Cymbosporites dittonensis Richardson and Lister</p><p>1969 (Plate III,1).</p><p>Cymbosporites cf. C. echinatus Richardson and Lister</p><p>1969 (Plate II,11).</p><p>Description: Amb subtriangular. Trilete mark not</p><p>evident. Exine equatorially and distally patinate.</p><p>The patina is ornamented with dominantly biform</p><p>elements consisting of a bulbous base surmounted</p><p>by cones or bacula, some of them with spatulate</p><p>tips, 2.5 Am high, 3 Am wide at base. Ornaments</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113102</p><p>Plate I (see page 104). The scale bars in Plates I–IV represent 30 Am.</p><p>1. Ambitisporites avitus/dilutus morphon Steemans et al. 1996.</p><p>2440.15 m, 35675, P37/0.</p><p>2. Ambitisporites tripapillatus Moreau-Benoit 1976.</p><p>2436.80 m, 35660, V36/4.</p><p>3. Ambitisporites cf. bRetusotriletes cf. goensisQ in Rodriguez 1983.</p><p>2431.95 m, 35664, D36/3.</p><p>4. Amicosporites miserabilis Cramer 1966.</p><p>2436.80 m, 35660, P39/0.</p><p>5. Aneurospora cf. A. geikiei Wellman & Richardson 1996.</p><p>2444.65 m, 35700, K41/3.</p><p>6. Aneurospora isidori (Cramer and Dı́ez) Richardson et al. 1982.</p><p>2428.40 m, 35346, P41/3.</p><p>7. Aneurospora cf. A. tojoides (Cramer) Steemans 1989 var. B Steemans 1989.</p><p>2434.70 m, 35667, U43/1.</p><p>8. Aneurospora sp. 1.</p><p>2141.55 m, 35669, W49/2.</p><p>9. Aneurospora sp. B in Steemans 1989.</p><p>2429.45 m, 35662, S47/0.</p><p>10. Aneurospora sp. 2.</p><p>2439.50 m, 35674, M49/0.</p><p>11. Aneurospora cf. A. tojoides (Cramer) Steemans 1989 var. C Steemans 1989.</p><p>2435.80 m, 35668, L55/0.</p><p>12. Apiculatasporites perpusillus (Naumova ex Chibrikova) McGregor 1973.</p><p>2439.50 m, 35674, T51/2.</p><p>13. Archaeozonotriletes chulus (Cramer) Richardson and Lister 1969.</p><p>2444.65 m, 35700, L41/1.</p><p>14. Biornatispora sp. 1.</p><p>2441.50 m, 35670, R51/4.</p><p>Plate II (see page 105).</p><p>1. ?Biornatispora sp. 2.</p><p>2431.95 m, 35664, W38/0.</p><p>2. cf. Breconisporites breconensis Richardson, Streel, Hassan & Steemans 1982.</p><p>2428.40, 35346, S41/4.</p><p>3. cf. Brochotriletes? foveolatus Naumova 1953.</p><p>2429.45 m, 35662, Q54/4.</p><p>4. Chelinospora favosa (McGregor & Camfield) Steemans 1989.</p><p>2429.45 m, 35662, S51/0.</p><p>5. Chelinospora baculoreticulata Steemans 1989.</p><p>2431.95 m, 35664, V41/3.</p><p>6. Chelinospora cf. C. retorrida Turnau 1986.</p><p>2445.2 m, 35278, K36/2.</p><p>7. Cymbosporites cf. C. multispinosus Steemans 1989.</p><p>2428.40 m, 35346, T47/0.</p><p>8. Convolutispora sp. 1.2439.50 m, 35674, J51/1.</p><p>9. Cymbosporites cf. C. dammamensis Steemans 1995.</p><p>2428.40 m, 35346, N39/3.</p><p>10. Concentricosisporites agradabilis (Rodriguez) Rodriguez 1983.</p><p>2443.75 m, 35699, P49/0.</p><p>11. Cymbosporites cf. C. echinatus Richardson & Lister 1969.</p><p>2443.75 m, 35699, G43/0.</p><p>12. Cymbosporites paulus McGregor & Camfield 1976.</p><p>2439.50 m, 35674, S51/1.</p><p>13. Cymbosporites proteus McGregor & Camfield 1976 .</p><p>2428.40 m, 35346, C42/4.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 103</p><p>Plate I (Caption on page 103).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113104</p><p>Plate II (Caption on page 103).</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 105</p><p>subcircular in plane view, closely spaced, and</p><p>occasionally coalescent forming small clusters.</p><p>Dimensions: 37 Am (one incomplete specimen</p><p>measured).</p><p>Cymbosporites cf. C. multispinosus Steemans 1989</p><p>(Plate II,7).</p><p>Description: Amb subtriangular. Suture simple, fine,</p><p>extending probably to the inner margin of the</p><p>equatorial thickening. Exine thick distally and</p><p>equatorially (4 Am thick at equator). Patina</p><p>ornamented with sharply tapering spines, 2 Am</p><p>high, up to 1 Am wide, about 1 Am apart.</p><p>Dimensions: 33 Am (one specimen measured).</p><p>Cymbosporites paulus McGregor and Camfield 1976</p><p>(Plate II,12).</p><p>Cymbosporites proteus McGregor and Camfield 1976</p><p>(Plate II,13).</p><p>Cymbosporites sp. 1 (Plate III,2).</p><p>Description: Amb rounded triangular. Trilete mark not</p><p>visible. Exine equatorially and distally patinate.</p><p>Equatorial thickening 3–4 Am wide. Ornamenta-</p><p>tion of patina closely spaced, consisting of broad</p><p>bacula, coni or some biform elements (coni topped</p><p>by a minuscule spine), 1–2 Am wide, 2–4 Am high.</p><p>Ornament elements rounded in plane view, occa-</p><p>sionally fused to form short muri. Dimensions: 31–</p><p>32–37 Am (three specimens measured).</p><p>Dibolisporites echinaceus (Eisenack) Richardson 1965</p><p>emend. McGregor 1973 (Plate III,5).</p><p>Dibolisporites eifeliensis (Lanninger) McGregor 1973</p><p>(Plate III,7).</p><p>Dibolisporites sp. 1 (Plate III,6).</p><p>Description: Amb rounded triangular, with an equa-</p><p>torial thickening 3 Am wide. Trilete mark not</p><p>clearly distinguished. Exine outside contact areas</p><p>bears variable sculpture, with bacula and flat-</p><p>topped or rounded verrucae, some of which are</p><p>surmounted by small grana or spines. Ornament</p><p>elements subpolygonal in plane view, up to</p><p>2 Am in total height, up to 2.5 Am wide, 0.5</p><p>Am apart. Dimensions: 50 Am (one specimen</p><p>measured).</p><p>Plate III.</p><p>1. Cymbosporites dittonensis Richardson & Lister 1969.</p><p>2429.45 m, 35662, Q43/1.</p><p>2. Cymbosporites sp. 1.</p><p>2445.20 m, 35284, S52/4.</p><p>3. Cymbohilates sp. 1.</p><p>2438.80 m, 35659, V44/3.</p><p>4. Dibolisporites sp. 2.</p><p>2436.80 m, 35660, U52/2.</p><p>5. Dibolisporites echinaceus (Eisenack) Richardson 1965 emend. McGregor 1973.</p><p>2443.75 m, 35699, M42/2.</p><p>6. Dibolisporites sp. 1.</p><p>2428.40 m, 35346, T41/1.</p><p>7. Dibolisporites eifeliensis (Lanninger) McGregor 1973.</p><p>2439.50, 35674, K56/1.</p><p>8. Dictyotriletes emsiensis new morphon.</p><p>2440.15 m, 35675, U34/1.</p><p>9. Dibolisporites sp. 3.</p><p>2439.50 m, 35674, O51/0.</p><p>10. Dictyotriletes emsiensis new morphon.</p><p>2435.80 m, 35668, S39/0.</p><p>11. ?Emphanisporites sp. 1.</p><p>2436.80 m, 35660, N40/2.</p><p>12. Dictyotriletes emsiensis new morphon.</p><p>2444.65 m, 35691, R50/1.</p><p>13. Dictyotriletes emsiensis new morphon.</p><p>2428.40 m, 35346, F55/3.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113106</p><p>Plate III.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 107</p><p>Remark: Dibolisporites variegatus McGregor 1973</p><p>is larger and ornamented with verrucae or con-</p><p>voluted verrucae. Dibolisporites cf. gibberosus var.</p><p>major (Kedo) Richardson 1964 has similar orna-</p><p>ments in shape and size but is larger.</p><p>Dibolisporites sp. 2 (Plate III,4).</p><p>Description: Amb subcircular with an equatorial thic-</p><p>kening, 1–2 Am wide. Trilete mark nearly equal</p><p>spore radius, sutures accompanied by lips, 1 Am in</p><p>combined width. Exine outside contact areas with</p><p>slender and mostly sinuous setae, bacula and pila,</p><p>length up to 2 Am,width up to 0.5 Am, less than 1 Am</p><p>apart. Dimensions: 30 Am(one specimenmeasured).</p><p>Remark: The Solimões specimen is distinguished</p><p>from other species of the genus Dibolisporites by</p><p>its closely spaced, slender and sinuous ornaments.</p><p>Dibolisporites sp. 3 (Plate III,9).</p><p>Description:</p><p>Amb rounded triangular. Trilete mark</p><p>distinct. Sutures extending to inner margin of the</p><p>equatorial thickening, accompanied by folds up to</p><p>4 Am wide. Exine 2 Am thick at equator. Contact</p><p>areas smooth. Exine equatorially and distally</p><p>ornamented with a variable sculpture consisting</p><p>of setae, spines, coni that taper sharply to slender</p><p>stems. Elements spatulate or bifurcate, up to1 Am</p><p>high, up to 1 Am wide, up to1 Am apart.</p><p>Dimensions: 50�60 Am.</p><p>Dictyotriletes emsiensis morphon Rubinstein, Melo</p><p>and Steemans, new morphon. For description and</p><p>discussion of the morphon, see Appendix B.</p><p>Dictyotriletes richardsonii Steemans 1989 (Plate V,1).</p><p>?Emphanisporites sp. 1 (Plate III,11).</p><p>Plate IV.</p><p>1. Dictyotriletes richardsonii Steemans 1989.</p><p>24445.2 m, 35284, F39/3.</p><p>2. Emphanisporites multicostatus Rodriguez 1978.</p><p>2444.65 m, 35700, G55/0.</p><p>3. Iberoespora cantabrica Cramer & Dı́ez 1975.</p><p>2436.80 m, 35660, R51/4.</p><p>4. cf. Hispanaediscus? irregularis Wellman & Richardson 1996.</p><p>2443.75 m, 35699, U37/4.</p><p>5. Emphanisporites cf. E. rotatus (McGregor) McGregor 1973.</p><p>2443.75 m, 35699, W34/4.</p><p>6. Leiotriletes sp.</p><p>2441.50 m, 35670, S39/2.</p><p>7. Retusotriletes goensis Lele & Streel 1969.</p><p>2443.75 m, 35699, F50/1.</p><p>8. Laevolancis divellomedia (Chibrikova) Burgess & Richardson 1991.</p><p>2444.65 m, 35700, K40/2.</p><p>9. Iberoespora glabella Cramer & Dı́ez 1975.</p><p>2441.50 m, 35670, M53/1.</p><p>10. ?Iberoespora sp. 1.</p><p>2429.45 m, 35662, J51/3.</p><p>11. Quadrisporites horridus Hennelly 1959 ex Potonié & Lele 1961.</p><p>2436.8 m, 35660, J44/2.</p><p>12. Retusotriletes maculatus McGregor & Camfield 1976.</p><p>2441.50 m, 35670, T37/4.</p><p>13. Synorisporites papillensis McGregor 1973.</p><p>2440.15 m, 35675, M40/0.</p><p>14. Tetrahedraletes medinensis Strother & Traverse 1979.</p><p>2444.65 m, 35691, K35/0.</p><p>15. Streelispora granulata Richardson & Lister 1969.</p><p>2439.50 m, 35674, G45/0.</p><p>16. Synorisporites verrucatus Richardson & Lister 1969.</p><p>2435.80 m, 35668, T46/3.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113108</p><p>Plate IV.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 109</p><p>Description: Amb circular with an equatorial cras-</p><p>situde,2–3 Amwide. Proximal face ornamented with</p><p>broad and straight, radially oriented muri, tapering</p><p>toward the proximal pole from3Amto1Aminwidth.</p><p>Trilete mark is not evident. Exine distally and</p><p>equatorially sculptured by closely spaced grana less</p><p>than 0.5 Am high, less than 1 Amwide, and up to 0.5</p><p>apart. Dimensions: 28 Am(one specimenmeasured).</p><p>Emphanisporites multicostatus Rodriguez 1978 (Plate</p><p>IV,2).</p><p>Emphanisporites rotatus (McGregor) McGregor 1973.</p><p>cf.Hispanaediscus? irregularis Wellman and Richard-</p><p>son 1996 (Plate IV,4).</p><p>Description: Cryptospore with subcircular amb. Hilum</p><p>not evident. Exine distally sculptured with densely</p><p>packed verrucae, irregular in shape. Ornament</p><p>elements are subpolygonal in plane view, 3–5 Am</p><p>wide, up to 3 Am high, up to 1 Am apart, and</p><p>rounded or flat-topped. Dimensions: 50 Am (one</p><p>specimen measured).</p><p>Iberoespora cantabrica Cramer and Dı́ez 1975 (Plate</p><p>IV,3).</p><p>Iberoespora glabella Cramer and Dı́ez 1975 (Plate</p><p>IV,9).</p><p>?Iberoespora sp. 1 (Plate IV,10).</p><p>Description: Cingulate miospore with a subtriangular,</p><p>nearly circular amb. A furrow, 1 Am wide, borders</p><p>the internal edge of the cingulum, which is up to 4</p><p>Am wide. Sutures with lips up to 1 Am in combined</p><p>width, extending to about the external edge of the</p><p>cingulum. A dark ring 3 Am wide surrounds</p><p>probably the distal pole. Proximal and distal faces</p><p>laevigate. Dimensions: 45 Am (one specimen</p><p>measured).</p><p>Remark: The Solimões specimen differs from other</p><p>species of Iberoespora in the lack of inspissations</p><p>in the interradial areas.</p><p>Laevolancis divellomedia (Chibrikova) Burgess and</p><p>Richardson 1991 (Plate IV,8).</p><p>Leiotriletes sp. (Plate IV,6).</p><p>Quadrisporites horridus Hennelly 1959 ex Potonié</p><p>and Lele 1961 (Plate IV,11).</p><p>Retusotriletes goensis Lele and Streel 1969 (Plate</p><p>IV,7).</p><p>Retusotriletes maculatus McGregor and Camfield</p><p>1976 (Plate IV,12).</p><p>Streelispora granulata Richardson and Lister 1969</p><p>(Plate IV,15).</p><p>Synorisporites papillensis McGregor 1973 (Plate</p><p>IV,13).</p><p>Synorisporites verrucatus Richardson and Lister 1969</p><p>(Plate IV,16).</p><p>Tetrahedraletes medinensis Strother and Traverse</p><p>1979 (Plate IV,14).</p><p>Appendix B. The Dictyotriletes emsiensis morphon</p><p>(Plate III,8,10,12,13)</p><p>Description of the morphon: The Dictyotriletes</p><p>emsiensis morphon includes the species D. emsiensis</p><p>(Allen) McGregor, Dictyotriletes granulatus Stee-</p><p>mans, some specimens incorrectly attributed to</p><p>Dictyotriletes subgranifer, and species in open</p><p>nomenclature listed below. These species share very</p><p>similar morphological features. D. emsiensis is</p><p>characterized by a distal and proximo-equatorial</p><p>reticulum, with robust muri (1–6.5 Am in basal</p><p>width, 2–7 Am high) that are commonly widened and</p><p>bear papillae or spines at their junctions (up to 3 Am</p><p>high). Muri taper upward. Lumina diameters are</p><p>greatly variable (5–28 Am). Proximal face bears</p><p>grana. Spore diameter is 50(71)97 Am. D. subgrani-</p><p>fer has thinner muri (1 Am wide at base, 2–4 Am</p><p>high), not widened at the junctions, which bear</p><p>neither papillae nor spines. The muri are serrated or</p><p>bbeadedQ along their upper edges. Exine granulated</p><p>on the proximal face. Lumina 4–15 Am in diameter.</p><p>Spore diameter is 41 (58) 82 Am. The muri of D. cf.</p><p>subgranifer and specimens incorrectly attributed to</p><p>D. subgranifer have no serrated edges. D. granula-</p><p>tus is closely comparable with D. emsiensis but is</p><p>smaller (26 (29) 32 Am) and has lower muri (2–4 Am</p><p>high). The species in open nomenclature could</p><p>represent intermediate forms between the above</p><p>described species.</p><p>Specimens recovered from the Solimões Basin</p><p>have a reticulum formed by muri 1–2 Am wide at</p><p>the base, 2–5 Am high, that may taper into a very</p><p>thin and translucent membrane, smooth to serrated</p><p>or beaded along the upper edge. Muri are variably</p><p>widened, or not widened, at junctions. Junctions</p><p>may bear projections such as spines, papillae or</p><p>broad coni (up to 5 Am high). Lumina are</p><p>polygonal to irregular, 3–13 Am in diameter. The</p><p>exine has scattered minute (up to 0.5 Am wide and</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113110</p><p>high) grana on the proximal face. Solimões speci-</p><p>mens studied herein show transitional features,</p><p>varying from small forms with delicate reticulum</p><p>commonly without widened junctions, to robust</p><p>forms with coarse reticulum, commonly widest at</p><p>muri junctions and with projections of variable</p><p>form and dimensions. In some cases, the muri thin</p><p>upwards in such a way as to become transparent</p><p>and membranous, developing a serrate to beaded</p><p>upper edge. Such extreme morphological variability</p><p>renders it very difficult to distinguish the three</p><p>above-mentioned species. Dimensions: 25 (43) 72</p><p>Am (38 specimens measured).</p><p>The following specimens are included in the</p><p>morphon (see also Steemans, 1989):</p><p>1965 Reticulatisporites emsiensis Allen, p. 705, plate</p><p>XCVII,9,10.</p><p>1973Dictyotriletes emsiensis (Allen) McGregor, p. 42,</p><p>plate V,15.</p><p>1979 Dictyotriletes sp. A in D’Erceville, p. 94, plate</p><p>III,6.</p><p>1983 Dictyotriletes subgranifer McGregor, in Le</p><p>Hérissé, p. 37, plate VI,4,6.</p><p>1984 Dictyotriletes emsiensis (Allen) McGregor in</p><p>McGregor, pp. 26–27, plate I,21–22,24.</p><p>1984 cf.Dictyotriletes subgranifer in McGregor, p. 27,</p><p>plates II,2 and V,27.</p><p>1984 Dictyotriletes sp. 1 in McGregor, pp. 27–28,</p><p>plates II,5 and VI,6.</p><p>1989 Dictyotriletes emsiensis (Allen) McGregor, in</p><p>Steemans, pp. 131–132, plates XXXV,22–24 and</p><p>XXXVI,1, 2.</p><p>1989 Dictyotriletes granulatus Steemans, p. 133, plate</p><p>XXXVI,3–10.</p><p>1995 Dictyotriletes emsiensis (Allen) McGregor in</p><p>Dino and Rodrigues, plate II,25.</p><p>1995 Dictyotriletes subgranifer McGregor in Dino</p><p>and Rodrigues, plate II,26.</p><p>1995 Dictyotriletes sp. 1 in Dino and Rodrigues, plate</p><p>II,27.</p><p>1995 Dictyotriletes sp. 2 in Dino and Rodrigues, plate</p><p>II,29.</p><p>Remarks: The Dictyotriletes emsiensis</p><p>morphon</p><p>ranges stratigraphically from the Lochkovian Nh</p><p>Zone (Steemans, 1989) to the Emsian AB Zone. It</p><p>is widely distributed in Europe, North America,</p><p>South America, North Africa, Saudi Arabia and</p><p>China.</p><p>It should be noted that Dictyotriletes granulatus,</p><p>Dictyotriletes cf. subgranifer (or specimens incorrectly</p><p>attributed to D. subgranifer) and intermediate Dictyo-</p><p>triletes forms of the Dictyotriletes emsiensis morphon</p><p>have thus far been found only in South America (Dino</p><p>and Rodrigues, 1995, Dino et al., 1995, McGregor,</p><p>1984), Brittany (D’Erceville, 1979; Le Hérissé, 1983;</p><p>Steemans, 1989) and Saudi Arabia (Steemans, unpub-</p><p>lished data). During the Early Devonian, all of these</p><p>localities were parts of Western Gondwana.</p><p>References</p><p>Allen, K.C., 1965. Lower to Middle Devonian spores of north and</p><p>central Vestspitsbergen. Palaeontology 8 (4), 687–748.</p><p>D’Erceville, M.A., 1979. Les spores des formations siluro-</p><p>dévoniennes, de la coupe de Saint-Pierre-sur-Erve, synclinorium</p><p>médian armoricain. Palaeontographica 171(B), 79–121.</p><p>Dino, R., 1999. Palynostratigraphy of the Silurian and De-</p><p>vonian sequence of the Paraná Basin, Brazil. In: Rodrigues,</p><p>M.A.C., Pereira, E. (Eds.), Ordovician–Devonian Palynostra-</p><p>trigraphy in Western Gondwana: Update, Problems and Per-</p><p>spectivies. Universidade do Estado do Rio de Janeiro, Rio de</p><p>Janeiro, pp. 27–61.</p><p>Dino, R., Rodrigues, M.A.C., 1995. Palinomorfos eodevonianos da</p><p>Formação Furnas—Bacia do Paraná. Anais da Academia</p><p>Brasileira de Ciências 67, 116–117.</p><p>Dino, R., Bergamaschi, S., Pereira, E., Melo, J.H.G., Loboziak, S.,</p><p>Steemans, P., 1995. Biochronostratigraphic investigations of the</p><p>Pragian and Emsian stages on the southeastern border of the</p><p>Paraná Basin. 28 Simpósio sobre Cronoestratigrafia da Bacia do</p><p>Paraná. Boletim de Resumos Expandidos, pp. 19–25.</p><p>Eiras, J., Becker, C.R., Souza, E.M., Gonzaga, F.G., Silva,</p><p>J.G.F., Daniel, L.M.F., Matsuda, N.S., Feijó, F.J., 1994. Bacia</p><p>do Solimões. Boletim de Geociências da PETROBRÁS 8 (1),</p><p>17–45.</p><p>Gerrienne, P., Bergamaschi, S., Pereira, E., Rodrigues, M.A.C.,</p><p>Steemans, P., 2001. An Early Devonian flora, including Cook-</p><p>sonia from the Paraná Basin (Brazil). In: Gerrienne, P. (Ed.),</p><p>Early Land Plants Evolution and Diversification, Review of</p><p>Palaeobotany and Palynology, vol. 116 (1–2), pp. 19–38.</p><p>Grahn, Y., 1992. Revision of Silurian and Devonian strata of Brazil.</p><p>Palynology 16, 35–61.</p><p>Grahn, Y., 1999. Recent progress in Silurian and Devonian</p><p>chitinozoan biostratigraphy of the Parana Basin in Brazil and</p><p>Paraguay. In: Rodrigues, M.A.C., Pereira, E. (Eds.), Ordovi-</p><p>cian–Devonian Palynostratigraphy in Western Gondwana:</p><p>Update, Problems and Perspectives. Universidade do Estado</p><p>do Rio de Janeiro, Rio de Janeiro, pp. 147–163.</p><p>Grahn, Y., Pereira, E., Bergamaschi, S., 2000. Silurian and Lower</p><p>Devonian chitinozoan biostratigraphy of the Paraná Basin in</p><p>Brazil and Paraguay. Palynology 24, 147–176.</p><p>Grahn, Y., Loboziak, S., Melo, J.H.G., 2001. Integrated miospore–</p><p>chitinozoan biozonation of the Parnaı́ba Basin and its correlation</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 111</p><p>with Petrobras (Mqller 1962) Silurian–Lower Carboniferous</p><p>palynozones. In: Melo, J.H.G., Terra, G.J.S. (Eds.), Correlação</p><p>de Seqqências Paleozóicas Sul-Americanas. Ciência-Técnica-</p><p>Petróleo. Seção: Exploração de Petróleo, vol. 20, pp. 81–89.</p><p>Grahn, Y., Loboziak, S., Melo, J.H.G., 2003. Integrated correlation</p><p>of Late Silurian (Pridoli s.l.)–Devonian chitinozoans and</p><p>miospores in the Solimões Basin, northern Brazil. Acta Geo-</p><p>logica Polonica 53, 283–300.</p><p>Jaglin, J.C., Paris, F., 2002. Biostratigraphy, biodiversity and</p><p>palaeogeography of late Silurian chitinozoans from A1-61</p><p>borehole (north-western Libya). In: Steemans, P., Servais, T.,</p><p>Streel, M. (Eds.), Palaeozoic Palynology: A Special Issue in</p><p>Honour of Dr. Stanislas Loboziak. Review of Palaeobotany and</p><p>Palynology 118, 335–358.</p><p>Jardiné, S., Yapaudjian, L., 1968. Lithostratigraphie et Paly-</p><p>nologie du Dévonien–Gothlandien gréseux du Bassin de</p><p>Polignac (Sahara). Revue de l’Institut Français du Pétrole 23</p><p>(4), 439–469.</p><p>Le Hérissé, A., 1983. Les spores du Dévonien inférieur du</p><p>Synclinorium de Laval (Massif Armoricain). Palaeontographica</p><p>Abteilung B Palaophytologie 188, 1–81.</p><p>Le Hérissé, A., 2002. Paleoecology, biostratigraphy and biogeog-</p><p>raphy of late Silurian to early Devonian acritarchs and</p><p>prasinophycean phycomata in well A1-61, Western Libya,</p><p>North Africa. In: Steemans, P., Servais, T., Streel, M. (Eds.),</p><p>Palaeozoic Palynology: A Special Issue in Honour of Dr.</p><p>Stanislas Loboziak. Review of Palaeobotany and Palynology 18,</p><p>359–395.</p><p>Le Hérissé, A., Rubinstein, C., Steemans, P., 1996. Lower Devonian</p><p>palynomorhs from the Talacasto Formation, Cerro del Fuerte</p><p>Section, San Juan Precordillera, Argentina. In: Fatka, O.,</p><p>Servais, T. (Eds.), Acritarcha in Praha 1996. Proceedings of</p><p>the International Meeting and Workshop: Acta Universitatis</p><p>Carolinae Geologica 40 (3–4), 497–515.</p><p>Loboziak, S., Melo, J.H.G., Quadros, L.P., Daemon, R.F.,</p><p>Barrilari, I.M.R., 1994a. Biocronoestratigrafia dos palinomor-</p><p>fos do Devoniano Médio–Carbonı́fero Inferior das Bacias do</p><p>Solimões e Parnaı́ba: estado da arte. 28 Sintex-Seminário de</p><p>Interpretação Exploratória, PETROBRAS, Atas, Rio de</p><p>Janeiro, pp. 51–56.</p><p>Loboziak, S., Melo, J.H.G., Quadros, L.P., Daemon, R.F., Barrilari,</p><p>I.M.R., Streel, M., 1994b. Devonian–Dinantian miospore</p><p>biostratigraphy of the Solimões and Parnaı́ba Basins (with</p><p>considerations on the Devonian of the Paraná Basin). PETRO-</p><p>BRAS/CENPES Rep., Rio de Janeiro. 2 vols.</p><p>Loboziak, S., Melo, J.H.G., Steemans, P., Barrilari, I.M.R.,</p><p>1995. Miospore evidence for pre-Emsian and latest</p><p>Famennian sedimentation in the Devonian of the Paraná</p><p>Basin, south Brazil. Anais da Academia Brasileira de Ciências</p><p>67 (3), 391–392.</p><p>Loboziak, S., Steemans, P., Borghi, L., 1998. New miospore</p><p>evidence of Pragian age for the lower Ponta Grossa Formation</p><p>(Devonian, Paraná Basin) in the Chapada dos Guimarães area,</p><p>Mato Grosso State, Brazil. Anais da Academia Brasileira de</p><p>Ciências 70 (2), 382.</p><p>Massa, D., Moreau-Benoit, A., 1976. Essai de synthèse stratigra-</p><p>phique et palynologique du Système Dévonien en Libye</p><p>occidentale. Revue de l’Institut française du Pétrole 31 (2),</p><p>287–333.</p><p>McGregor, D.C., 1973. Lower and Middle Devonian spores of</p><p>Eastern Gaspé, Canada: I. Systematics. Palaeontographica</p><p>Abteilung B Palaophytologie 142 (1–3), 1–77.</p><p>McGregor, D.C., 1984. Late Silurian and Devonian spores from</p><p>Bolivia. Miscelanea-Academia Nacional de Ciencias (Córdoba)</p><p>69, 3–43.</p><p>McGregor, D.C., Camfield, M., 1976. Upper Silurian? to Middle</p><p>Devonian spores of the Moose River Basin, Ontario. Geological</p><p>Survey of Canada Bulletin 263, 1–63.</p><p>Melo, J.H.G., 2000. Palynological evaluation and correlation</p><p>of some Silurian–Devonian sections of southern Bolivia.</p><p>XIV Congreso Geológico Boliviano, pp. 123–141. La Paz,</p><p>Memórias.</p><p>Melo, J.H.G., Loboziak, S., 2001. New miospore zonation</p><p>of Devonian–Early Carboniferous strata in the Amazon</p><p>Basin: a preliminary account. In: Melo, J.H.G., Terra, G.J.S.</p><p>(Eds.), Correlação de Seqqências Paleozóicas Sul-Americanas.</p><p>Ciêincia, Técnica, Petróleo, Seção: Exploração de Petróleo, vol.</p><p>20, pp. 99–107.</p><p>Melo, J.H.G., Loboziak, S., 2003. Devonian–Early Carboniferous</p><p>miospore biostratigraphy of the Amazon Basin, Northern Brazil.</p><p>Review of Palaeobotany and Palynology 124 (3–4), 131–202.</p><p>Naumova, S., 1953. Spore–pollen assemblages of the Upper</p><p>Devonian of the Russian Platform and their stratigraphic</p><p>significance. Transactions Institute Geological Science Acad-</p><p>emy Science USSR 143, 204.</p><p>Quadros, L., 1988. Zoneamento bioestratigráfico do Paleozóico</p><p>inferior e médio (seção marinha) da Bacia do Solimões. Boletim</p><p>de Geociências da PETROBRÁS 2 (1), 95–109.</p><p>Richardson, J.B., Lister, T.R., 1969. Upper Silurian and</p><p>Lower</p><p>Devonian spore assemblages from the Welsh Borderland and</p><p>South Wales. Palaeontology 12, 201–252.</p><p>Richardson, J.B., McGregor, D.C., 1986. Silurian and Devonian</p><p>spore zones of the Old Red Sandstone continent and adjacent</p><p>regions. Geological Survey of Canada Bulletin 364, 1–79.</p><p>Richardson, J.B., Ford, J., Parker, F., 1984. Miospores, correlation</p><p>and age of some Scottish Lower Old Red Sandstone sediments</p><p>from the Strathmore Region (Fife and Angus). Journal of</p><p>Micropalaeontology 3 (2), 109–124.</p><p>Richardson, J.B., Rodriguez, R.M., Sutherland, S.J.E., 2001.</p><p>Palynological zonation of Mid-Palaeozoic sequences from the</p><p>CantabrianMountains, NWSpain: implications for inter-regional</p><p>and interfacies correlation of the Ludford/Prı́dolı́ and Silurian/</p><p>Devonian boundaries, and plant dispersal patterns. Bulletin of the</p><p>Natural History Museum. Geology 57 (2), 115–162. (London).</p><p>Rodriguez, R.M., 1978a. Nuevas mioesporas de la Formación San</p><p>Pedro en Geras de Gordón, Cordillera Cantábrica (Provincia</p><p>de León, nordeste de España) Breviora. Geológica Astúrica 22</p><p>(1–2).</p><p>Rodriguez, R.M., 1978b. Miospores de la Formation San Pedro</p><p>(Silurien–Dévonien) à Corniero (Province de Léon, Espagne).</p><p>Revue de Micropaléontologie 20 (4), 216–221.</p><p>Rodriguez, R.M., 1983. Palinologı́a de las Formaciones del Silúrico</p><p>superior-Devónico inferior de la Cordillera Cantábrica. Servicio</p><p>de Publicaciones, Universidad de León, pp. 1-231.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113112</p><p>Rubinstein, C., Steemans, P., 2002. Miospore assemblages from the</p><p>Silurian–Devonian boundary, in borehole A1-61, Ghadamis</p><p>Basin, Libya. In: Steemans, P., Servais, T., Streel, M. (Eds.),</p><p>Palaeozoic Palynology: A Special Issue in Honour of Dr.</p><p>Stanislas Loboziak. Review of Palaeobotany and Palynology</p><p>118, 397–421.</p><p>Rubinstein, C., Le Hérissé, A., Steemans, P., 2000. Lochkovian (early</p><p>Lower Devonian) acritarchs and miospores from the Solimões</p><p>Basin, northern Brazil. Geowissenschaftliches Lateinamerika-</p><p>Kolloquium, Stuttgart, Germany, October 2000, p. 36.</p><p>Silva, O.B., 1987. Análise da Bacia do Solimões (revisão</p><p>litoestratigráfica magmatismo e geoquı́mica). Unpublished</p><p>MSc thesis, Universidade Federal de Ouro Preto, Ouro Preto,</p><p>181 pp.</p><p>Silva, O.B., 1988. Revisão estratigráfica da Bacia do Solimões.</p><p>An. 358 Congresso Brasileiro de Geologia, vol. 6. SBG, Belém,</p><p>pp. 2428–2438.</p><p>Steemans, P., 1989. Palynostratigraphie de l’Eodévonien dans</p><p>l’ouest de l’Europe. Professional Paper. Mémoires Explicatifs</p><p>pour les Cartes Géologiques and Minéralogiques de la Belgique,</p><p>vol. 27, pp. 453.</p><p>Steemans, P., 1995. Silurian and Lower Emsian spores in Saudi</p><p>Arabia. Review of Palaeobotany and Palynology 89, 91–104.</p><p>Streel, M., Fairon-Demaret, M., Otazo-Bozo, N., Steemans, P.,</p><p>1981. Etude stratigraphique des spores du Dévonien inférieur au</p><p>bord sud du Synclinorium de Dinant (Belgique) et leurs</p><p>applications. Annales de la Société Géologique de Belgique</p><p>104, 171–173.</p><p>Streel, M., Higgs, K., Loboziak, S., Riegel, W., Steemans, P., 1987.</p><p>Spore stratigraphy and correlation with faunas and floras in the</p><p>type marine Devonian of the Ardenne–Rhenish regions. Review</p><p>of Palaeobotany and Palynology 50, 211–229.</p><p>Streel, M., Loboziak, L., Steemans, P., Bultynck, P., 2000. Devon-</p><p>ian miospore stratigraphy and correlation with the global</p><p>stratotype sections and points. In: Bultynck, P. (Ed.), Sub-</p><p>commission on Devonian Stratigraphy. Fossil Groups Important</p><p>for Boundary Definition. Courier Forschungsinstitut Sencken-</p><p>berg, vol. 220, pp. 9–23. Frankfurt.</p><p>Tekbali, A.O., Wood, G.D., 1991. Silurian spores, acritarchs and</p><p>chitinozoans from the Banı́ Walı́d Borehole of the Ghadámis</p><p>Basin, Northwest Libya. Geology of Libya IV, 1243–1273.</p><p>Turnau, E., 1986. Miospore stratigraphy of Middle Devonian</p><p>deposits from western Pomerania. Review of Palaeobotany</p><p>and Palynology 93, 107–125.</p><p>Turnau, E., Jakubowska, L., 1989. Early Devonian miospores and</p><p>age of the Zwolen Formation (Old Red Sandstone facies) from</p><p>Ciepielów IG-1 Borehole. Annales Societatis Geologorum</p><p>Poloniae 59, 391–416.</p><p>Vavrdová, M., Bek, J., Dufka, P., Isaacson, P., 1996. Palynology of</p><p>the Devonian (Lochkovian to Tournaisian) sequence, Madre de</p><p>Dios Basin, northern Bolivia. Vestnik Ceského geologického</p><p>ústavu 71 (4), 333–350.</p><p>Wellman, C.H., 1993. A Lower Devonian sporomorph assemblage</p><p>from the Midland Valley of Scotland. Transactions of the Royal</p><p>Society of Edinburgh. Earth Sciences 84, 117–136.</p><p>Wellman, C.H., Richardson, J.B., 1996. Sporomorph assemblages</p><p>from the dLower Old Red SandstoneT of Lorne Scotland. Special</p><p>Papers in Palaeontology 55, 41–101.</p><p>Wellman, C.H., Habgood, K., Jenkins, G., Richardson, J.B., 2000.</p><p>A new plant assemblage (microfossil and megafossil) from the</p><p>Lower Old Red Sandstone of the Anglo-Welsh Basin: its</p><p>implication for the palaeoecology of early terrestrial ecosystems.</p><p>Review of Palaeobotany and Palynology 109, 161–196.</p><p>C. Rubinstein et al. / Review of Palaeobotany and Palynology 133 (2005) 91–113 113</p><p>View publication stats</p><p>https://www.researchgate.net/publication/233500605</p>

Mais conteúdos dessa disciplina