Logo Passei Direto
Buscar

Aplicações Avançadas em Nanofibras

User badge image
Gilda

em

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

<p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 1/50</p><p>Polímeros (Basileia). 2021 novembro; 13(21): 3746.</p><p>Published online 2021 Oct 29. doi: 10.3390/polym13213746</p><p>PMCID: PMC8587893</p><p>PMID: 34771302</p><p>A Review on Electrospun Nanofibers Based Advanced Applications: From Health</p><p>Care to Energy Devices</p><p>Vundrala Sumedha Reddy, Yilong Tian, Chuanqi Zhang, Zhen Ye, Kallol Roy, Amutha Chinnappan,</p><p>Seeram Ramakrishna, Wei Liu, and Rituparna Ghosh</p><p>Lilia Sabantina, Academic Editor</p><p>Abstract</p><p>Electrospun nano�ibers have been exploited in multidisciplinary �ields with numerous applica-</p><p>tions for decades. Owing to their interconnected ultra�ine �ibrous structure, high surface-to-</p><p>volume ratio, tortuosity, permeability, and miniaturization ability along with the bene�its of</p><p>their lightweight, porous nano�ibrous structure, they have been extensively utilized in various</p><p>research �ields for decades. Electrospun nano�iber technologies have paved unprecedented</p><p>advancements with new innovations and discoveries in several �ields of application including</p><p>energy devices and biomedical and environmental appliances. This review article focused on</p><p>providing a comprehensive overview related to the recent advancements in health care and</p><p>energy devices while emphasizing on the importance and uniqueness of utilizing nano�ibers. A</p><p>brief description regarding the effect of electrospinning techniques, setup modi�ications, and</p><p>parameters optimization on the nano�iber morphology was also provided. The article is con-</p><p>cluded with a short discussion on current research challenges and future perspectives.</p><p>Keywords:	nano�ibers, electrospinning, applications, health care, energy devices</p><p>1. Introduction</p><p>The fourth industrial revolution has remodeled various technological domains including</p><p>nanotechnology, biotechnology, new materials, arti�icial intelligence, and human-machine inter-</p><p>faces. This resulted in the conjugation of nanotechnology with medicine and has also driven a</p><p>new wave into the energy sector [1,2,3]. The effect of this emergence has been evidently noti-</p><p>ced in the past two years during the period of COVID-19, when there was a smooth overall out-</p><p>door-to-indoor transition through advanced portable miniaturized technologies. Advancement</p><p>in these different aspects has resulted in the overall ampli�ication of global market value, pictu-</p><p>rized in Figure 1. In health care [4], the global market value is anticipated to increase from</p><p>397.5 to 602.1 billion USD in the timeline from 2017 to 2025 (Figure 1a), where the global</p><p>energy devices market [5] has projected a 451.29 to 908.49 billion USD enhancement from</p><p>2016 to 2022 (Figure 1b) and the global smart fabrics market [6] is estimated to increase up</p><p>to 5.93 from 1.8 billion USD from 2018 to 2025 (Figure 1c).</p><p>1 1,2 1 1 3 1</p><p>1,* 4,* 1,*</p><p>https://doi.org/10.3390%2Fpolym13213746</p><p>https://pubmed.ncbi.nlm.nih.gov/34771302</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Reddy%20VS%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Tian%20Y%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Zhang%20C%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Ye%20Z%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Roy%20K%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Chinnappan%20A%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Ramakrishna%20S%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Liu%20W%5BAuthor%5D</p><p>https://pubmed.ncbi.nlm.nih.gov/?term=Ghosh%20R%5BAuthor%5D</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f001/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f001/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f001/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f001/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 2/50</p><p>Figure 1</p><p>Statistics of (a) the global health care market (b) the global energy devices market and (c) the global smart fa-</p><p>brics market.</p><p>The ability to make large differences with micro/nano scale materials has been realized th-</p><p>rough nanotechnology [7,8]. The materials in the nanoscale range are a rapidly developing do-</p><p>main that has made a huge contribution towards revolutionizing these technologies [9,10,11].</p><p>Even though there are various nanostructured materials like nanoparticles, nanodots, na-</p><p>nosheets, nanorods, nano�lowers, and etc., nano�ibers [12], with their unique fabrication</p><p>methods and tunable properties, have become a much-explored area for various applications</p><p>in the �ields of sensors [13], tissue engineering [14], drug delivery [15], wound healing [16],</p><p>energy devices [17], �iltration [18], distillation [19], the environment, etc.</p><p>Owing to their novel physical and chemical properties in providing high speci�ic surface area,</p><p>large surface-to-volume ratio, tunable porosity, and the ability of desired chemical functionali-</p><p>zation, they are competent enough to overcome many limitations faced in their corresponding</p><p>macroscales [20]. There are several fabrication techniques such as thermal-induced phase se-</p><p>paration [21], self-assembly [22], template synthesis [23], and electrospinning for synthesizing</p><p>nano�ibers. However, among these, the electrospinning technique is the most favorable choice</p><p>due to the formulation into 2D and 3D structures as well as its simple, continuous, straight-</p><p>forward, rapid, and cost-effective process of manufacturing nano�ibers [24]. Electrospinning is</p><p>the most ef�icient way to prepare composite �ibers with synergistic characteristics for new ap-</p><p>plications through blending multiple polymers with individual functionalities in the solution</p><p>phase [25].</p><p>Branched-out applications of the nano�ibrous material are presented in Figure 2. Major contri-</p><p>butions in the advancement of technologies have been observed in health care applications</p><p>[26], mainly in the aspects of biosensing [27], tissue engineering [28], wound dressing [29],</p><p>and drug delivery [30]. In the biomedical �ield, it has been recognized that the human anatomy</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g001.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f001/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f002/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 3/50</p><p>of organs and tissues like skin, bones, collagen, cartilage, etc. can be imitated or resembled by</p><p>tuning nano�iber material [31]. The large surface area is extensively exploited in these studies</p><p>in enhancing adhesion to cells, proteins, and drugs when compared with the bulk materials,</p><p>which gives nano�ibers an edge.</p><p>Figure 2</p><p>Various applications of electrospun nano�ibrous materials. Health care applications [26]: biosensor [27], tis-</p><p>sue engineering [28], wound dressing [29], drug delivery [30]; energy devices [32]: battery [33], supercapa-</p><p>citor [34], solar cell [35], transistor [36], nanogenerator [37]; miscellaneous applications: fabric technology</p><p>[39], catalysis [40], fuel cell [41], and �iltration [42].</p><p>Shredding some light on the environmental deterioration, climate change, and depleting fossil</p><p>fuels, the dire importance of developing renewable and rechargeable energy devices is un-</p><p>derstood. Here, the nano�ibers have been broadly utilized in various types of energy devices</p><p>[32] including batteries [33], supercapacitors [34], solar cells [35], transistors [36], nanogene-</p><p>rators [37], etc. The use of nano�ibers in energy conversion and storage devices has</p><p>signi�icantly drawn</p><p>(PVA)-melatonin (MEL)/chitosan-</p><p>polycaprolactone three-layer nano�iber</p><p>The three-layer wound</p><p>dressing reduced burst release</p><p>(45%) and led to a sustained</p><p>release of melatonin.</p><p>Wound</p><p>dressing</p><p>[157]</p><p>Starch/AgNPs composite</p><p>nano�iber mats altered Wound</p><p>3.2. Energy Devices</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 25/50</p><p>The increase in energy demand for sustained economic growth with the simultaneous deple-</p><p>tion of fossil fuels and emerging renewable energy is growing rapidly. Nowadays, innovation</p><p>and sustenance of such renewable energy technologies/devices has become of dire impor-</p><p>tance. Some of the renewable energy sources comprise solar, wind, tidal, geothermal, etc. In</p><p>energy management and usage, various issues like maximization, prolonged dependence,</p><p>stability, etc. have paved the scope for energy storage technologies like fuel cells, solar cells,</p><p>batteries, nanogenerators, and supercapacitors, etc. In this �ield of research, nano�ibers</p><p>synthesized through electrospinning techniques have come provide unique properties such as</p><p>high surface areas and porosities, which are widely exploited for energy conversion, harves-</p><p>ting, and storage. Recent studies on nano�iber-based energy storage devices are discussed in</p><p>this section [17,103,104,105].</p><p>3.2.1. Batteries and Supercapacitors Batteries are power sources that are either rechargeable</p><p>or single usage. Some of their essential requirements include a porous, sponge-type structure</p><p>of electrodes and separators to enable high discharge current capacity and allow the free ex-</p><p>change of ions (high ion conductivity and permeability) while ef�iciently preventing short cir-</p><p>cuits, respectively. Along with ful�illing the above requisites, nano�ibers can also provide me-</p><p>chanical strength and high electrochemical stability with improved cycle life through well inter-</p><p>connected porous membranes [163,164]. Some of the current research works in battery appli-</p><p>cations are reported below.</p><p>In battery technologies, Lithium-ion batteries (LIBs) are the most researched area due to their</p><p>high volumetric, gravimetric energy density with light weight and good shape versatility, which</p><p>has led to various miniaturized applications in electrotonic as well as electrical appliances.</p><p>However, achieving high power capability along with high energy density along the way re-</p><p>mains a challenge. Here, electrospun nano�ibers are implemented to overcome these dif�icul-</p><p>ties by enhancing electric and ionic conductivities of LIBs through utilizing high speci�ic surface</p><p>area, porosity, controllable �iber diameter, and well interconnected porous structure. Moreo-</p><p>ver, they can be functionalized to have controlling ability over properties like electrolyte</p><p>af�inity, pore size, and thermal stability to achieve enhanced cell performance [165].</p><p>Electrospun aramid �ibers have been utilized in batteries as solid-state electrolyte materials to</p><p>achieve high ionic conductivity along with mechanical stability, which are the prerequisites for</p><p>solid-state LIBs. In their latest work, Liu et al. [166] used aramid (ANFs)</p><p>nano�ibers/polyethylene oxide (PEO) Lithium bis(tri�luoromethanesulfonyl)imide (TFSI) as so-</p><p>lid-state electrolyte to fabricate LIB. The composite material consisting of ANFs and</p><p>polyparaphenylene terephthalamide (PPTA) molecules possess characteristics like large aspect</p><p>ratio, high mechanical strength thermo-decomposition temperature, abundant amide groups,</p><p>light weight, low electrical conductivity, and high chemical inertness, which enhances material</p><p>strength. On the other hand, soft PEO polymer was used as electrolyte material to dissolve Li</p><p>salts. Here ANFs were utilized as nano additive organic �illers in the composite electrolyte de-</p><p>sign achieved through hydrogen-bond interactions between ANFs, PEO chains, and TFSI ani-</p><p>ons. These, in turn, facilitated prolonging ion transport paths and provided a superior</p><p>conductivity of 8.8 × 10 S cm and cycling stability of 135 mAh g after 100 cycles at 0.4 C.</p><p>Comprehensive upgradation of the electrolyte was observed through obtaining higher ion</p><p>conductivity, mechanical and electrochemical stabilities, and interfacial resistance against Li</p><p>dendrites. For portable, wearable electronics, development of �lexible and foldable LIBs that</p><p>provide shorter charge and longer discharge time have received increasing attention. Traditio-</p><p>nal LIBs usually lack in the area of �lexibility due to their weight and rigid built-up characteris-</p><p>−5 −1 −1</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 26/50</p><p>tics. Hence, to address such an issue, a study involving free-standing and foldable vanadium</p><p>oxide/multichannel carbon nano�ibers (V O /MCCNFs) composites prepared via electrospin-</p><p>ning (Figure 8a) was carried out. Usually, in the traditional slurry-casting electrode preparation</p><p>at high mass loading, materials are easily peeled off from the current collector after several en-</p><p>foldments, which results in rapid capacity decay. This issue is resolved through using �lexible</p><p>electrodes, which possess low cost, foldability, and lightweight features. In this study, a �lexible</p><p>structure formed by loading V O particles on MCCNFs was used that provided high energy</p><p>density, superior rate performance, as well as long cycling life. Here, 1D nano�ibers multichan-</p><p>nel was designed through electrospinning to buffer the volume change, reduce the transport</p><p>length of Lithium ions, and improve the matrix conductivity. These free-standing V O /MCCNFs</p><p>deliver high capacity, excellent rate capability, and ultralong lifespan, along with the bene�its</p><p>like light weight, high-energy density, and remarkable cycling performance. The electrodes tes-</p><p>ted delivered superior capacity of 881.1 mAh g at 0.1 A g and 487.8 mAh g at 5 A g af-</p><p>ter 240 cycles and 5000 cycles with 0.00323% decay rate [167].</p><p>Figure 8</p><p>(a) Schematics on formation process of V O /MCCNFs composites; free-standing �ilms prepared by electros-</p><p>pinning; displaying �lexibility and 180° folding �ilms [167]. (b) Illustration of the device used for water detec-</p><p>tion, as well as the Mg–water reactions and ion transportation happening in the CNF porous structure; pulse</p><p>signals in response to relative humidity changes by the human breath detected by the device [169]. (c) Sche-</p><p>matic of the stepwise fabrication process of NiGa S /Ni@CNF; electrochemical characteristics of �lexible su-</p><p>percapacitors, CV curves with varying curvature radii (mm) with liquid and solid electrolyte [173].</p><p>2 3</p><p>2 3</p><p>2 3</p><p>−1 −1 −1 −1</p><p>2 3</p><p>2 4</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f008/</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g008.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f008/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 27/50</p><p>LIBs have pioneered battery technologies for decades with their high performance. However,</p><p>there are still disadvantages such as toxicity and safety hazards due to their highly reactive</p><p>properties and thermal runaway caused by dendrite formation, which has triggered research</p><p>for mono and multivalent metal-ion battery systems. In past few years, magnesium-ion batte-</p><p>ries (MIBs) have exhibited promising qualities due to the abundance in availability of magne-</p><p>sium and its ability to provide a volumetric capacity of 3832 mA h cm , which is twice as much</p><p>of lithium. In their recent work, Diem and coworkers fabricated a hybrid magnesium–lithium-</p><p>ion battery (MLIB) using a binder-free</p><p>and self-supporting V O nano�iber-based cathode with</p><p>magnesium anode and dual-salt electrolyte containing both Mg and Li [168]. V O is a pro-</p><p>mising intercalation compound, as it can provide high storage capacities and energy densities</p><p>owing to its redox chemistry. The presence of VO bilayer chains makes it a suitable cathode</p><p>material for MLIBs. The space between the layers contain water molecules, which provides</p><p>large vacancy to host intercalating ions and can facilitate ion insertion into intercalation sites.</p><p>Here, V O nano�iber cathode helped in achieving high energy densities by providing high in-</p><p>tercalation potential. In this rechargeable electrochemical storage system, the cathode provi-</p><p>ded a high operating voltage of up to 1.5 V vs. Mg/Mg while achieving storage capacities of</p><p>around 386 mAh g , complemented with an energy density of 280 W h kg and good cycling</p><p>stability of 200 mA g over 500 cycles.</p><p>Another hybrid battery study on a hygroelectric generator was carried out by Feng et al. [169]</p><p>using an oxidized carbon nano�iber cathode and Mg anode based on the enhanced capacitive</p><p>discharging effect. The concept of a water/moisture-induced hygroelectric effect depends on</p><p>direct contact between magnesium alloy and oxidized carbon nano�ibers in the presence of</p><p>water (Figure 8b). Here, the CNF network acted as a good water-absorbing electrode. The re-</p><p>duction potential of Mg alloy was able to tune the oxidation of CNF and output voltage was</p><p>made to exceed the limit while still generating a high current density.</p><p>The device could generate an open-circuit voltage up to 2.65 V and average peak short-circuit</p><p>current density of ~6 mA/cm when in contact with liquid water, hence making it a potential</p><p>candidate in water or vapor leakage detection, portable energy source, humidity sensors, etc.</p><p>The �iber network in this study acted as a good water-absorbing material and could produce a</p><p>high current density exceeding the reduction potential of magnesium by tuning the oxidation</p><p>of the carbon nano�iber.</p><p>Other than Li and Mg batteries, Zn is another transition metal which has been highly explored</p><p>in battery research for its high theoretical gravimetric energy (1086 Wh kg ), easy conversion</p><p>and storage, abundancy in nature, low cost, and environmental friendliness. Zang et al. [170]</p><p>engineered NiO/NiCo O porous nano�ibers by electrospinning to use as bifunctional catalysts</p><p>in the rechargeable Zinc air battery. NiO has been proven to be an ideal electrocatalyst in</p><p>oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) due to its special e orbi-</p><p>tals, as the surface of nanoscale NiO is oxidized easily to active Ni species. On the other hand,</p><p>spinel structured NiCo O has also been known as a promising OER, ORR electrocatalyst, as the</p><p>cobalt and nickel ions can introduce various functions within the structure. In this engineered</p><p>structure of NiO/NiCo O , chemical bonds that form at the interface facilitate a higher charge-</p><p>transfer rate. In parallel, the heterostructure also promotes the intrinsic activity of OER/ORR</p><p>through exposure of more electrocatalytic active sites. As a result, the interface engineering of</p><p>NiO/NiCo O with numerous mesopores synergistically provides suf�icient oxygen transport,</p><p>satisfactory intrinsic activity, and abundant electrocatalyst’ active sites. Here, NiO/NiCo O po-</p><p>rous nano�ibers contributed to enhancing electron transfer rate and promoting the intrinsic</p><p>−3</p><p>2 5</p><p>2+ +</p><p>2 5</p><p>5</p><p>2 5</p><p>2+</p><p>−1 −1</p><p>−1</p><p>2</p><p>−1</p><p>2 4</p><p>g</p><p>3+</p><p>2 4</p><p>2 4</p><p>2 4</p><p>2 4</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f008/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 28/50</p><p>activity through providing exposure to more electrocatalytic active sites. The synthesized</p><p>catalyst exhibited superior electrocatalytic performance, lower overpotential of 357 mV at 10</p><p>mA cm , half-wave potential of 0.73 V, speci�ic capacity of 814.4 mA h g , and cycling stability</p><p>of 175 h.</p><p>Apart from the batteries, supercapacitors are another type of electrochemical energy storage</p><p>devices that can store and release energy by reversible adsorption and desorption of ions at</p><p>the electrode-electrolytes interface. High power density, rapid charge/discharge rate, and cycle</p><p>stability are some of the key requisites of supercapacitors, which are supported by large sur-</p><p>face area and high porosity of nano�iber material. The �ibrous nanostructures surface</p><p>morphology with high surface-to-volume ratio aids in increasing the energy storage capability</p><p>by increasing interfacial activity between electrode and electrolyte [171,172]. A few of the la-</p><p>test research works in the �ield of nanogenerators are summarized here.</p><p>The development of supercapacitors with high energy density and rate capability is extensively</p><p>explored for energy storage applications in electric vehicles and in wearable portable electro-</p><p>nic devices. However, the conventional supercapacitors lack �lexibility. To address this issue,</p><p>Kim et al. [173] fabricated a metallized nickel platted carbon nano�iber (Ni@CNF) decorated</p><p>with 2D Nickel Gallium sul�ide (NiGa S ) nanosheets. Here, NiGa S nanosheets improved the</p><p>electrochemical activity by promoting electrolyte-to-electrode diffusion. Along with this, supe-</p><p>rior electrical conductivity of the Ni@CNF provided electrochemical stability and also enhan-</p><p>ced charge transfer that occurs in the electrode (Figure 8a). These nano�ibers enhanced the</p><p>pseudo capacitance and energy density of the nanosheets, whereas nanosheets contributed</p><p>towards improving the energy storage capability and electrochemical activity. The device re-</p><p>ported the highest speci�ic capacitance at 488 F g with a potential window of 1.1 V and cur-</p><p>rent rate of 0.5 A g , long-term stability with capacitance retention 109% after 20,000 cycles,</p><p>and �lexibility effect on the cyclic voltammetry performance was tested by 2000 bending cycles,</p><p>yielding favorable results. In another recent study, Jeong et al. [174] developed a template-less</p><p>hierarchical porous carbon nano�iber/manganese oxide (MnO )-derived electrospun</p><p>polyacrylonitrile/cyclodextrin (CD) composite PMnCD(β) using β-CD phase, which exhibited a</p><p>hierarchical porous structure. Hybrids of nano-sized MnO and carbon nano�ibers have been</p><p>declared as suitable candidates for supercapacitor electrodes, as they simultaneously exhibit</p><p>high pseudo capacity and excellent electronic conductivity. The as fabricated PMnCD(β) elec-</p><p>trode showed a large speci�ic surface area for accumulation of ions and fast ion diffusion due</p><p>to the mesopores and nitrogen groups. The β phase of CD nano�ibers exhibited a hierarchical</p><p>porous structure with a large speci�ic surface area of 499 m g , and 0.32 cm g total pore</p><p>volume, that assisted in accumulation of hydrated molecules for double-layer formation by im-</p><p>proving adsorption ef�iciency. Here. the electrode reported a maximum energy density of</p><p>25.3–16.0 Whkg within the power density range of 400–10,000 Wkg , high speci�ic capaci-</p><p>tance of 228 Fg at 1 mAcm , and excellent cycling stability of 94% after 10,000 cycles.</p><p>Nowadays, to further enhance the speci�ic surface area, structural uniformity, porosity,</p><p>functionality and diverse topology of supercapacitors, metal–organic frameworks (MOFs), and</p><p>their derivatives are being integrated to the electrospun �ibers network. Recently, Mukhiya and</p><p>coworkers developed a 3D Co O /N-CNTs@CNFs for supercapacitors, exhibiting a promising</p><p>performance through self-templated MOF-synthesized onto carbonized electrospun carbon na-</p><p>no�ibers (CNF) mat. The composite supercapacitor exhibited a high speci�ic capacity of 238 mA</p><p>h g at 1 A g with a long lifespan and high rate capability. The assembled asymmetric super-</p><p>capacitor could deliver 52.9 Whkg speci�ic energy at a speci�ic power of 873.5 Wkg outs-</p><p>−2 −1</p><p>2 4 2 4</p><p>−1</p><p>−1</p><p>2</p><p>2</p><p>2 −1 3 −1</p><p>−1 −1</p><p>−1 −2</p><p>3 4</p><p>−1 −1</p><p>−1 −1</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f008/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 29/50</p><p>tanding lifetime (90.1% after 10,000 cycles) [175]. Apart from these, all-solid-state supercapa-</p><p>citors are becoming popular for their various advantages in terms of structural stability, opera-</p><p>tional safety, lightweight properties, and eco friendliness while also facilitating leakage preven-</p><p>tion compared with the liquid electrolyte-based supercapacitors. By utilizing �iber-�iber inter-</p><p>connections, high speci�ic surface area, and hierarchical pore structure of electrospun carbon</p><p>nano�iber mats (ECNFMs), Wang and coworkers recently developed a high-performance all-so-</p><p>lid-state supercapacitor. Here, ECNFMs were prepared by electrospinning of PAN and novolac</p><p>resin (NOC) solution blend, where PAN was used as carbon precursor and NOC acted as a sa-</p><p>cri�icial agent contributing towards pore-generation. The highest obtained speci�ic surface area</p><p>value was 1468 m g when ECNFMs were carbonized at 1000 °C. A symmetrical supercapaci-</p><p>tor device was prepared by sandwiching PVA/(Sulfuric acid) H SO hydrogel within two frees-</p><p>tanding ECNFMs. The device exhibited a high speci�ic capacitance of ~99.72% along with excel-</p><p>lent capacitance retention of ~320 mF cm at 0.25 mA cm after 10,000 charge/discharge</p><p>cycles. Along with that, a large energy density of ~11.1 μWh cm was obtained for input</p><p>power density of 500 mW m [176].</p><p>In another study, Singh et al. fabricated all-solid-state supercapacitors by kraft lignin-derived</p><p>heat-treated carbon nano�ibers. Although most of the studies use synthetic PAN polymer, its</p><p>higher cost, non-renewable nature, and tendency to release toxic gases like HCN during heat</p><p>treatment have promoted the usage of some renewable green precursors like Lignin, cellulose,</p><p>etc. for synthesizing CNF. In this study, Lignin was selected for its abundancy in nature, non-</p><p>toxicity, higher aromatic structure carbon content, and renewability. Higher speci�ic capaci-</p><p>tance 196.63 F/g was achieved for 1 A/g current density. For direct comparison, the device</p><p>was tested in both aqueous (using 1 M H SO ) as well as polymer gel electrolyte (using PVA-</p><p>1M H SO hydrogel). The solid-state electrolyte device could operate at higher voltages (exhi-</p><p>biting potential window of 0–2 V) compared with the aqueous electrolyte (where the potential</p><p>window ranged within 0–1.6 V). Even after 10,000 cycles, the device exhibited 62.6 Wh/kg</p><p>energy density and 1.25 kW/kg power density with 99.5% ef�iciency, providing futuristic</p><p>energy storage applications of carbon nano�ibers-based solid-state electrolyte [177]. Role of</p><p>different nano�iber materials used in various type of batteries and supercapacitor applications</p><p>are summarized in Table 5.</p><p>2 −1</p><p>2 4</p><p>−2 −2</p><p>−2</p><p>−2</p><p>2 4</p><p>2 4</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t005/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 30/50</p><p>Table 5</p><p>Role of nano�iber materials in various battery and super capacitor applications.</p><p>Materials Property	and	Role Application Ref.</p><p>ANF/PEO-LiTFSI CPE �ilms</p><p>Provided large aspect ratio and high</p><p>mechanical strength, and</p><p>conductivity. The CPEs also</p><p>displayed greatly enhanced</p><p>electrochemical, mechanical and</p><p>thermal stabilities with superior rate</p><p>performance and cycling stability</p><p>Li-ion battery [166]</p><p>Vanadium oxide/multichannel</p><p>carbon nano�ibers</p><p>Exhibited unprecedented</p><p>electrochemical rate performance,</p><p>long cyclability</p><p>Li-ion battery [167]</p><p>Zeolitic imidazolate framework-</p><p>67/cellulose nano�ibers</p><p>Displayed improved pore structure,</p><p>excellent thermal stability, lower</p><p>thermal shrinkage, and better surface</p><p>wettability. Lithium-ion batteries</p><p>assembled with ZIF-67@CNF</p><p>membrane showed higher cycling</p><p>performance and rate capability than</p><p>the other membranes</p><p>Li-ion battery [178]</p><p>Binder-free and self-supporting</p><p>V O nano�iber</p><p>Cathode materials: high storage</p><p>capacities, good cycling stability</p><p>while holding structural integrity</p><p>Magnesium–</p><p>lithium-ion hybrid</p><p>battery</p><p>[168]</p><p>Carbon nano�ibers (CNF)</p><p>The oxidized CNF was shown to</p><p>absorb water/moisture and became</p><p>reduced, leading to a capacitive</p><p>discharging effect to provide</p><p>enhanced signal amplitude and</p><p>sensitivity</p><p>Magnesium</p><p>battery</p><p>[169]</p><p>Porous NiO/NiCo O nano�ibers</p><p>with</p><p>Provided �lexibility and long cycling</p><p>life (14 h)</p><p>Zinc-air battery [170]</p><p>Nitrogen-doped porous carbon</p><p>@Carbon nano�iber aerogels</p><p>Exhibited peak density of 96 mW</p><p>cm and stable charge discharge</p><p>durability</p><p>Zinc-air battery [179]</p><p>Vanadate nano�iber crystal</p><p>structure/poly(3,4-ethylene</p><p>Intercalation of the conducting</p><p>polymer increased electron pathway,</p><p>in turn increasing number of active</p><p>sites inside the vanadate and Zinc ion battery [180]</p><p>2 5</p><p>2 4</p><p>−2</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 31/50</p><p>3.2.2. Nanogenerators and Solar Cells The nanogenerator is a portable energy-harvesting</p><p>technology that converts small mechanical or thermal energy changes and produces electricity.</p><p>Typically, nanogenerators are of three kinds based on the mechanism involved: piezoelectric</p><p>(generating electric charge in response to applied mechanical deformation) [183], triboelec-</p><p>tric, which is a combination of triboelectri�ication (the phenomenon of the certain class of ma-</p><p>terials to become electrically charged when brought in contact with their conjugate material</p><p>with opposite tribopolarity) and electrostatic induction [184], and pyroelectric (generating</p><p>electric charge in response to the changing thermal energy) [185]. Among these, triboelectric</p><p>nanogenerators (TENGs) are being noticed for their high output voltage, simpli�ied con�igura-</p><p>tion, lightweight properties, cost-effective fabrication, �lexible operation, etc. towards which na-</p><p>no�ibers play a crucial role. Hence, they have been intensively explored in the past few years.</p><p>To produce a scalable energy harvester for human motion monitoring and powering various</p><p>light-emitting diode, Huang and coworkers used a simple one-step-electrospinning technique.</p><p>Here, TENG was developed by electrospinning ethyl cellulose/polyamide 6 and poly(vinylidene</p><p>�luoride) (PVDF) polymers (Figure 9A). In this study, ethyl cellulose (EC)/polyamide 6 (PA6)</p><p>nano�iber served as a triboelectric positive material whereas PVDF incorporated with MXene</p><p>sheet acted as a negative material. MXene has strong electronegativity and electrical</p><p>conductivity, which boosts the triboelectric negativity of the PVDF nano�ibers which, in turn,</p><p>effectively improves the output of the TENG. EC has higher triboelectric positivity compared</p><p>with PA6, but the tensile strength of EC nano�iber mats increases when it is blended with PA6,</p><p>making EC/PA6 composite nano�iber mats a suitable candidate. The assembled TENG displayed</p><p>stability, durability, and good output performance with peak power density of 290 mW/m at a</p><p>100 MΩ load resistance [186]. For composite nano�iber-based electrical devices, it has been</p><p>reported that the �iber production technique also plays a crucial role in controlling their elec-</p><p>trical as well as surface charge density. In their recent work, Kim and team developed</p><p>polyimide/poly(vinylidene �luoride-co-tri�luoroethylene) (PI/PVDF-TrFE) composite nano�iber</p><p>membranes using single, conjugated, and multi-nozzle electrospinning systems [187]. Both PI</p><p>and PVDF-TrFE have excellent triboelectric negativity as well as high dielectric constants. Here,</p><p>combining PI as a transition layer with the PVDF-TrFE polymer contributed synergistically</p><p>towards the TENGs performance. They reported</p><p>that among the three types of systems, �ibers</p><p>obtained through the multi-nozzle technique exhibited the highest surface potential due to</p><p>their thinner �iber diameter. During multi-nozzle electrospinning, PI nano�ibers were placed</p><p>adjacent to the PVDF-TrFE, forming well-developed crystalline structure resulting in a signi�i-</p><p>cant improvement in the electrical performances (obtaining stable energy harvesting up to</p><p>10,000 cycles of loading, with the ability to illuminate 117 light-emitting diodes) due to its high</p><p>surface area. It was noted that the multi-nozzle setup delivered 364 V output voltage, 17.2 μA</p><p>short-circuit current, and 29.72 nC transferred charge with power density of 2.56 W/m at a</p><p>load resistance of 100 MΩ, which turned out to be about seven times greater than other nano-</p><p>�ibers obtained from other setups.</p><p>2</p><p>2</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f009/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 32/50</p><p>Figure 9</p><p>(A) Schematic of fabrication process, working mechanism, voltage, and current signals of TENG [186]. (B) Il-</p><p>lustration of electrospinning system; SEM images and diameter distributions of PVDF �iber, (a) Short-circuit</p><p>current of PENG with 2 wt% rGO under bending conditions. (b) One cycle short circuit current generated</p><p>from the PENG with 2 wt% rGO. The inset shows the PENG with 2 wt% rGO mounted on the wrist with a ben-</p><p>ding and release gesture. (c) Short-circuit current of PENG with 2 wt% rGO under the condition of wind speed</p><p>as 8 m/s. The illustration shows that the hair dryer continues to blow PENG. (d) Load resistance dependence</p><p>of the output voltage and output power of the 2% rGO/PVDF PENG pressed at 2 Hz frequency. (e) Schematic</p><p>illustration of recti�ier circuit. (f) Before lighting the bulb. (g) The bulb was lighted [190].</p><p>Coaxial electrospinning is a technique mostly used for simultaneous electrospinning of soluti-</p><p>ons with poor dispersion and incompatibility. Zhang and group constructed a high-output-per-</p><p>formance nano�iber TENG device comprising inorganic/organic hybrid materials to achieve</p><p>synergic dielectric and dispersity modulation [188]. In this work, polydimethylsiloxane and ba-</p><p>rium titanate nanoparticles (BT NPs) were combined as the core and PVDF as shell layer of the</p><p>coaxial nano�iber during the electrospinning process. BT NPs is a kind of inorganic piezoelec-</p><p>tric ceramic that has excellent dielectric properties. It can effectively enhance the permittivity</p><p>and surface charge density of corresponding triboelectric materials. PDMS is a widely used</p><p>ideal tribo-negative material, and due to its good charge retention capability and presence of</p><p>silicon hydroxyl end groups it possesses a better compatibility with BT than PVDF. The optimi-</p><p>zed device exhibits a high output voltage of 1020 V, a current of 29 μA, and a maximum power</p><p>density of 2.2 W/m under a 30 MΩ load resistance. Due to their high energy conversion</p><p>ef�iciency and ease of implementation, piezoelectric nanogenerators are extensively exploited</p><p>as energy harvesting devices [189]. Designing piezoelectric devices with composite nano�iber</p><p>is another popularly researched area in the nanogenerator �ield. Recently, Yang et al. [190] fa-</p><p>bricated one of such piezoelectric devices using GO/PVDF electrospun nano�ibers (Figure 9B).</p><p>In PVDF polymer, β phase mainly contributes to the piezoelectric property of the device which</p><p>becomes enhanced in the presence of external electrode polarization at high electric �ields du-</p><p>ring electrospinning. Here, the addition of GO improves the content of β phase of PVDF by in-</p><p>creasing nucleation sites. The device performance was further improved with the addition of</p><p>reduced graphene oxide (rGO) which enhanced β-phase content, resulting in a 700 nA short-</p><p>circuit current and 16 V open-circuit voltage. The higher conductivity of rGO facilitated impro-</p><p>ving the transfer of induced charge generated by PVDF, proving that rGO can enhance the pie-</p><p>zoelectric response of the �lexible �iber mat. Another recent work involved the use of</p><p>PVDF/nickel ferrite (NiFe O ) (400 nm diameter) nano�iber �ilms [191]. Electroactive proper-</p><p>ties of polymeric nanocomposites were signi�icantly in�luenced by the morphology of the na-</p><p>no�illers used. The larger aspect ratio formed a stronger interface with the matrix that impro-</p><p>ved the electroactive performance. Hence, the incorporation of NiFe O within PVDF �iber re-</p><p>sulted into transformation of microstructure from α-phase to β-phase by 68%. The fabricated</p><p>device exhibited ferroelectric properties with a highest polarization value of 1.46 μC/cm . In</p><p>vibrational testing mode, the sample showed a maximum saturation magnetization value of 4.2</p><p>emu/cm , open circuit voltage of 10 V, and 4.8 V output voltage under a weak AC magnetic �i-</p><p>eld of 10 Oe at 50 Hz.</p><p>2</p><p>2 4</p><p>2 4</p><p>2</p><p>3</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f009/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f009/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 33/50</p><p>Apart from nanogenerators, solar (photovoltaic) cells are also energy harvesting device that</p><p>converts light energy into electric energy. As the demand for cleaner energy is growing, solar</p><p>cells, capable of producing renewable energy have been widely explored for their portability,</p><p>ef�iciency, durability, and low maintenance. Nano�ibers have been extensively used for solar</p><p>cell research to achieve improved ef�iciency with other advantages like large scale production,</p><p>miniaturization, etc. There are mainly three types of photovoltaic devices: dye sensitized, pe-</p><p>rovskite, and organic cells which have been explored recently [192]. A few of the recent rese-</p><p>arch works are mentioned below.</p><p>Eco-friendly organic solar cells have several advantages, including biodegradability, safety, low-</p><p>cost, lightweight properties, large surface areas, and nontoxic characteristics. Lin et al.</p><p>successfully developed Ag NWs embedded TEMPO-oxidized eco-friendly cellulose nano�ibers</p><p>photovoltaic substrates using a facile, printable transfer method. In high-performance �lexible</p><p>OPVs, plastic �lexible substrates like polyethylene terephthalate (PET) and polyethylene</p><p>naphthalate (PEN) are mostly used, which have very high coef�icients of thermal expansion</p><p>that cause severe expansion or shrinkage, resulting in cracks. To avoid such damages, TEMPO-</p><p>oxidized Cellulose NFs were used here. It was observed that the TEMPO-mediated oxidation</p><p>largely improved mechanical strength of CNFs. Here, the nano�iber network enabled the for-</p><p>mation of a homogeneous hybrid with Ag NWs and concurrently allowed a higher percentage</p><p>of visible light. The device showed a low sheet resistance of 2.62 Ω sq with 78.5% optical</p><p>transparency of (at 550 nm), which was comparable to the commercial polyethylene</p><p>naphthalate/indium-tin-oxide substrate. The device was able to withstand 15 peeling cycles</p><p>and 500 bending cycles, displaying its high mechanical stability and very low thermal expan-</p><p>sion coef�icient (3.37 × 10 K ) that aided in obtaining a new perspective for the develop-</p><p>ment of sustainable organic photovoltaics [193].</p><p>In spite of many advantages, there are few drawbacks such as low ef�iciency, stability, and</p><p>strength, which triggered research interest in looking for other alternatives. A recent study on</p><p>iron platinum (FePt)/Titanium dioxide (TiO ) nano�ibers-based solar cell was conducted by</p><p>Nien et al. [194]. The device was fabricated onto the photoanode material for dye-sensitized</p><p>solar cell using sol-gel and electrospinning technique. Here, TiO nano�ibers acted as a barrier</p><p>layer which reduced the charge transfer resistance by preventing recombination of photogene-</p><p>rated electrons and holes. As FePt nanoparticles exhibit high chemical stability and coercivity</p><p>in addition to their excellent magnetic property, they can reduce the surface charge recombina-</p><p>tion rate of metal oxides. Hence, in this study, FePt nanoparticles were mixed with TiO nano�i-</p><p>bers to modify the photoanodes. The device showed an output intensity of 100 mW/cm and a</p><p>16% increase in photoelectric conversion ef�iciency when compared with the TiO photoa-</p><p>node, which was 3.79%, and FePt/TiO nano�iber photoanode, which was 4.41%. In general,</p><p>solar cell transparency is a crucial factor to capture and utilize the solar energy. In this direc-</p><p>tion, a study involving fabric-like transparent electrode for �lexible perovskite solar cell was</p><p>carried out by Zhai et al. [195]. In this work, a silver nanowire network-loaded PU/PAN nano�i-</p><p>bers �ilm was fabricated. Here, a nano�iber �ilm of approximate thickness of 10 µm provided</p><p>high transmittance and served as an excellent �lexible electrode. It was noticed that with incre-</p><p>asing PAN content, although the breaking strength enhanced, the light transmittance value de-</p><p>creased. The produced electrode possessed 80% light transmission in the visible range, and</p><p>70% break strain while retaining its original charge transport property during stretching and</p><p>bending operations. Hence, employing this electrode to assemble perovskite solar cells resul-</p><p>ted a 4.06% conversion ef�iciency while maintaining above 85% of its original ef�iciency.</p><p>−1</p><p>−6 −1</p><p>2</p><p>2</p><p>2</p><p>2</p><p>2</p><p>2</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 34/50</p><p>The roles of different nano�iber materials used in various nanogenerator applications are</p><p>summarized in Table 6.</p><p>Table 6</p><p>Roles of nano�iber materials in various nanogenerator applications.</p><p>Materials Property	and	Role Applications Ref.</p><p>Ethyl cellulose/polyamide 6 nano�iber</p><p>mats and MXene-based poly(vinylidene</p><p>�luoride) nano�iber mats</p><p>Ethyl cellulose/polyamide 6</p><p>nano�iber mats as triboelectric</p><p>cathode materials and MXene-</p><p>based PVDF nano�iber mats as</p><p>triboelectric anode materials.</p><p>Triboelectric</p><p>nanogenerator</p><p>[186]</p><p>Polyvinylidene �luoride (PVDF)/MXene</p><p>(Ti C T ) composite nano�ibers</p><p>The dielectric modulation of</p><p>PVDF nano�ibers by incorporating</p><p>conductive MXene nanosheets</p><p>signi�icantly enhanced the</p><p>dielectric constant and the surface</p><p>charge density of nano�iber by</p><p>270% and 80%, respectively.</p><p>Triboelectric</p><p>nanogenerator</p><p>[196]</p><p>Polyimide/poly(vinylidene �luoride-co-</p><p>tri�luoroethylene) membranes</p><p>Provided excellent triboelectric</p><p>negativity and high dielectric</p><p>constant</p><p>Triboelectric</p><p>nanogenerator</p><p>[187]</p><p>Polyamide 66 nano�iber and</p><p>poly(vinylidene�luorideco-</p><p>tri�luoroethylene) nano�iber</p><p>Nano�ibers were used as the shell</p><p>to wrap commercial stainless-</p><p>steel yarns providing high</p><p>�lexibility, desirable breathability,</p><p>washability, excellent durability,</p><p>demonstrating to be a reliable</p><p>power textile to light up 58 light-</p><p>emitting diodes</p><p>Triboelectric</p><p>nanogenerator</p><p>[197]</p><p>Graphene Oxide/PVDF Electrospun</p><p>Nano�iber</p><p>By adding GO and rGO to increase</p><p>the nucleation sites in PVDF, the</p><p>polar β piezoelectric phase could</p><p>be enhanced, resulting in greater</p><p>piezoelectric output</p><p>Piezoelectric</p><p>nanogenerator</p><p>[190]</p><p>PVDF-graphene nanosheet composite</p><p>nano�ibers</p><p>In comparison with the pristine</p><p>PVDF, the PVDF/G composite</p><p>�ilms-based TENGs demonstrated</p><p>superior triboelectric</p><p>performance.</p><p>Triboelectric</p><p>nanogenerator</p><p>[198]</p><p>Electrospraying pre-synthesized</p><p>ZnO nanorods on PVDF</p><p>nano�ibers resulted in the highest</p><p>3 2 x</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t006/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 35/50</p><p>4. Conclusions</p><p>This article was structured and presented in a format to provide an understanding of the state-</p><p>of-the-art properties, characteristics, and advanced applications of nano�iber technology. Na-</p><p>no�ibers with high surface area and tunable porosity, along with other novel properties like</p><p>high conductivity, superior electrochemical activity, improved mechanical strength, structural</p><p>integrity, etc., are being fabricated through the unique, simple, lucrative, and versatile techni-</p><p>que of electrospinning. The ability to affect nano�iber morphology with respect to the electros-</p><p>pinning setup modi�ications, along with environmental, solution, and process parameters, was</p><p>discussed in the review. Applications including biosensors, tissue engineering, wound healing,</p><p>and drug delivery in health care sector and batteries, supercapacitors, solar cells, and nanoge-</p><p>nerators in energy devices were elaborated in this article. Although electrospinning is the most</p><p>versatile among existing techniques, there are a few drawbacks such as: requirement of high</p><p>voltage and conducting targets; dif�iculty in achieving in situ deposition; scalability for mass</p><p>production; requirement of specialized equipment and reproducible systems for commerciali-</p><p>zation; dif�iculty in obtaining long, continuous, and oriented nano�iber; avoiding beads forma-</p><p>tion during electrospinning caused by solution viscosity or net charge density that reduces ef-</p><p>fective surface area of �ibers; becoming friable after calcination; and dif�iculty in fabricating na-</p><p>no�ibers with diameters less than 10 nm, etc. Along with these, there are also application-speci-</p><p>�ic shortcomings for each �ield. In health care applications, despite having unique properties,</p><p>electrospun nano�ibers show a low level of biodegradability, poor in�iltration of cells or drugs</p><p>into the scaffolds, and a consistency mismatch between the nano�ibers and bone extracellular</p><p>matrix, etc. Similarly, some challenges have also been faced in the applications of electrospun</p><p>nano�ibers-based energy devices. Some of these are inef�icient inhibition, unavailability of ef�i-</p><p>cient and durable redox activation and stability, limited theoretical speci�ic capacity, the need of</p><p>improved energy density, reproducibility, extended shelf life, and longer cycle life, etc.</p><p>The drawbacks and challenges that are being faced currently have become the problem state-</p><p>ment for future research works. Commercialization and meeting the demand of nano�iber</p><p>technology have become prime focuses for future research which aim towards large-scale pro-</p><p>duction for facilitating laboratory-to-market transition. The brittleness of electrospun nano�i-</p><p>bers is also a major setback for various applications, which has become another triggering fac-</p><p>tor for upcoming research, especially on developing highly �lexible continuous �ibers. To obtain</p><p>synergistic chemical as well as physical characteristics, the addition of nano�illers within the �i-</p><p>ber matrix has become another key researched area for both biomedical and energy related</p><p>applications. In the case of tissue engineering, wound dressing, and drug delivery, qualitative to</p><p>quantitative analysis for cytocompatibility of the �ibrous scaffolds for cell adhesion, prolifera-</p><p>tion, and differentiation is becoming an essential feature. Along with this, exploration through</p><p>in vivo animal/human study with clinical trials for evaluating real-life practical applicability of</p><p>the device or scaffold should also be emphasized. On the other hand, in energy devices,</p><p>synthesizing nano�iber-based electrodes with optimized porosity and pore distance for impro-</p><p>ving ion carrying and storing capacity is one of the upcoming major goals which will</p><p>subsequently enhance both voltammetric energy and power density. The aim of this review</p><p>was to provide an overall insight on electrospun nano�ibers and their advanced applications</p><p>through understanding the direction of research that has been conducted in the past 2 years</p><p>in the �ields of health care and energy devices.</p><p>Acknowledgments</p><p>02/02/2023 12:19</p><p>Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 36/50</p><p>V.S.R. would like to acknowledge the support given by the NUS Research Scholarship</p><p>(GRSUR5000003 RES SCH PhD SERIS IS) during the period of study.</p><p>Author Contributions</p><p>Conceptualization, writing—original draft preparation and editing, V.S.R.; writing and diagram</p><p>drawing Y.T., C.Z., Z.Y., K.R., A.C.; writing and editing, R.G.; supervision, R.G., S.R. and W.L.; project</p><p>administration, S.R.; funding acquisition, S.R. All authors have read and agreed to the published</p><p>version of the manuscript.</p><p>Funding</p><p>Sustainable Tropical Data Center (Grant No. R265000A50281), NUS COVID-19 Research Seed</p><p>Funding (Grant No. NUSCOVID19RG-11), Lloyd’s Register Foundation, UK (Grant No.</p><p>R265000553597), and the NUS Hybrid-Integrated Flexible (Stretchable) Electronic Systems</p><p>(HiFES) Program Seed Fund (Grant No. R265000628133).</p><p>Institutional Review Board Statement</p><p>Not applicable.</p><p>Informed Consent Statement</p><p>Not applicable.</p><p>Data Availability Statement</p><p>Not applicable.</p><p>Conflicts of Interest</p><p>The authors declare no con�lict of interest in�luencing the representation or interpretation of</p><p>re-ported research results.</p><p>Footnotes</p><p>Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional</p><p>affiliations.</p><p>References</p><p>1. What Is the Fourth Industrial Revolution? Industrial	Analytics	Platform. [(accessed on 9 September 2021)]. Available</p><p>online: https://iap.unido.org/articles/what-fourth-industrial-revolution</p><p>https://iap.unido.org/articles/what-fourth-industrial-revolution</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 37/50</p><p>2. IDR2020|UNIDO. [(accessed on 9 September 2021)]. Available online: https://www.unido.org/resources-</p><p>publications-�lagship-publications-industrial-development-report-series/idr2020</p><p>3. How the 4IR Is Driving a New Wave of Energy Innovation World Economic Forum. [(accessed on 9 September</p><p>2021)]. Available online: https://www.weforum.org/agenda/2020/09/how-the-4ir-is-driving-a-new-wave-of-energy-</p><p>innovation/</p><p>4. Medical Devices Market Regional Analysis 2020–2025|Global Market Size, Research, Report, Trends,</p><p>Growth|Medgadg-et. [(accessed on 9 September 2021)]. Available online:</p><p>https://www.medgadget.com/2020/01/medical-devices-market-regional-analysis-2020-2025-global-market-size-</p><p>research-report-trends-growth.html</p><p>5. Global Energy Ef�icient Devices Market Size 2015–2022, Statista. [(accessed on 7 September 2021)]. Available</p><p>online: https://www-statista-com.libproxy1.nus.edu.sg/statistics/785502/global-energy-ef�icient-devices-market-</p><p>size/</p><p>6. Global Smart Clothing Market Size 2020, Statista. [(accessed on 7 September 2021)]. Available online: https://www-</p><p>statista-com.libproxy1.nus.edu.sg/statistics/302735/smart-clothing-fabrics-shipments-worldwide/</p><p>7. Ghosh R., Pin K.Y., Reddy V.S., Jayathilaka W.A.D.M., Ji D., Serrano-Garcı́a W., Bhargava S.K., Ramakrishna S.,</p><p>Chinnappan A. Micro/nano�iber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl.</p><p>Phys.	Rev.	2020;7:041309. doi: 10.1063/5.0010766. [CrossRef] [Google Scholar]</p><p>8. Roduner E. Size matters: Why nanomaterials are different. Chem.	Soc.	Rev.	2006;35:583–592. doi: 10.1039/b502142c.</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>9. Silva G.A. Introduction to nanotechnology and its applications to medicine. Surg.	Neurol.	2004;61:216–220.</p><p>doi: 10.1016/j.surneu.2003.09.036. [PubMed] [CrossRef] [Google Scholar]</p><p>10. Subramanian V., Lee T. Nanotechnology-based �lexible electronics. Nanotechnology.	2012;23:340201.</p><p>doi: 10.1088/0957-4484/23/34/340201. [PubMed] [CrossRef] [Google Scholar]</p><p>11. Wu J., Yuan L., Zhang W., Li Z., Xie X., Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-</p><p>energy lithium batteries. Energy	Environ.	Sci.	2020;14:12–36. doi: 10.1039/D0EE02241A. [CrossRef] [Google Scholar]</p><p>12. Xie Y., Kocaefe D., Chen C., Kocaefe Y. Review of Research on Template Methods in Preparation of Nanomaterials. J.</p><p>Nanomater.	2016;2016:2302595. doi: 10.1155/2016/2302595. [CrossRef] [Google Scholar]</p><p>13. Aussawasathien D., Dong J.-H., Dai L. Electrospun polymer nano�iber sensors. Synth.	Met.	2005;154:37–40.</p><p>doi: 10.1016/j.synthmet.2005.07.018. [CrossRef] [Google Scholar]</p><p>14. Ye K., Kuang H., You Z., Morsi Y., Mo X. Electrospun Nano�ibers for Tissue Engineering with Drug Loading and</p><p>Release. Pharmaceutics.	2019;11:182. doi: 10.3390/pharmaceutics11040182. [PMC free article] [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>15. Hu X., Liu S., Zhou G., Huang Y., Xie Z., Jing X. Electrospinning of polymeric nano�ibers for drug delivery</p><p>applications. J.	Control.	Release.	2014;185:12–21. doi: 10.1016/j.jconrel.2014.04.018. [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>16. Liu M., Duan X.-P., Li Y.-M., Yang D.-P., Long Y.-Z. Electrospun nano�ibers for wound healing. Mater.	Sci.	Eng.	C.</p><p>2017;76:1413–1423. doi: 10.1016/j.msec.2017.03.034. [PubMed] [CrossRef] [Google Scholar]</p><p>17. Sun G., Sun L., Xie H., Liu J. Electrospinning of Nano�ibers for Energy Applications. Nanomaterials.	2016;6:129.</p><p>doi: 10.3390/nano6070129. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>18. Qin X.-H., Wang S.-Y. Filtration properties of electrospinning nano�ibers. J.	Appl.	Polym.	Sci.	2006;102:1285–1290.</p><p>doi: 10.1002/app.24361. [CrossRef] [Google Scholar]</p><p>https://www.unido.org/resources-publications-flagship-publications-industrial-development-report-series/idr2020</p><p>https://www.weforum.org/agenda/2020/09/how-the-4ir-is-driving-a-new-wave-of-energy-innovation/</p><p>https://www.medgadget.com/2020/01/medical-devices-market-regional-analysis-2020-2025-global-market-size-research-report-trends-growth.html</p><p>https://www-statista-com.libproxy1.nus.edu.sg/statistics/785502/global-energy-efficient-devices-market-size/</p><p>https://www-statista-com.libproxy1.nus.edu.sg/statistics/302735/smart-clothing-fabrics-shipments-worldwide/</p><p>https://doi.org/10.1063%2F5.0010766</p><p>https://scholar.google.com/scholar_lookup?journal=Appl.+Phys.+Rev.&title=Micro/nanofiber-based+noninvasive+devices+for+health+monitoring+diagnosis+and+rehabilitation&author=R.+Ghosh&author=K.Y.+Pin&author=V.S.+Reddy&author=W.A.D.M.+Jayathilaka&author=D.+Ji&volume=7&publication_year=2020&pages=041309&doi=10.1063/5.0010766&</p><p>https://pubmed.ncbi.nlm.nih.gov/16791330</p><p>https://doi.org/10.1039%2Fb502142c</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Soc.+Rev.&title=Size+matters:+Why+nanomaterials+are+different&author=E.+Roduner&volume=35&publication_year=2006&pages=583-592&pmid=16791330&doi=10.1039/b502142c&</p><p>https://pubmed.ncbi.nlm.nih.gov/14984987</p><p>https://doi.org/10.1016%2Fj.surneu.2003.09.036</p><p>https://scholar.google.com/scholar_lookup?journal=Surg.+Neurol.&title=Introduction+to+nanotechnology+and+its+applications+to+medicine&author=G.A.+Silva&volume=61&publication_year=2004&pages=216-220&pmid=14984987&doi=10.1016/j.surneu.2003.09.036&</p><p>https://pubmed.ncbi.nlm.nih.gov/22885735</p><p>https://doi.org/10.1088%2F0957-4484%2F23%2F34%2F340201</p><p>https://scholar.google.com/scholar_lookup?journal=Nanotechnology&title=Nanotechnology-based+flexible+electronics&author=V.+Subramanian&author=T.+Lee&volume=23&publication_year=2012&pages=340201&pmid=22885735&doi=10.1088/0957-4484/23/34/340201&</p><p>https://doi.org/10.1039%2FD0EE02241A</p><p>https://scholar.google.com/scholar_lookup?journal=Energy+Environ.+Sci.&title=Reducing+the+thickness+of+solid-state+electrolyte+membranes+for+high-energy+lithium+batteries&author=J.+Wu&author=L.+Yuan&author=W.+Zhang&author=Z.+Li&author=X.+Xie&volume=14&publication_year=2020&pages=12-36&doi=10.1039/D0EE02241A&</p><p>https://doi.org/10.1155%2F2016%2F2302595</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Nanomater.&title=Review+of+Research+on+Template+Methods+in+Preparation+of+Nanomaterials&author=Y.+Xie&author=D.+Kocaefe&author=C.+Chen&author=Y.+Kocaefe&volume=2016&publication_year=2016&pages=2302595&doi=10.1155/2016/2302595&</p><p>https://doi.org/10.1016%2Fj.synthmet.2005.07.018</p><p>https://scholar.google.com/scholar_lookup?journal=Synth.+Met.&title=Electrospun+polymer+nanofiber+sensors&author=D.+Aussawasathien&author=J.-H.+Dong&author=L.+Dai&volume=154&publication_year=2005&pages=37-40&doi=10.1016/j.synthmet.2005.07.018&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523318/</p><p>https://pubmed.ncbi.nlm.nih.gov/30991742</p><p>https://doi.org/10.3390%2Fpharmaceutics11040182</p><p>https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&title=Electrospun+Nanofibers+for+Tissue+Engineering+with+Drug+Loading+and+Release&author=K.+Ye&author=H.+Kuang&author=Z.+You&author=Y.+Morsi&author=X.+Mo&volume=11&publication_year=2019&pages=182&doi=10.3390/pharmaceutics11040182&</p><p>https://pubmed.ncbi.nlm.nih.gov/24768792</p><p>https://doi.org/10.1016%2Fj.jconrel.2014.04.018</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Control.+Release&title=Electrospinning+of+polymeric+nanofibers+for+drug+delivery+applications&author=X.+Hu&author=S.+Liu&author=G.+Zhou&author=Y.+Huang&author=Z.+Xie&volume=185&publication_year=2014&pages=12-21&pmid=24768792&doi=10.1016/j.jconrel.2014.04.018&</p><p>https://pubmed.ncbi.nlm.nih.gov/28482508</p><p>https://doi.org/10.1016%2Fj.msec.2017.03.034</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Electrospun+nanofibers+for+wound+healing&author=M.+Liu&author=X.-P.+Duan&author=Y.-M.+Li&author=D.-P.+Yang&author=Y.-Z.+Long&volume=76&publication_year=2017&pages=1413-1423&pmid=28482508&doi=10.1016/j.msec.2017.03.034&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5224596/</p><p>https://pubmed.ncbi.nlm.nih.gov/28335256</p><p>https://doi.org/10.3390%2Fnano6070129</p><p>https://scholar.google.com/scholar_lookup?journal=Nanomaterials&title=Electrospinning+of+Nanofibers+for+Energy+Applications&author=G.+Sun&author=L.+Sun&author=H.+Xie&author=J.+Liu&volume=6&publication_year=2016&pages=129&doi=10.3390/nano6070129&</p><p>https://doi.org/10.1002%2Fapp.24361</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Appl.+Polym.+Sci.&title=Filtration+properties+of+electrospinning+nanofibers&author=X.-H.+Qin&author=S.-Y.+Wang&volume=102&publication_year=2006&pages=1285-1290&doi=10.1002/app.24361&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 38/50</p><p>19. Yalcinkaya F. A review on advanced nano�iber technology for membrane distillation. J.	Eng.	Fibers	Fabr.	2019:14.</p><p>doi: 10.1177/1558925018824901. [CrossRef] [Google Scholar]</p><p>20. Subbiah T., Bhat G.S., Tock R.W., Parameswaran S., Ramkumar S.S. Electrospinning of nano�ibers. J.	Appl.	Polym.	Sci.</p><p>2005;96:557–569. doi: 10.1002/app.21481. [CrossRef] [Google Scholar]</p><p>21. Xie F., Wang Y., Zhuo L., Jia F., Ning D., Lu Z. Electrospun Wrinkled Porous Polyimide Nano�iber-Based Filter via</p><p>Thermally Induced Phase Separation for Ef�icient High-Temperature PMs Capture. ACS	Appl.	Mater.	Interfaces.</p><p>2020;12:56499–56508. doi: 10.1021/acsami.0c18143. [PubMed] [CrossRef] [Google Scholar]</p><p>22. Zheng Z., Chen P., Xie M., Wu C., Luo Y., Wang W., Jiang J., Liang G. Cell Environment-Differentiated Self-Assembly of</p><p>Nano�ibers. J.	Am.	Chem.	Soc.	2016;138:11128–11131. doi: 10.1021/jacs.6b06903. [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>23. Yan J., Han Y., Xia S., Wang X., Zhang Y., Yu J., Ding B. Polymer Template Synthesis of Flexible BaTiO3 Crystal</p><p>Nano�ibers. Adv.	Funct.	Mater.	2019;29:1907919. doi: 10.1002/adfm.201907919. [CrossRef] [Google Scholar]</p><p>24. Li Y., Zhu J., Cheng H., Li G., Cho H., Jiang M., Gao Q., Zhang X. Developments of Advanced Electrospinning</p><p>Techniques: A Critical Review. Adv.	Mater.	Technol.	2021:2100410. doi: 10.1002/admt.202100410. [CrossRef] [Google</p><p>Scholar]</p><p>25. Lin M.-F., Cheng C., Yang C.-C., Hsiao W.-T., Yang C.-R. A wearable and highly sensitive capacitive pressure sensor</p><p>integrated a dual-layer dielectric layer of PDMS microcylinder array and PVDF electrospun �iber. Org.	Electron.</p><p>2021;98:106290. doi: 10.1016/j.orgel.2021.106290. [CrossRef] [Google Scholar]</p><p>26. Xue J., Wu T., Dai Y., Xia Y. Electrospinning and Electrospun Nano�ibers: Methods, Materials, and Applications. Chem.</p><p>Rev.	2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. [PMC free article] [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>27. Kim G.J., Kim K.O. Novel glucose-responsive of the transparent nano�iber hydrogel patches as a wearable biosensor</p><p>via electrospinning. Sci.	Rep.	2020;10:18858. doi: 10.1038/s41598-020-75906-9. [PMC free article] [PubMed]</p><p>[CrossRef] [Google Scholar]</p><p>28. Xu Y., Shi G., Tang J., Cheng R., Shen X., Gu Y., Wu L., Xi K., Zhao Y., Cui W., et al. ECM-inspired micro/nano�ibers for</p><p>modulating cell function and tissue generation. Sci.	Adv.	2020;6:eabc2036. doi: 10.1126/sciadv.abc2036. [PMC free</p><p>article] [PubMed] [CrossRef] [Google Scholar]</p><p>29. Li Z., Milionis A., Zheng Y., Yee M., Codispoti L., Tan F., Poulikakos D., Yap C.H. Superhydrophobic hemostatic</p><p>nano�iber composites for fast clotting and minimal adhesion. Nat.	Commun.	2019;10:5562. doi: 10.1038/s41467-019-</p><p>13512-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>30. Yoo H., Kim T.G., Park T.G. Surface-functionalized electrospun nano�ibers for tissue engineering and drug delivery.</p><p>Adv.	Drug	Deliv.	Rev.	2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. [PubMed] [CrossRef] [Google Scholar]</p><p>31. Chen F.-M., Liu X. Advancing biomaterials of human origin for tissue engineering. Prog.	Polym.	Sci.	2015;53:86–168.</p><p>doi: 10.1016/j.progpolymsci.2015.02.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>32. Wang J., Wang H., Thakor N.V., Lee C. Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator</p><p>(TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode. ACS	Nano.	2019;13:3589–3599.</p><p>doi: 10.1021/acsnano.9b00140. [PubMed] [CrossRef] [Google Scholar]</p><p>33. Ji D., Fan L., Li L., Peng S., Yu D., Song J., Ramakrishna S., Guo S. Atomically Transition Metals on Self-Supported</p><p>Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc−Air Batteries. Adv.	Mater.	2019;31:e1808267.</p><p>doi: 10.1002/adma.201808267. [PubMed] [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1177%2F1558925018824901</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Eng.+Fibers+Fabr.&title=A+review+on+advanced+nanofiber+technology+for+membrane+distillation&author=F.+Yalcinkaya&publication_year=2019&pages=14&doi=10.1177/1558925018824901&</p><p>https://doi.org/10.1002%2Fapp.21481</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Appl.+Polym.+Sci.&title=Electrospinning+of+nanofibers&author=T.+Subbiah&author=G.S.+Bhat&author=R.W.+Tock&author=S.+Parameswaran&author=S.S.+Ramkumar&volume=96&publication_year=2005&pages=557-569&doi=10.1002/app.21481&</p><p>https://pubmed.ncbi.nlm.nih.gov/33275401</p><p>https://doi.org/10.1021%2Facsami.0c18143</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=Electrospun+Wrinkled+Porous+Polyimide+Nanofiber-Based+Filter+via+Thermally+Induced+Phase+Separation+for+Efficient+High-Temperature+PMs+Capture&author=F.+Xie&author=Y.+Wang&author=L.+Zhuo&author=F.+Jia&author=D.+Ning&volume=12&publication_year=2020&pages=56499-56508&pmid=33275401&doi=10.1021/acsami.0c18143&</p><p>https://pubmed.ncbi.nlm.nih.gov/27532322</p><p>https://doi.org/10.1021%2Fjacs.6b06903</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Am.+Chem.+Soc.&title=Cell+Environment-Differentiated+Self-Assembly+of+Nanofibers&author=Z.+Zheng&author=P.+Chen&author=M.+Xie&author=C.+Wu&author=Y.+Luo&volume=138&publication_year=2016&pages=11128-11131&pmid=27532322&doi=10.1021/jacs.6b06903&</p><p>https://doi.org/10.1002%2Fadfm.201907919</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Funct.+Mater.&title=Polymer+Template+Synthesis+of+Flexible+BaTiO3+Crystal+Nanofibers&author=J.+Yan&author=Y.+Han&author=S.+Xia&author=X.+Wang&author=Y.+Zhang&volume=29&publication_year=2019&pages=1907919&doi=10.1002/adfm.201907919&</p><p>https://doi.org/10.1002%2Fadmt.202100410</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Mater.+Technol.&title=Developments+of+Advanced+Electrospinning+Techniques:+A+Critical+Review&author=Y.+Li&author=J.+Zhu&author=H.+Cheng&author=G.+Li&author=H.+Cho&publication_year=2021&pages=2100410&doi=10.1002/admt.202100410&</p><p>https://doi.org/10.1016%2Fj.orgel.2021.106290</p><p>https://scholar.google.com/scholar_lookup?journal=Org.+Electron.&title=A+wearable+and+highly+sensitive+capacitive+pressure+sensor+integrated+a+dual-layer+dielectric+layer+of+PDMS+microcylinder+array+and+PVDF+electrospun+fiber&author=M.-F.+Lin&author=C.+Cheng&author=C.-C.+Yang&author=W.-T.+Hsiao&author=C.-R.+Yang&volume=98&publication_year=2021&pages=106290&doi=10.1016/j.orgel.2021.106290&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589095/</p><p>https://pubmed.ncbi.nlm.nih.gov/30916938</p><p>https://doi.org/10.1021%2Facs.chemrev.8b00593</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Rev.&title=Electrospinning+and+Electrospun+Nanofibers:+Methods,+Materials,+and+Applications&author=J.+Xue&author=T.+Wu&author=Y.+Dai&author=Y.+Xia&volume=119&publication_year=2019&pages=5298-5415&pmid=30916938&doi=10.1021/acs.chemrev.8b00593&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608638/</p><p>https://pubmed.ncbi.nlm.nih.gov/33139822</p><p>https://doi.org/10.1038%2Fs41598-020-75906-9</p><p>https://scholar.google.com/scholar_lookup?journal=Sci.+Rep.&title=Novel+glucose-responsive+of+the+transparent+nanofiber+hydrogel+patches+as+a+wearable+biosensor+via+electrospinning&author=G.J.+Kim&author=K.O.+Kim&volume=10&publication_year=2020&pages=18858&pmid=33139822&doi=10.1038/s41598-020-75906-9&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688331/</p><p>https://pubmed.ncbi.nlm.nih.gov/33239291</p><p>https://doi.org/10.1126%2Fsciadv.abc2036</p><p>https://scholar.google.com/scholar_lookup?journal=Sci.+Adv.&title=ECM-inspired+micro/nanofibers+for+modulating+cell+function+and+tissue+generation&author=Y.+Xu&author=G.+Shi&author=J.+Tang&author=R.+Cheng&author=X.+Shen&volume=6&publication_year=2020&pages=eabc2036&pmid=33239291&doi=10.1126/sciadv.abc2036&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895059/</p><p>https://pubmed.ncbi.nlm.nih.gov/31804481</p><p>https://doi.org/10.1038%2Fs41467-019-13512-8</p><p>https://scholar.google.com/scholar_lookup?journal=Nat.+Commun.&title=Superhydrophobic+hemostatic+nanofiber+composites+for+fast+clotting+and+minimal+adhesion&author=Z.+Li&author=A.+Milionis&author=Y.+Zheng&author=M.+Yee&author=L.+Codispoti&volume=10&publication_year=2019&pages=5562&pmid=31804481&doi=10.1038/s41467-019-13512-8&</p><p>https://pubmed.ncbi.nlm.nih.gov/19643152</p><p>https://doi.org/10.1016%2Fj.addr.2009.07.007</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Drug+Deliv.+Rev.&title=Surface-functionalized+electrospun+nanofibers+for+tissue+engineering+and+drug+delivery&author=H.+Yoo&author=T.G.+Kim&author=T.G.+Park&volume=61&publication_year=2009&pages=1033-1042&pmid=19643152&doi=10.1016/j.addr.2009.07.007&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808059/</p><p>https://pubmed.ncbi.nlm.nih.gov/27022202</p><p>https://doi.org/10.1016%2Fj.progpolymsci.2015.02.004</p><p>https://scholar.google.com/scholar_lookup?journal=Prog.+Polym.+Sci.&title=Advancing+biomaterials+of+human+origin+for+tissue+engineering&author=F.-M.+Chen&author=X.+Liu&volume=53&publication_year=2015&pages=86-168&pmid=27022202&doi=10.1016/j.progpolymsci.2015.02.004&</p><p>https://pubmed.ncbi.nlm.nih.gov/30875191</p><p>https://doi.org/10.1021%2Facsnano.9b00140</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Nano&title=Self-Powered+Direct+Muscle+Stimulation+Using+a+Triboelectric+Nanogenerator+(TENG)+Integrated+with+a+Flexible+Multiple-Channel+Intramuscular+Electrode&author=J.+Wang&author=H.+Wang&author=N.V.+Thakor&author=C.+Lee&volume=13&publication_year=2019&pages=3589-3599&pmid=30875191&doi=10.1021/acsnano.9b00140&</p><p>https://pubmed.ncbi.nlm.nih.gov/30803063</p><p>https://doi.org/10.1002%2Fadma.201808267</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Mater.&title=Atomically+Transition+Metals+on+Self-Supported+Porous+Carbon+Flake+Arrays+as+Binder-Free+Air+Cathode+for+Wearable+Zinc%E2%88%92Air+Batteries&author=D.+Ji&author=L.+Fan&author=L.+Li&author=S.+Peng&author=D.+Yu&volume=31&publication_year=2019&pages=e1808267&pmid=30803063&doi=10.1002/adma.201808267&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 39/50</p><p>34. Laforgue A. All-textile �lexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nano�ibers. J.</p><p>Power	Source.	2011;196:559–564. doi: 10.1016/j.jpowsour.2010.07.007. [CrossRef] [Google Scholar]</p><p>35. Jeong I., Lee J., Joseph K.V., Lee H.I., Kim J.K., Yoon S., Lee J. Low-cost electrospun WC/C composite nano�iber as a</p><p>powerful platinum-free counter electrode for dye sensitized solar cell. Nano	Energy.	2014;9:392–400.</p><p>doi: 10.1016/j.nanoen.2014.08.010. [CrossRef] [Google Scholar]</p><p>36. Zhu H., Liu A., Liu G., Shan F. Electrospun p-type CuO nano�ibers for low-voltage �ield-effect transistors. Appl.	Phys.</p><p>Lett.	2017;111:143501. doi: 10.1063/1.4998787. [CrossRef] [Google Scholar]</p><p>37. Huang T., Wang C., Yu H., Wang H., Zhang Q., Zhu M. Human walking-driven wearable all-�iber triboelectric</p><p>nanogenerator containing electrospun polyvinylidene �luoride piezoelectric nano�ibers. Nano	Energy.	2015;14:226–</p><p>235. doi: 10.1016/j.nanoen.2015.01.038. [CrossRef] [Google Scholar]</p><p>38. Shi X., Zhou W., Ma D., Ma Q., Bridges D., Ma Y., Hu A. Electrospinning of Nano�ibers and Their Applications for</p><p>Energy Devices. J.	Nanomater.	2015;2015:140716. doi: 10.1155/2015/140716. [CrossRef] [Google Scholar]</p><p>39. Verbič A., Gorjanc M., Simončič B. Zinc Oxide for Functional Textile Coatings: Recent Advances. Coatings.</p><p>2019;9:550. doi: 10.3390/coatings9090550. [CrossRef] [Google Scholar]</p><p>40. Zhang W., Pintauro P.N. High-Performance Nano�iber Fuel Cell Electrodes. ChemSusChem.	2011;4:1753–1757.</p><p>doi: 10.1002/cssc.201100245. [PubMed] [CrossRef] [Google Scholar]</p><p>41. Tamura T., Kawakami H. Aligned Electrospun Nano�iber Composite Membranes for Fuel Cell Electrolytes. Nano	Lett.</p><p>2010;10:1324–1328. doi: 10.1021/nl1007079. [PubMed] [CrossRef] [Google Scholar]</p><p>42. Wang N., Zhu Z., Sheng J., Al-Deyab S.S., Yu J., Ding B. Superamphiphobic nano�ibrous membranes for effective</p><p>�iltration of �ine particles. J.	Colloid	Interface	Sci.	2014;428:41–48. doi: 10.1016/j.jcis.2014.04.026. [PubMed]</p><p>[CrossRef] [Google Scholar]</p><p>43. Wang D., Wang L., Shen G. Nano�iber/nanowires-based �lexible and stretchable sensors. J.	Semicond.</p><p>2020;41:041605. doi: 10.1088/1674-4926/41/4/041605. [CrossRef] [Google Scholar]</p><p>44. Persano L., Dagdeviren C., Su Y., Zhang Y., Girardo S., Pisignano D., Huang Y., Rogers J.A. High performance</p><p>piezoelectric devices based on aligned arrays of nano�ibers of poly(vinylidene�luoride-co-tri�luoroethylene) Nat.</p><p>Commun.	2013;4:1633. doi: 10.1038/ncomms2639. [PubMed] [CrossRef] [Google Scholar]</p><p>45. Lai C., Zhong G., Yue Z., Chen G., Zhang L., Vakili A., Wang Y., Zhu L., Liu J., Fong H. Investigation of post-spinning</p><p>stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer</p><p>nano�ibers. Polymer.	2011;52:519–528. doi: 10.1016/j.polymer.2010.11.044. [CrossRef] [Google Scholar]</p><p>46. Sera�in A., Murphy C., Rubio M.C., Collins M.N. Printable alginate/gelatin hydrogel reinforced with carbon</p><p>nano�ibers as electrically conductive scaffolds for tissue engineering. Mater.	Sci.	Eng.	C.	2021;122:111927.</p><p>doi: 10.1016/j.msec.2021.111927. [PubMed] [CrossRef] [Google Scholar]</p><p>47. Wang H., Niu H., Wang H., Wang W., Jin X., Wang H., Zhou H., Lin T. Micro-meso porous structured carbon</p><p>nano�ibers with ultra-high surface area and large supercapacitor electrode capacitance. J.	Power	Source.</p><p>2020;482:228986. doi: 10.1016/j.jpowsour.2020.228986. [CrossRef] [Google Scholar]</p><p>48. Ali N., Elmagd A.A. Tunable emission of electro-spun ceramic ZnS:Cu:Co nano�ibers for photonic applications:</p><p>Structure and optical properties. J.	Mater.	Sci.	Mater.	Electron.	2021;32:3638–3648. doi: 10.1007/s10854-020-05110-y.</p><p>[CrossRef] [Google Scholar]</p><p>49. Al-Qatatsheh A., Jin X., Salim N.V. Mechanical and Thermal Properties of a Biomimetic Multi-layered Carbon</p><p>Nano�ibers 3D Networks: A Novel Strategy for 3D Finite Element Analysis</p><p>Modeling and Simulation. Carbon	Trends.</p><p>2021;4:100076. doi: 10.1016/j.cartre.2021.100076. [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1016%2Fj.jpowsour.2010.07.007</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Power+Source&title=All-textile+flexible+supercapacitors+using+electrospun+poly(3,4-ethylenedioxythiophene)+nanofibers&author=A.+Laforgue&volume=196&publication_year=2011&pages=559-564&doi=10.1016/j.jpowsour.2010.07.007&</p><p>https://doi.org/10.1016%2Fj.nanoen.2014.08.010</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Low-cost+electrospun+WC/C+composite+nanofiber+as+a+powerful+platinum-free+counter+electrode+for+dye+sensitized+solar+cell&author=I.+Jeong&author=J.+Lee&author=K.V.+Joseph&author=H.I.+Lee&author=J.K.+Kim&volume=9&publication_year=2014&pages=392-400&doi=10.1016/j.nanoen.2014.08.010&</p><p>https://doi.org/10.1063%2F1.4998787</p><p>https://scholar.google.com/scholar_lookup?journal=Appl.+Phys.+Lett.&title=Electrospun+p-type+CuO+nanofibers+for+low-voltage+field-effect+transistors&author=H.+Zhu&author=A.+Liu&author=G.+Liu&author=F.+Shan&volume=111&publication_year=2017&pages=143501&doi=10.1063/1.4998787&</p><p>https://doi.org/10.1016%2Fj.nanoen.2015.01.038</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Human+walking-driven+wearable+all-fiber+triboelectric+nanogenerator+containing+electrospun+polyvinylidene+fluoride+piezoelectric+nanofibers&author=T.+Huang&author=C.+Wang&author=H.+Yu&author=H.+Wang&author=Q.+Zhang&volume=14&publication_year=2015&pages=226-235&doi=10.1016/j.nanoen.2015.01.038&</p><p>https://doi.org/10.1155%2F2015%2F140716</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Nanomater.&title=Electrospinning+of+Nanofibers+and+Their+Applications+for+Energy+Devices&author=X.+Shi&author=W.+Zhou&author=D.+Ma&author=Q.+Ma&author=D.+Bridges&volume=2015&publication_year=2015&pages=140716&doi=10.1155/2015/140716&</p><p>https://doi.org/10.3390%2Fcoatings9090550</p><p>https://scholar.google.com/scholar_lookup?journal=Coatings&title=Zinc+Oxide+for+Functional+Textile+Coatings:+Recent+Advances&author=A.+Verbi%C4%8D&author=M.+Gorjanc&author=B.+Simon%C4%8Di%C4%8D&volume=9&publication_year=2019&pages=550&doi=10.3390/coatings9090550&</p><p>https://pubmed.ncbi.nlm.nih.gov/22110012</p><p>https://doi.org/10.1002%2Fcssc.201100245</p><p>https://scholar.google.com/scholar_lookup?journal=ChemSusChem&title=High-Performance+Nanofiber+Fuel+Cell+Electrodes&author=W.+Zhang&author=P.N.+Pintauro&volume=4&publication_year=2011&pages=1753-1757&pmid=22110012&doi=10.1002/cssc.201100245&</p><p>https://pubmed.ncbi.nlm.nih.gov/20345114</p><p>https://doi.org/10.1021%2Fnl1007079</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Lett.&title=Aligned+Electrospun+Nanofiber+Composite+Membranes+for+Fuel+Cell+Electrolytes&author=T.+Tamura&author=H.+Kawakami&volume=10&publication_year=2010&pages=1324-1328&pmid=20345114&doi=10.1021/nl1007079&</p><p>https://pubmed.ncbi.nlm.nih.gov/24910033</p><p>https://doi.org/10.1016%2Fj.jcis.2014.04.026</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Colloid+Interface+Sci.&title=Superamphiphobic+nanofibrous+membranes+for+effective+filtration+of+fine+particles&author=N.+Wang&author=Z.+Zhu&author=J.+Sheng&author=S.S.+Al-Deyab&author=J.+Yu&volume=428&publication_year=2014&pages=41-48&pmid=24910033&doi=10.1016/j.jcis.2014.04.026&</p><p>https://doi.org/10.1088%2F1674-4926%2F41%2F4%2F041605</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Semicond.&title=Nanofiber/nanowires-based+flexible+and+stretchable+sensors&author=D.+Wang&author=L.+Wang&author=G.+Shen&volume=41&publication_year=2020&pages=041605&doi=10.1088/1674-4926/41/4/041605&</p><p>https://pubmed.ncbi.nlm.nih.gov/23535654</p><p>https://doi.org/10.1038%2Fncomms2639</p><p>https://scholar.google.com/scholar_lookup?journal=Nat.+Commun.&title=High+performance+piezoelectric+devices+based+on+aligned+arrays+of+nanofibers+of+poly(vinylidenefluoride-co-trifluoroethylene)&author=L.+Persano&author=C.+Dagdeviren&author=Y.+Su&author=Y.+Zhang&author=S.+Girardo&volume=4&publication_year=2013&pages=1633&pmid=23535654&doi=10.1038/ncomms2639&</p><p>https://doi.org/10.1016%2Fj.polymer.2010.11.044</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Investigation+of+post-spinning+stretching+process+on+morphological,+structural,+and+mechanical+properties+of+electrospun+polyacrylonitrile+copolymer+nanofibers&author=C.+Lai&author=G.+Zhong&author=Z.+Yue&author=G.+Chen&author=L.+Zhang&volume=52&publication_year=2011&pages=519-528&doi=10.1016/j.polymer.2010.11.044&</p><p>https://pubmed.ncbi.nlm.nih.gov/33641920</p><p>https://doi.org/10.1016%2Fj.msec.2021.111927</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Printable+alginate/gelatin+hydrogel+reinforced+with+carbon+nanofibers+as+electrically+conductive+scaffolds+for+tissue+engineering&author=A.+Serafin&author=C.+Murphy&author=M.C.+Rubio&author=M.N.+Collins&volume=122&publication_year=2021&pages=111927&doi=10.1016/j.msec.2021.111927&</p><p>https://doi.org/10.1016%2Fj.jpowsour.2020.228986</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Power+Source&title=Micro-meso+porous+structured+carbon+nanofibers+with+ultra-high+surface+area+and+large+supercapacitor+electrode+capacitance&author=H.+Wang&author=H.+Niu&author=H.+Wang&author=W.+Wang&author=X.+Jin&volume=482&publication_year=2020&pages=228986&doi=10.1016/j.jpowsour.2020.228986&</p><p>https://doi.org/10.1007%2Fs10854-020-05110-y</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Mater.+Sci.+Mater.+Electron.&title=Tunable+emission+of+electro-spun+ceramic+ZnS:Cu:Co+nanofibers+for+photonic+applications:+Structure+and+optical+properties&author=N.+Ali&author=A.A.+Elmagd&volume=32&publication_year=2021&pages=3638-3648&doi=10.1007/s10854-020-05110-y&</p><p>https://doi.org/10.1016%2Fj.cartre.2021.100076</p><p>https://scholar.google.com/scholar_lookup?journal=Carbon+Trends&title=Mechanical+and+Thermal+Properties+of+a+Biomimetic+Multi-layered+Carbon+Nanofibers+3D+Networks:+A+Novel+Strategy+for+3D+Finite+Element+Analysis+Modeling+and+Simulation&author=A.+Al-Qatatsheh&author=X.+Jin&author=N.V.+Salim&volume=4&publication_year=2021&pages=100076&doi=10.1016/j.cartre.2021.100076&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 40/50</p><p>50. Chen L., Chuang Y., Yang W.-D., Tsai K.-C., Chen C.-W., Dong C.-D. All-inorganic perovskite CsPbX3 electrospun</p><p>nano�ibers with color-tunable photoluminescence and high performance optoelectronic applications. J.	Alloy.	Compd.</p><p>2020;856:157426. doi: 10.1016/j.jallcom.2020.157426. [CrossRef] [Google Scholar]</p><p>51. Trevino J.E., Mohan S., Salinas A.E., Cueva E., Lozano K. Piezoelectric properties of PVDF-conjugated polymer</p><p>nano�ibers. J.	Appl.	Polym.	Sci.	2021;138:50665. doi: 10.1002/app.50665. [CrossRef] [Google Scholar]</p><p>52. Zhang W., Zhang G., Lu X.-A., Wang J., Wu D. Cellulosic nano�ibers �illed poly(β-hydroxybutyrate): Relations between</p><p>viscoelasticity of composites and aspect ratios of nano�ibers. Carbohydr.	Polym.	2021;265:118093.</p><p>doi: 10.1016/j.carbpol.2021.118093. [PubMed] [CrossRef] [Google Scholar]</p><p>53. Wang W., Wang S., Xiang C., Xue D., Li M., Liu Q., Piao L., Wang D. Nano�iber-based transparent �ilm with</p><p>controllable optical transparency adjustment function for versatile bionic applications. Nano	Res.	2021:1–9.</p><p>doi: 10.1007/s12274-021-3521-x. [CrossRef] [Google Scholar]</p><p>54. Presley K.F., Reinsch B.M., Cybyk D.B., Ly J.T., Schweller R.M., Dalton M.J., Lannutti J.J., Grusenmeyer T.A. Oxygen</p><p>sensing performance of biodegradable electrospun nano�ibers: In�luence of �iber composition and core-shell geometry.</p><p>Sens.	Actuators	B	Chem.	2020;329:129191. doi: 10.1016/j.snb.2020.129191. [CrossRef] [Google Scholar]</p><p>55. Zagho M.M., Elzatahry A. Elzatahry,	Recent	Trends	in	Electrospinning	of	Polymer	Nano�ibers	and	their	Applications	as</p><p>Templates	for	Metal	Oxide	Nano�ibers	Preparation. IntechOpen; Hattiesburg, MS, USA: 2016. [CrossRef] [Google Scholar]</p><p>56. Greiner A., Wendorff J.H. Electrospinning: A Fascinating Method for the Preparation</p><p>of Ultrathin Fibers. Angew.</p><p>Chem.	Int.	Ed.	2007;46:5670–5703. doi: 10.1002/anie.200604646. [PubMed] [CrossRef] [Google Scholar]</p><p>57. Nemati S., Kim S.-J., Shin Y.M., Shin H. Current progress in application of polymeric nano�ibers to tissue engineering.</p><p>Nano	Converg.	2019;6:36. doi: 10.1186/s40580-019-0209-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>58. Alghoraibi I., Alomari S. Handbook	of	Nano�ibers. Springer; Damascus, Syria: 2018. Different Methods for Nano�iber</p><p>Design and Fabrication. [CrossRef] [Google Scholar]</p><p>59. Deitzel J., Kleinmeyer J., Harris D., Tan N.B. The effect of processing variables on the morphology of electrospun</p><p>nano�ibers and textiles. Polymer.	2001;42:261–272. doi: 10.1016/S0032-3861(00)00250-0. [CrossRef] [Google Scholar]</p><p>60. Deitzel J.M., Kosik W., McKnight S.H., Beck Tan N.C., DeSimone J.M., Crette S. Electrospinning of polymer nano�ibers</p><p>with speci�ic surface chemistry. Polymer.	2002;43:1025–1029. doi: 10.1016/S0032-3861(01)00594-8. [CrossRef]</p><p>[Google Scholar]</p><p>61. Baumgarten P.K. Electrostatic spinning of acrylic micro�ibers. J.	Colloid	Interface	Sci.	1971;36:71–79.</p><p>doi: 10.1016/0021-9797(71)90241-4. [CrossRef] [Google Scholar]</p><p>62. Huang C., Chen S., Lai C., Reneker D.H., Qiu H., Ye Y., Hou H. Electrospun polymer nano�ibres with small diameters.</p><p>Nanotechnology.	2006;17:1558–1563. doi: 10.1088/0957-4484/17/6/004. [PubMed] [CrossRef] [Google Scholar]</p><p>63. Huang F., Wei Q., Wang J., Cai Y., Huang Y. Effect of temperature on structure, morphology and crystallinity of PVDF</p><p>nano�ibers via electrospinning. E-Polym.	2008;8:1758–1765. doi: 10.1515/epoly.2008.8.1.1758. [CrossRef] [Google</p><p>Scholar]</p><p>64. Fong H., Chun I., Reneker D. Beaded nano�ibers formed during electrospinning. Polymer.	1999;40:4585–4592.</p><p>doi: 10.1016/S0032-3861(99)00068-3. [CrossRef] [Google Scholar]</p><p>65. Nezarati R.M., Eifert M.B., Cosgriff-Hernandez E. Effects of Humidity and Solution Viscosity on Electrospun Fiber</p><p>Morphology. Tissue Eng. Part	C	Methods.	2013;19:810–819. doi: 10.1089/ten.tec.2012.0671. [PMC free article]</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1016%2Fj.jallcom.2020.157426</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Alloy.+Compd.&title=All-inorganic+perovskite+CsPbX3+electrospun+nanofibers+with+color-tunable+photoluminescence+and+high+performance+optoelectronic+applications&author=L.+Chen&author=Y.+Chuang&author=W.-D.+Yang&author=K.-C.+Tsai&author=C.-W.+Chen&volume=856&publication_year=2020&pages=157426&doi=10.1016/j.jallcom.2020.157426&</p><p>https://doi.org/10.1002%2Fapp.50665</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Appl.+Polym.+Sci.&title=Piezoelectric+properties+of+PVDF-conjugated+polymer+nanofibers&author=J.E.+Trevino&author=S.+Mohan&author=A.E.+Salinas&author=E.+Cueva&author=K.+Lozano&volume=138&publication_year=2021&pages=50665&doi=10.1002/app.50665&</p><p>https://pubmed.ncbi.nlm.nih.gov/33966850</p><p>https://doi.org/10.1016%2Fj.carbpol.2021.118093</p><p>https://scholar.google.com/scholar_lookup?journal=Carbohydr.+Polym.&title=Cellulosic+nanofibers+filled+poly(%CE%B2-hydroxybutyrate):+Relations+between+viscoelasticity+of+composites+and+aspect+ratios+of+nanofibers&author=W.+Zhang&author=G.+Zhang&author=X.-A.+Lu&author=J.+Wang&author=D.+Wu&volume=265&publication_year=2021&pages=118093&pmid=33966850&doi=10.1016/j.carbpol.2021.118093&</p><p>https://doi.org/10.1007%2Fs12274-021-3521-x</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Res.&title=Nanofiber-based+transparent+film+with+controllable+optical+transparency+adjustment+function+for+versatile+bionic+applications&author=W.+Wang&author=S.+Wang&author=C.+Xiang&author=D.+Xue&author=M.+Li&publication_year=2021&pages=1-9&doi=10.1007/s12274-021-3521-x&</p><p>https://doi.org/10.1016%2Fj.snb.2020.129191</p><p>https://scholar.google.com/scholar_lookup?journal=Sens.+Actuators+B+Chem.&title=Oxygen+sensing+performance+of+biodegradable+electrospun+nanofibers:+Influence+of+fiber+composition+and+core-shell+geometry&author=K.F.+Presley&author=B.M.+Reinsch&author=D.B.+Cybyk&author=J.T.+Ly&author=R.M.+Schweller&volume=329&publication_year=2020&pages=129191&doi=10.1016/j.snb.2020.129191&</p><p>https://doi.org/10.5772%2F65900</p><p>https://scholar.google.com/scholar_lookup?title=Elzatahry,+Recent+Trends+in+Electrospinning+of+Polymer+Nanofibers+and+their+Applications+as+Templates+for+Metal+Oxide+Nanofibers+Preparation&author=M.M.+Zagho&author=A.+Elzatahry&publication_year=2016&</p><p>https://pubmed.ncbi.nlm.nih.gov/17585397</p><p>https://doi.org/10.1002%2Fanie.200604646</p><p>https://scholar.google.com/scholar_lookup?journal=Angew.+Chem.+Int.+Ed.&title=Electrospinning:+A+Fascinating+Method+for+the+Preparation+of+Ultrathin+Fibers&author=A.+Greiner&author=J.H.+Wendorff&volume=46&publication_year=2007&pages=5670-5703&doi=10.1002/anie.200604646&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838281/</p><p>https://pubmed.ncbi.nlm.nih.gov/31701255</p><p>https://doi.org/10.1186%2Fs40580-019-0209-y</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Converg.&title=Current+progress+in+application+of+polymeric+nanofibers+to+tissue+engineering&author=S.+Nemati&author=S.-J.+Kim&author=Y.M.+Shin&author=H.+Shin&volume=6&publication_year=2019&pages=36&pmid=31701255&doi=10.1186/s40580-019-0209-y&</p><p>https://doi.org/10.1007%2F978-3-319-42789-8_11-2</p><p>https://scholar.google.com/scholar_lookup?title=Handbook+of+Nanofibers&author=I.+Alghoraibi&author=S.+Alomari&publication_year=2018&</p><p>https://doi.org/10.1016%2FS0032-3861(00)00250-0</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=The+effect+of+processing+variables+on+the+morphology+of+electrospun+nanofibers+and+textiles&author=J.+Deitzel&author=J.+Kleinmeyer&author=D.+Harris&author=N.B.+Tan&volume=42&publication_year=2001&pages=261-272&doi=10.1016/S0032-3861(00)00250-0&</p><p>https://doi.org/10.1016%2FS0032-3861(01)00594-8</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Electrospinning+of+polymer+nanofibers+with+specific+surface+chemistry&author=J.M.+Deitzel&author=W.+Kosik&author=S.H.+McKnight&author=N.C.+Beck+Tan&author=J.M.+DeSimone&volume=43&publication_year=2002&pages=1025-1029&doi=10.1016/S0032-3861(01)00594-8&</p><p>https://doi.org/10.1016%2F0021-9797(71)90241-4</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Colloid+Interface+Sci.&title=Electrostatic+spinning+of+acrylic+microfibers&author=P.K.+Baumgarten&volume=36&publication_year=1971&pages=71-79&doi=10.1016/0021-9797(71)90241-4&</p><p>https://pubmed.ncbi.nlm.nih.gov/26558558</p><p>https://doi.org/10.1088%2F0957-4484%2F17%2F6%2F004</p><p>https://scholar.google.com/scholar_lookup?journal=Nanotechnology&title=Electrospun+polymer+nanofibres+with+small+diameters&author=C.+Huang&author=S.+Chen&author=C.+Lai&author=D.H.+Reneker&author=H.+Qiu&volume=17&publication_year=2006&pages=1558-1563&pmid=26558558&doi=10.1088/0957-4484/17/6/004&</p><p>https://doi.org/10.1515%2Fepoly.2008.8.1.1758</p><p>https://scholar.google.com/scholar_lookup?journal=E-Polym.&title=Effect+of+temperature+on+structure,+morphology+and+crystallinity+of+PVDF+nanofibers+via+electrospinning&author=F.+Huang&author=Q.+Wei&author=J.+Wang&author=Y.+Cai&author=Y.+Huang&volume=8&publication_year=2008&pages=1758-1765&doi=10.1515/epoly.2008.8.1.1758&</p><p>https://doi.org/10.1016%2FS0032-3861(99)00068-3</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Beaded+nanofibers+formed+during+electrospinning&author=H.+Fong&author=I.+Chun&author=D.+Reneker&volume=40&publication_year=1999&pages=4585-4592&doi=10.1016/S0032-3861(99)00068-3&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751372/</p><p>https://pubmed.ncbi.nlm.nih.gov/23469941</p><p>https://doi.org/10.1089%2Ften.tec.2012.0671</p><p>https://scholar.google.com/scholar_lookup?journal=Part+C+Methods&title=Effects+of+Humidity+and+Solution+Viscosity+on+Electrospun+Fiber+Morphology.+Tissue+Eng&author=R.M.+Nezarati&author=M.B.+Eifert&author=E.+Cosgriff-Hernandez&volume=19&publication_year=2013&pages=810-819&doi=10.1089/ten.tec.2012.0671&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/</p><p>attention because of their ability to provide higher energy harvesting</p><p>ef�iciency, conversion ef�iciency, durability, and power density due to their high surface area</p><p>and controllable porosity [38]. Apart from energy devices and health care applications, there</p><p>are other miscellaneous applications of nano�ibers such as fabric technology [39], catalysis</p><p>[40], fuel cells [41], �iltration [42], and etc., which are also highly studied.</p><p>Over the past few decades, the global market value of the health care sector, energy devices,</p><p>and smart fabric technologies has been escalating while crossing the thousand-billion-dollar</p><p>mark. Along with that, in the near future, market value with innovation is predicted to go far</p><p>beyond. This review article provided a broad survey on the contribution of electrospun</p><p>technology over the past 2–3 years in these application �ields through discussing the most re-</p><p>cent developments accompanied with current and future research trends. The role of nano�i-</p><p>bers and associated device performance as well as advantages and disadvantages of each ap-</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g002.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f002/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 4/50</p><p>plication were emphasized in detail. Here, we anticipated the future scope and direction th-</p><p>rough summarizing the drawbacks faced in the current research scenario. This article is orga-</p><p>nized as follows: in the �irst section, we discuss various aspects of the electrospinning process,</p><p>including setup, spinning, solution, and environmental parameters. The following section of</p><p>this article focuses on the most recent research, including the past 2 years of work while</p><p>emphasizing the role of nano�ibers, their structure, and device performance. Finally, we con-</p><p>clude by addressing existing challenges which should be addressed for future perspectives.</p><p>2. Morfologia de nanofibras e técnicas de eletrofiação</p><p>2.1. Propriedades</p><p>Os materiais de nano�ibras, devido à sua morfologia nanoestruturada unidimensional, são per-</p><p>cebidos como tendo propriedades superiores quando comparados aos materiais a granel. Vá-</p><p>rias propriedades únicas, como seu pequeno tamanho, maior mobilidade do transportador,</p><p>maior área de superfıćie especı�́ica e alta relação superfıćie-volume, ajudaram no surgimento</p><p>da tecnologia de nano�ibras, introduzindo nano�ibras como um material ativo apropriado para</p><p>várias aplicações nos campos da eletrônica. , biomedicina, armazenamento de energia, saúde,</p><p>tecnologia de tecidos, etc. [ 43]. Essas nano�ibras podem fornecer mobilidade efetiva como</p><p>transportadoras de caminho 1D, diminuindo os limites com grãos de cristalitos adjacentes em</p><p>eletrônicos �lexıv́eis. Seu tamanho e área de superfıćie especı�́ica maior ajudam a responder</p><p>mais rapidamente a estıḿulos externos, enquanto sua alta proporção facilita propriedades me-</p><p>cânicas e fıśicas ajustáveis. Essas propriedades notáveis envolvem tolerância para �lexão ou</p><p>alongamento mecânico [ 44 , 45 ], condutividade elétrica aprimorada [ 46 ], baixa densidade,</p><p>maior área de superfıćie especı�́ica [ 47 ], boa óptica [ 48 ], térmica [ 49 ], optoeletrônica [ 50</p><p>], e propriedades elétricas [ 51 ], alta relação de aspecto [ 52], boa transparência [ 53 ] e geo-</p><p>metria conveniente com volume e tamanho de poros ajustáveis [ 54 ]. Nos últimos 100 anos,</p><p>os pesquisadores sintetizaram nano�ibras esticando eletrostaticamente a solução de polıḿero</p><p>viscoso em forma �ibrosa através da técnica de eletro�iação [ 55 ]. Normalmente, este método</p><p>é aplicável a polıḿeros sintéticos e naturais, juntamente com ligas poliméricas e polıḿeros car-</p><p>regados com nanopartıćulas, metais, cerâmicas ou quaisquer outros agentes ativos [ 56 ]. Os</p><p>polıḿeros possuem propriedades quıḿicas inertes e, portanto, a produção de nano�ibras poli-</p><p>méricas fornece um benefıćio estrutural em modi�icações de superfıćie ajustáveis para propri-</p><p>edades desejadas em aplicações especı�́icas [ 57 ].</p><p>2.2. Parâmetros de eletrofiação e seu significado</p><p>Vários fatores afetam a morfologia da nano�ibra e a uniformidade no processo de eletro�iação.</p><p>Esses fatores envolvem parâmetros da solução precursora, parâmetros de con�iguração do</p><p>processo e condições ambientais.</p><p>Concentração, peso molecular, tensão super�icial, constante dielétrica, viscosidade e condutivi-</p><p>dade da solução são os parâmetros que afetam a solução precursora para a formação de na-</p><p>no�ibras [ 58 ]. Estudos comprovam que a forma da gota de polıḿero ejetada pela seringa se</p><p>transforma de esférica para fusiforme, eventualmente formando �ibras com diâmetro uni-</p><p>forme, semelhante e aumentado com o aumento da concentração da solução [ 59 ]. Peso mole-</p><p>cular, concentração de polıḿero e viscosidade estão correlacionados e têm um impacto geral</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 5/50</p><p>na formação de nano�ibras [ 60 , 61]. Em geral, o peso molecular polimérico está correlacio-</p><p>nado com o grau de emaranhamento da cadeia polimérica que permite determinar a formação</p><p>de �ibras com grânulos ou �ibras limpas [ 62 , 63 ]. No processo de eletro�iação, a maior tensão</p><p>super�icial causa instabilidade na formação do jato no bico, o que resulta na formação de go-</p><p>tas por pulverização em vez da formação de �ibras e, portanto, uma solução com menor tensão</p><p>super�icial é preferida [ 64 ]. A viscosidade da solução precisa ser ideal para a geração de �i-</p><p>bras, pois a viscosidade extrema da solução resulta em uma liberação de jato instável [ 65]. A</p><p>viscosidade é variada pela proporção de soluto (polıḿero ou composto de polıḿero) e sol-</p><p>vente. O teor de polıḿero deve ser ideal para a formação de nano�ibras perfeitas [ 66]. A con-</p><p>dutividade da solução é amplamente in�luenciada por alguns parâmetros-chave: tipo de polı-́</p><p>mero, solvente e teor de sal (grau de ionização). O diâmetro da nano�ibra diminui com o au-</p><p>mento da condutividade da solução, enquanto uma redução na condutividade da solução leva</p><p>à formação de jato alongado, causando não uniformidade e formação de grânulos ou mesmo</p><p>obstrução no �luxo da solução. Por outro lado, soluções com condutividade excessiva resultam</p><p>em extrema instabilidade de �lexão e ampla variação do diâmetro da �ibra na presença de altas</p><p>tensões. Por essas razões, uma condutividade de solução ideal é necessária para otimizar a</p><p>morfologia da �ibra, bem como o diâmetro da �ibra [ 67 , 68]. Além disso, a natureza do sol-</p><p>vente é outro fator decisivo para a �iação e porosidade da nano�ibra. Durante a eletro�iação,</p><p>antes que o jato atinja a plataforma coletora, ocorre uma separação de fases para formar na-</p><p>no�ibras sólidas. A volatilidade do solvente pode in�luenciar fortemente este processo modu-</p><p>lando a taxa de evaporação efetiva. Observa-se que para solventes altamente voláteis, a popu-</p><p>lação de poros tende a ser muito maior quando comparada com as substâncias menos volá-</p><p>teis, proporcionando maior área super�icial e textura super�icial �ina [ 69 ].</p><p>In the process setup parameters, applied voltage, �low rate, and solution output nozzle-to-col-</p><p>lector distance play crucial roles in nano�iber formation. Electrostatic repulsion force is indu-</p><p>ced on the solution jet by application of external voltage [70]. This facilitates �iber outcome,</p><p>ease of solvent evaporation, and a decrease in �iber diameter which is attributed to the stret-</p><p>ching of polymer solution in association with charge repulsion within the polymer jet [71]. Ba-</p><p>sed on the polymer</p><p>41/50</p><p>66. Li Z., Wang C. Effects of Working Parameters on Electrospinning. In: Li A., Wang C., editors. One-Dimensional</p><p>Nanostructures:	Electrospinning	Technique	and	Unique	Nano�ibers. Springer; Berlin/Heidelberg, Germany: 2013. pp. 15–</p><p>28. [CrossRef] [Google Scholar]</p><p>67. Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology. [(accessed on 25</p><p>August 2021)]. Available online: https://ieeexplore-ieee-org.libproxy1.nus.edu.sg/abstract/document/5729811</p><p>68. Uyar T., Besenbacher F. Electrospinning of uniform polystyrene �ibers: The effect of solvent conductivity. Polymer.</p><p>2008;49:5336–5343. doi: 10.1016/j.polymer.2008.09.025. [CrossRef] [Google Scholar]</p><p>69. Bhardwaj N., Kundu S.C. Electrospinning: A fascinating �iber fabrication technique. Biotechnol.	Adv.	2010;28:325–</p><p>347. doi: 10.1016/j.biotechadv.2010.01.004. [PubMed] [CrossRef] [Google Scholar]</p><p>70. Yördem O., Papila M., Menceloğlu Y. Effects of electrospinning parameters on polyacrylonitrile nano�iber diameter:</p><p>An investigation by response surface methodology. Mater.	Des.	2007;29:34–44. doi: 10.1016/j.matdes.2006.12.013.</p><p>[CrossRef] [Google Scholar]</p><p>71. Sill T.J., Von Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials.</p><p>2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011. [PubMed] [CrossRef] [Google Scholar]</p><p>72. Zargham S., Bazgir S., Tavakoli A., Rashidi A.S., Damerchely R. The Effect of Flow Rate on Morphology and</p><p>Deposition Area of Electrospun Nylon 6 Nano�iber. J.	Eng.	Fibers	Fabr.	2012;7:155892501200700414.</p><p>doi: 10.1177/155892501200700414. [CrossRef] [Google Scholar]</p><p>73. De Vrieze S., Van Camp T., Nelvig A., Hagström B., Westbroek P., De Clerck K. The effect of temperature and humidity</p><p>on electrospinning. J.	Mater.	Sci.	2009;44:1357–1362. doi: 10.1007/s10853-008-3010-6. [CrossRef] [Google Scholar]</p><p>74. Lahlou H., Claramunt S., Monereo O., Prades D., Fernandez-Sanjuá J.-M., Bonet N., Ramos F.-M., Cirera A. Preparation</p><p>of palladium oxide nanoparticles supported on tin oxide nano�ibers via modi�ied electrospinning for ultra-low ppb</p><p>NO2 detection. Mater.	Today	Proc.	2020;36:1–9. doi: 10.1016/j.matpr.2020.04.674. [CrossRef] [Google Scholar]</p><p>75. Yarin A. Coaxial electrospinning and emulsion electrospinning of core-shell �ibers. Polym.	Adv.	Technol.</p><p>2010;22:310–317. doi: 10.1002/pat.1781. [CrossRef] [Google Scholar]</p><p>76. Zhang X., Lu Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nano�ibers at High Speed and Low Cost.</p><p>Polym.	Rev.	2014;54:677–701. doi: 10.1080/15583724.2014.935858. [CrossRef] [Google Scholar]</p><p>77. Hassan M.A., Yeom B.Y., Wilkie A., Pourdeyhimi B., Khan S. Fabrication of nano�iber meltblown membranes and</p><p>their �iltration properties. J.	Membr.	Sci.	2013;427:336–344. doi: 10.1016/j.memsci.2012.09.050. [CrossRef] [Google</p><p>Scholar]</p><p>78. Varesano A., Carletto R.A., Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process. J.</p><p>Mater.	Process.	Technol.	2009;209:5178–5185. doi: 10.1016/j.jmatprotec.2009.03.003. [CrossRef] [Google Scholar]</p><p>79. Yamashita Y., Ko F., Tanaka A., Miyake H. Characteristics of Elastomeric Nano�iber Membranes Produced by</p><p>Electrospinning. J.	Text.	Eng.	2007;53:137–142. doi: 10.4188/jte.53.137. [CrossRef] [Google Scholar]</p><p>80. Vaseashta A. Controlled formation of multiple Taylor cones in electrospinning process. Appl.	Phys.	Lett.</p><p>2007;90:093115. doi: 10.1063/1.2709958. [CrossRef] [Google Scholar]</p><p>81. SalehHudin H.S., Mohamad E.N., Mahadi W.N.L., A�i�i A.M. Multiple-jet electrospinning methods for nano�iber</p><p>processing: A review. Mater.	Manuf.	Process.	2017;33:479–498. doi: 10.1080/10426914.2017.1388523. [CrossRef]</p><p>[Google Scholar]</p><p>82. Zhou F.-L., Gong R.-H., Porat I. Needle and needleless electrospinning for nano�ibers. J.	Appl.	Polym.	Sci.</p><p>2009;115:2591–2598. doi: 10.1002/app.31282. [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1007%2F978-3-642-36427-3_2</p><p>https://scholar.google.com/scholar_lookup?title=One-Dimensional+Nanostructures:+Electrospinning+Technique+and+Unique+Nanofibers&author=Z.+Li&author=C.+Wang&publication_year=2013&</p><p>https://ieeexplore-ieee-org.libproxy1.nus.edu.sg/abstract/document/5729811</p><p>https://doi.org/10.1016%2Fj.polymer.2008.09.025</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Electrospinning+of+uniform+polystyrene+fibers:+The+effect+of+solvent+conductivity&author=T.+Uyar&author=F.+Besenbacher&volume=49&publication_year=2008&pages=5336-5343&doi=10.1016/j.polymer.2008.09.025&</p><p>https://pubmed.ncbi.nlm.nih.gov/20100560</p><p>https://doi.org/10.1016%2Fj.biotechadv.2010.01.004</p><p>https://scholar.google.com/scholar_lookup?journal=Biotechnol.+Adv.&title=Electrospinning:+A+fascinating+fiber+fabrication+technique&author=N.+Bhardwaj&author=S.C.+Kundu&volume=28&publication_year=2010&pages=325-347&pmid=20100560&doi=10.1016/j.biotechadv.2010.01.004&</p><p>https://doi.org/10.1016%2Fj.matdes.2006.12.013</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Des.&title=Effects+of+electrospinning+parameters+on+polyacrylonitrile+nanofiber+diameter:+An+investigation+by+response+surface+methodology&author=O.+Y%C3%B6rdem&author=M.+Papila&author=Y.+Mencelo%C4%9Flu&volume=29&publication_year=2007&pages=34-44&doi=10.1016/j.matdes.2006.12.013&</p><p>https://pubmed.ncbi.nlm.nih.gov/18281090</p><p>https://doi.org/10.1016%2Fj.biomaterials.2008.01.011</p><p>https://scholar.google.com/scholar_lookup?journal=Biomaterials&title=Electrospinning:+Applications+in+drug+delivery+and+tissue+engineering&author=T.J.+Sill&author=H.A.+Von+Recum&volume=29&publication_year=2008&pages=1989-2006&pmid=18281090&doi=10.1016/j.biomaterials.2008.01.011&</p><p>https://doi.org/10.1177%2F155892501200700414</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Eng.+Fibers+Fabr.&title=The+Effect+of+Flow+Rate+on+Morphology+and+Deposition+Area+of+Electrospun+Nylon+6+Nanofiber&author=S.+Zargham&author=S.+Bazgir&author=A.+Tavakoli&author=A.S.+Rashidi&author=R.+Damerchely&volume=7&publication_year=2012&pages=155892501200700414&doi=10.1177/155892501200700414&</p><p>https://doi.org/10.1007%2Fs10853-008-3010-6</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Mater.+Sci.&title=The+effect+of+temperature+and+humidity+on+electrospinning&author=S.+De+Vrieze&author=T.+Van+Camp&author=A.+Nelvig&author=B.+Hagstr%C3%B6m&author=P.+Westbroek&volume=44&publication_year=2009&pages=1357-1362&doi=10.1007/s10853-008-3010-6&</p><p>https://doi.org/10.1016%2Fj.matpr.2020.04.674</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Today+Proc.&title=Preparation+of+palladium+oxide+nanoparticles+supported+on+tin+oxide+nanofibers+via+modified+electrospinning+for+ultra-low+ppb+NO2+detection&author=H.+Lahlou&author=S.+Claramunt&author=O.+Monereo&author=D.+Prades&author=J.-M.+Fernandez-Sanju%C3%A1&volume=36&publication_year=2020&pages=1-9&doi=10.1016/j.matpr.2020.04.674&</p><p>https://doi.org/10.1002%2Fpat.1781</p><p>https://scholar.google.com/scholar_lookup?journal=Polym.+Adv.+Technol.&title=Coaxial+electrospinning+and+emulsion+electrospinning+of+core-shell+fibers&author=A.+Yarin&volume=22&publication_year=2010&pages=310-317&doi=10.1002/pat.1781&</p><p>https://doi.org/10.1080%2F15583724.2014.935858</p><p>https://scholar.google.com/scholar_lookup?journal=Polym.+Rev.&title=Centrifugal+Spinning:+An+Alternative+Approach+to+Fabricate+Nanofibers+at+High+Speed+and+Low+Cost&author=X.+Zhang&author=Y.+Lu&volume=54&publication_year=2014&pages=677-701&doi=10.1080/15583724.2014.935858&</p><p>https://doi.org/10.1016%2Fj.memsci.2012.09.050</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Membr.+Sci.&title=Fabrication+of+nanofiber+meltblown+membranes+and+their+filtration+properties&author=M.A.+Hassan&author=B.Y.+Yeom&author=A.+Wilkie&author=B.+Pourdeyhimi&author=S.+Khan&volume=427&publication_year=2013&pages=336-344&doi=10.1016/j.memsci.2012.09.050&</p><p>https://doi.org/10.1016%2Fj.jmatprotec.2009.03.003</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Mater.+Process.+Technol.&title=Experimental+investigations+on+the+multi-jet+electrospinning+process&author=A.+Varesano&author=R.A.+Carletto&author=G.+Mazzuchetti&volume=209&publication_year=2009&pages=5178-5185&doi=10.1016/j.jmatprotec.2009.03.003&</p><p>https://doi.org/10.4188%2Fjte.53.137</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Text.+Eng.&title=Characteristics+of+Elastomeric+Nanofiber+Membranes+Produced+by+Electrospinning&author=Y.+Yamashita&author=F.+Ko&author=A.+Tanaka&author=H.+Miyake&volume=53&publication_year=2007&pages=137-142&doi=10.4188/jte.53.137&</p><p>https://doi.org/10.1063%2F1.2709958</p><p>https://scholar.google.com/scholar_lookup?journal=Appl.+Phys.+Lett.&title=Controlled+formation+of+multiple+Taylor+cones+in+electrospinning+process&author=A.+Vaseashta&volume=90&publication_year=2007&pages=093115&doi=10.1063/1.2709958&</p><p>https://doi.org/10.1080%2F10426914.2017.1388523</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Manuf.+Process.&title=Multiple-jet+electrospinning+methods+for+nanofiber+processing:+A+review&author=H.S.+SalehHudin&author=E.N.+Mohamad&author=W.N.L.+Mahadi&author=A.M.+Afifi&volume=33&publication_year=2017&pages=479-498&doi=10.1080/10426914.2017.1388523&</p><p>https://doi.org/10.1002%2Fapp.31282</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Appl.+Polym.+Sci.&title=Needle+and+needleless+electrospinning+for+nanofibers&author=F.-L.+Zhou&author=R.-H.+Gong&author=I.+Porat&volume=115&publication_year=2009&pages=2591-2598&doi=10.1002/app.31282&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 42/50</p><p>83. Varabhas J., Chase G., Reneker D. Electrospun nano�ibers from a porous hollow tube. Polymer.	2008;49:4226–4229.</p><p>doi: 10.1016/j.polymer.2008.07.043. [CrossRef] [Google Scholar]</p><p>84. Yang R., He J., Xu L., Yu J. Bubble-electrospinning for fabricating nano�ibers. Polymer.	2009;50:5846–5850.</p><p>doi: 10.1016/j.polymer.2009.10.021. [CrossRef] [Google Scholar]</p><p>85. Dou H., Zuo B.-Q., He J.-H. Blown bubble-spinning for fabrication of super�ine �ibers. Therm.	Sci.	2012;16:1465–</p><p>1466. doi: 10.2298/TSCI1205465D. [CrossRef] [Google Scholar]</p><p>86. Wan L.Y. Bubble Electrospinning and Bubble-Spun Nano�ibers. Recent	Pat.	Nanotechnol.	2020;14:10–13.</p><p>doi: 10.2174/1872210513666191007114022. [PubMed] [CrossRef] [Google Scholar]</p><p>87. Pant B., Park M., Park S.-J. Drug Delivery Applications of Core-Sheath Nano�ibers Prepared by Coaxial</p><p>Electrospinning: A Review. Pharmaceutics.	2019;11:305. doi: 10.3390/pharmaceutics11070305. [PMC free article]</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>88. Tian D., He J.-H. Control of Macromolecule Chains Structure in a Nano�iber. Polymers.	2020;12:2305.</p><p>doi: 10.3390/polym12102305. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>89. Zheng G., Jiang J., Wang X., Li W., Liu J., Fu G., Lin L. Nano�iber membranes by multi-jet electrospinning arranged as</p><p>arc-array with sheath gas for electrodialysis applications. Mater.	Des.	2020;189:108504.</p><p>doi: 10.1016/j.matdes.2020.108504. [CrossRef] [Google Scholar]</p><p>90. Toriello M., Afsari M., Shon H., Tijing L. Progress on the Fabrication and Application of Electrospun Nano�iber</p><p>Composites. Membranes.	2020;10:204. doi: 10.3390/membranes10090204. [PMC free article] [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>91. Salem D.R. 1—Electrospinning of nano�ibers and the charge injection method. In: Brown P.J., Stevens K., editors.</p><p>Nano�ibers	and	Nanotechnology	in	Textiles. Woodhead Publishing; Sawston, UK: 2007. pp. 3–21. [CrossRef] [Google</p><p>Scholar]</p><p>92. Sun D., Chang C., Li S., Lin L. Near-Field Electrospinning. Nano	Lett.	2006;6:839–842. doi: 10.1021/nl0602701.</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>93. Levit N., Tepper G. Supercritical CO2-assisted electrospinning. J.	Supercrit.	Fluids.	2004;31:329–333.</p><p>doi: 10.1016/j.sup�lu.2003.12.008. [CrossRef] [Google Scholar]</p><p>94. Liu Y., Zhang X., Xia Y., Yang H. Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric</p><p>Nano�ibers. Adv.	Mater.	2010;22:2454–2457. doi: 10.1002/adma.200903870. [PMC free article] [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>95. Cakir M., Kartal I., Yildiz Z. The preparation of UV-cured superhydrophobic cotton fabric surfaces by</p><p>electrospinning method. Text.	Res.	J.	2014;84:1528–1538. doi: 10.1177/0040517514525883. [CrossRef] [Google</p><p>Scholar]</p><p>96. Leung V., Ko F. Biomedical applications of nano�ibers. Polym.	Adv.	Technol.	2010;22:350–365.</p><p>doi: 10.1002/pat.1813. [CrossRef] [Google Scholar]</p><p>97. Palchetti I., Mascini M. Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal.</p><p>Bioanal.	Chem.	2008;391:455–471. doi: 10.1007/s00216-008-1876-4. [PubMed] [CrossRef] [Google Scholar]</p><p>98. Liu Y., Hao M., Chen Z., Liu L., Liu Y., Yang W., Ramakrishna S. A review on recent advances in application of</p><p>electrospun nano�iber materials as biosensors. Curr.	Opin.	Biomed.	Eng.	2020;13:174–189.</p><p>doi: 10.1016/j.cobme.2020.02.001. [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1016%2Fj.polymer.2008.07.043</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Electrospun+nanofibers+from+a+porous+hollow+tube&author=J.+Varabhas&author=G.+Chase&author=D.+Reneker&volume=49&publication_year=2008&pages=4226-4229&doi=10.1016/j.polymer.2008.07.043&</p><p>https://doi.org/10.1016%2Fj.polymer.2009.10.021</p><p>https://scholar.google.com/scholar_lookup?journal=Polymer&title=Bubble-electrospinning+for+fabricating+nanofibers&author=R.+Yang&author=J.+He&author=L.+Xu&author=J.+Yu&volume=50&publication_year=2009&pages=5846-5850&doi=10.1016/j.polymer.2009.10.021&</p><p>https://doi.org/10.2298%2FTSCI1205465D</p><p>https://scholar.google.com/scholar_lookup?journal=Therm.+Sci.&title=Blown+bubble-spinning+for+fabrication+of+superfine+fibers&author=H.+Dou&author=B.-Q.+Zuo&author=J.-H.+He&volume=16&publication_year=2012&pages=1465-1466&doi=10.2298/TSCI1205465D&</p><p>https://pubmed.ncbi.nlm.nih.gov/31589131</p><p>https://doi.org/10.2174%2F1872210513666191007114022</p><p>https://scholar.google.com/scholar_lookup?journal=Recent+Pat.+Nanotechnol.&title=Bubble+Electrospinning+and+Bubble-Spun+Nanofibers&author=L.Y.+Wan&volume=14&publication_year=2020&pages=10-13&pmid=31589131&doi=10.2174/1872210513666191007114022&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680404/</p><p>https://pubmed.ncbi.nlm.nih.gov/31266186</p><p>https://doi.org/10.3390%2Fpharmaceutics11070305</p><p>https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&title=Drug+Delivery+Applications+of+Core-Sheath+Nanofibers+Prepared+by+Coaxial+Electrospinning:+A+Review&author=B.+Pant&author=M.+Park&author=S.-J.+Park&volume=11&publication_year=2019&pages=305&pmid=31266186&doi=10.3390/pharmaceutics11070305&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601019/</p><p>https://pubmed.ncbi.nlm.nih.gov/33050056</p><p>https://doi.org/10.3390%2Fpolym12102305</p><p>https://scholar.google.com/scholar_lookup?journal=Polymers&title=Control+of+Macromolecule+Chains+Structure+in+a+Nanofiber&author=D.+Tian&author=J.-H.+He&volume=12&publication_year=2020&pages=2305&pmid=33050056&doi=10.3390/polym12102305&</p><p>https://doi.org/10.1016%2Fj.matdes.2020.108504</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Des.&title=Nanofiber+membranes+by+multi-jet+electrospinning+arranged+as+arc-array+with+sheath+gas+for+electrodialysis+applications&author=G.+Zheng&author=J.+Jiang&author=X.+Wang&author=W.+Li&author=J.+Liu&volume=189&publication_year=2020&pages=108504&doi=10.1016/j.matdes.2020.108504&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559347/</p><p>https://pubmed.ncbi.nlm.nih.gov/32872232</p><p>https://doi.org/10.3390%2Fmembranes10090204</p><p>https://scholar.google.com/scholar_lookup?journal=Membranes&title=Progress+on+the+Fabrication+and+Application+of+Electrospun+Nanofiber+Composites&author=M.+Toriello&author=M.+Afsari&author=H.+Shon&author=L.+Tijing&volume=10&publication_year=2020&pages=204&doi=10.3390/membranes10090204&</p><p>https://doi.org/10.1533%2F9781845693732.1.3</p><p>https://scholar.google.com/scholar_lookup?title=Nanofibers+and+Nanotechnology+in+Textiles&author=D.R.+Salem&publication_year=2007&</p><p>https://pubmed.ncbi.nlm.nih.gov/16608294</p><p>https://doi.org/10.1021%2Fnl0602701</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Lett.&title=Near-Field+Electrospinning&author=D.+Sun&author=C.+Chang&author=S.+Li&author=L.+Lin&volume=6&publication_year=2006&pages=839-842&pmid=16608294&doi=10.1021/nl0602701&</p><p>https://doi.org/10.1016%2Fj.supflu.2003.12.008</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Supercrit.+Fluids&title=Supercritical+CO2-assisted+electrospinning&author=N.+Levit&author=G.+Tepper&volume=31&publication_year=2004&pages=329-333&doi=10.1016/j.supflu.2003.12.008&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941969/</p><p>https://pubmed.ncbi.nlm.nih.gov/20376855</p><p>https://doi.org/10.1002%2Fadma.200903870</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Mater.&title=Magnetic-Field-Assisted+Electrospinning+of+Aligned+Straight+and+Wavy+Polymeric+Nanofibers&author=Y.+Liu&author=X.+Zhang&author=Y.+Xia&author=H.+Yang&volume=22&publication_year=2010&pages=2454-2457&pmid=20376855&doi=10.1002/adma.200903870&</p><p>https://doi.org/10.1177%2F0040517514525883</p><p>https://scholar.google.com/scholar_lookup?journal=Text.+Res.+J.&title=The+preparation+of+UV-cured+superhydrophobic+cotton+fabric+surfaces+by+electrospinning+method&author=M.+Cakir&author=I.+Kartal&author=Z.+Yildiz&volume=84&publication_year=2014&pages=1528-1538&doi=10.1177/0040517514525883&</p><p>https://doi.org/10.1002%2Fpat.1813</p><p>https://scholar.google.com/scholar_lookup?journal=Polym.+Adv.+Technol.&title=Biomedical+applications+of+nanofibers&author=V.+Leung&author=F.+Ko&volume=22&publication_year=2010&pages=350-365&doi=10.1002/pat.1813&</p><p>https://pubmed.ncbi.nlm.nih.gov/18283441</p><p>https://doi.org/10.1007%2Fs00216-008-1876-4</p><p>https://scholar.google.com/scholar_lookup?journal=Anal.+Bioanal.+Chem.&title=Electroanalytical+biosensors+and+their+potential+for+food+pathogen+and+toxin+detection&author=I.+Palchetti&author=M.+Mascini&volume=391&publication_year=2008&pages=455-471&pmid=18283441&doi=10.1007/s00216-008-1876-4&</p><p>https://doi.org/10.1016%2Fj.cobme.2020.02.001</p><p>https://scholar.google.com/scholar_lookup?journal=Curr.+Opin.+Biomed.+Eng.&title=A+review+on+recent+advances+in+application+of+electrospun+nanofiber+materials+as+biosensors&author=Y.+Liu&author=M.+Hao&author=Z.+Chen&author=L.+Liu&author=Y.+Liu&volume=13&publication_year=2020&pages=174-189&doi=10.1016/j.cobme.2020.02.001&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 43/50</p><p>99. Mirzaei M., Sawan M. Microelectronics-Based Biosensors Dedicated to the Detection of Neurotransmitters: A</p><p>Review. Sensors.	2014;14:17981–18008. doi: 10.3390/s141017981. [PMC free article] [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>100. Halicka K., Cabaj J. Electrospun Nano�ibers for Sensing and Biosensing Applications—A Review. Int.	J.	Mol.	Sci.</p><p>2021;22:6357. doi: 10.3390/ijms22126357. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>101. Tsou P.-H., Chou C.-K., Saldana S.M., Hung M.-C., Kameoka J. The fabrication and testing of electrospun silica</p><p>nano�iber membranes for the detection of proteins. Nanotechnology.	2008;19:445714. doi: 10.1088/0957-</p><p>4484/19/44/445714. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>102. Kim S.G., Lee J.S. Multiscale pore contained carbon nano�iber-based �ield-effect transistor biosensors for nesfatin-1</p><p>detection. J.	Mater.	Chem.	B.	2021;9:6076–6083. doi: 10.1039/D1TB00582K. [PubMed] [CrossRef] [Google Scholar]</p><p>103. Civan S., Aydin S., Tanik N.A., Aykut Y. Cellulose Monoacetate/Tetraethyl Orthosilicate Hybrid Nano�ibers for</p><p>Electrochemical DNA Biosensors. Fibers	Polym.	2021;22:981–988. doi: 10.1007/s12221-021-0546-4. [CrossRef]</p><p>[Google Scholar]</p><p>104. Senthamizhan A., Balusamy B., Uyar T. Glucose sensors based on electrospun nano�ibers: A review. Anal.	Bioanal.</p><p>Chem.	2015;408:1285–1306. doi: 10.1007/s00216-015-9152-x. [PubMed] [CrossRef] [Google Scholar]</p><p>105. Li X., Feng Q., Lu K., Huang J., Zhang Y., Hou Y., Qiao H., Li D., Wei Q. Encapsulating enzyme into metal-organic</p><p>framework during in-situ growth on cellulose acetate nano�ibers as self-powered glucose biosensor. Biosens.</p><p>Bioelectron.	2020;171:112690. doi: 10.1016/j.bios.2020.112690. [PubMed] [CrossRef] [Google Scholar]</p><p>106. Sapountzi E., Chateaux J.-F., Lagarde F. Combining Electrospinning and Vapor-Phase Polymerization for the</p><p>Production of Polyacrylonitrile/ Polypyrrole Core-Shell Nano�ibers and Glucose Biosensor Application. Front.	Chem.</p><p>2020;8:678. doi: 10.3389/fchem.2020.00678. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>107. Baek S.H., Roh J., Park C.Y., Kim M.W., Shi R., Kailasa S.K., Park T.J. Cu-nano�lower decorated gold nanoparticles-</p><p>graphene oxide nano�iber as electrochemical biosensor for glucose detection. Mater.	Sci.	Eng.	C.	2019;107:110273.</p><p>doi: 10.1016/j.msec.2019.110273. [PubMed] [CrossRef] [Google Scholar]</p><p>108. Supraja P., Tripathy S., Vanjari S.R.K., Singh R., Singh V., Singh S.G. Label-free detection of β-Amyloid (1-42) in</p><p>plasma using electrospun SnO2 nano�iber based electro-analytical sensor. Sens.	Actuators	B	Chem.	2021;346:130522.</p><p>doi: 10.1016/j.snb.2021.130522. [CrossRef] [Google Scholar]</p><p>109. Wang W.Q., Yue H.Y., Yu Z.M., Huang S., Song S.S., Gao X., Guan E.H., Zhang H.J., Wang Z. Synthesis and Application</p><p>of MoS2 Nanosheet Arrays/Carbon Nano�ibers for Simultaneous Electrochemical Determination of Levodopa and Uric</p><p>Acid. IEEE	Sens.	J.	2019;19:5988–5994. doi: 10.1109/JSEN.2019.2912010. [CrossRef] [Google Scholar]</p><p>110. Daemi S., Ghasemi S., Ashkarran A.A. Electrospun CuO-ZnO nanohybrid: Tuning the nanostructure for improved</p><p>amperometric detection of hydrogen peroxide as a non-enzymatic sensor. J.	Colloid	Interface	Sci.	2019;550:180–189.</p><p>doi: 10.1016/j.jcis.2019.04.091. [PubMed] [CrossRef] [Google Scholar]</p><p>111. Hong E.-K., Cho W.-J. High sensitivity In-Ga-Zn-O nano�iber-based double gate �ield effect transistors for chemical</p><p>sensing. Sens.	Actuators	B	Chem.	2020;326:128827. doi: 10.1016/j.snb.2020.128827. [CrossRef] [Google Scholar]</p><p>112. Xie H., Luo G., Niu Y., Weng W., Zhao Y., Ling Z., Ruan C., Li G., Sun W. Synthesis and utilization of Co3O4 doped</p><p>carbon nano�iber for fabrication of hemoglobin-based electrochemical sensor. Mater.	Sci.	Eng.	C.	2019;107:110209.</p><p>doi: 10.1016/j.msec.2019.110209. [PubMed] [CrossRef] [Google Scholar]</p><p>113. Mustafov S.D., Mohanty A.K., Misra M., Seydibeyoğlu M. Fabrication of conductive Lignin/PAN carbon nano�ibers</p><p>with enhanced graphene for the modi�ied electrodes. Carbon.	2019;147:262–275. doi: 10.1016/j.carbon.2019.02.058.</p><p>[CrossRef] [Google Scholar]</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239957/</p><p>https://pubmed.ncbi.nlm.nih.gov/25264957</p><p>https://doi.org/10.3390%2Fs141017981</p><p>https://scholar.google.com/scholar_lookup?journal=Sensors&title=Microelectronics-Based+Biosensors+Dedicated+to+the+Detection+of+Neurotransmitters:+A+Review&author=M.+Mirzaei&author=M.+Sawan&volume=14&publication_year=2014&pages=17981-18008&pmid=25264957&doi=10.3390/s141017981&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232165/</p><p>https://pubmed.ncbi.nlm.nih.gov/34198611</p><p>https://doi.org/10.3390%2Fijms22126357</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Mol.+Sci.&title=Electrospun+Nanofibers+for+Sensing+and+Biosensing+Applications%E2%80%94A+Review&author=K.+Halicka&author=J.+Cabaj&volume=22&publication_year=2021&pages=6357&pmid=34198611&doi=10.3390/ijms22126357&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2600432/</p><p>https://pubmed.ncbi.nlm.nih.gov/19081800</p><p>https://doi.org/10.1088%2F0957-4484%2F19%2F44%2F445714</p><p>https://scholar.google.com/scholar_lookup?journal=Nanotechnology&title=The+fabrication+and+testing+of+electrospun+silica+nanofiber+membranes+for+the+detection+of+proteins&author=P.-H.+Tsou&author=C.-K.+Chou&author=S.M.+Saldana&author=M.-C.+Hung&author=J.+Kameoka&volume=19&publication_year=2008&pages=445714&pmid=19081800&doi=10.1088/0957-4484/19/44/445714&</p><p>https://pubmed.ncbi.nlm.nih.gov/34286811</p><p>https://doi.org/10.1039%2FD1TB00582K</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Mater.+Chem.+B&title=Multiscale+pore+contained+carbon+nanofiber-based+field-effect+transistor+biosensors+for+nesfatin-1+detection&author=S.G.+Kim&author=J.S.+Lee&volume=9&publication_year=2021&pages=6076-6083&pmid=34286811&doi=10.1039/D1TB00582K&</p><p>https://doi.org/10.1007%2Fs12221-021-0546-4</p><p>https://scholar.google.com/scholar_lookup?journal=Fibers+Polym.&title=Cellulose+Monoacetate/Tetraethyl+Orthosilicate+Hybrid+Nanofibers+for+Electrochemical+DNA+Biosensors&author=S.+Civan&author=S.+Aydin&author=N.A.+Tanik&author=Y.+Aykut&volume=22&publication_year=2021&pages=981-988&doi=10.1007/s12221-021-0546-4&</p><p>https://pubmed.ncbi.nlm.nih.gov/26573168</p><p>https://doi.org/10.1007%2Fs00216-015-9152-x</p><p>https://scholar.google.com/scholar_lookup?journal=Anal.+Bioanal.+Chem.&title=Glucose+sensors+based+on+electrospun+nanofibers:+A+review&author=A.+Senthamizhan&author=B.+Balusamy&author=T.+Uyar&volume=408&publication_year=2015&pages=1285-1306&pmid=26573168&doi=10.1007/s00216-015-9152-x&</p><p>https://pubmed.ncbi.nlm.nih.gov/33049561</p><p>https://doi.org/10.1016%2Fj.bios.2020.112690</p><p>https://scholar.google.com/scholar_lookup?journal=Biosens.+Bioelectron.&title=Encapsulating+enzyme+into+metal-organic+framework+during+in-situ+growth+on+cellulose+acetate+nanofibers+as+self-powered+glucose+biosensor&author=X.+Li&author=Q.+Feng&author=K.+Lu&author=J.+Huang&author=Y.+Zhang&volume=171&publication_year=2020&pages=112690&pmid=33049561&doi=10.1016/j.bios.2020.112690&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417620/</p><p>https://pubmed.ncbi.nlm.nih.gov/32850678</p><p>https://doi.org/10.3389%2Ffchem.2020.00678</p><p>https://scholar.google.com/scholar_lookup?journal=Front.+Chem.&title=Combining+Electrospinning+and+Vapor-Phase+Polymerization+for+the+Production+of+Polyacrylonitrile/+Polypyrrole+Core-Shell+Nanofibers+and+Glucose+Biosensor+Application&author=E.+Sapountzi&author=J.-F.+Chateaux&author=F.+Lagarde&volume=8&publication_year=2020&pages=678&pmid=32850678&doi=10.3389/fchem.2020.00678&</p><p>https://pubmed.ncbi.nlm.nih.gov/31761219</p><p>https://doi.org/10.1016%2Fj.msec.2019.110273</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Cu-nanoflower+decorated+gold+nanoparticles-graphene+oxide+nanofiber+as+electrochemical+biosensor+for+glucose+detection&author=S.H.+Baek&author=J.+Roh&author=C.Y.+Park&author=M.W.+Kim&author=R.+Shi&volume=107&publication_year=2019&pages=110273&doi=10.1016/j.msec.2019.110273&</p><p>https://doi.org/10.1016%2Fj.snb.2021.130522</p><p>https://scholar.google.com/scholar_lookup?journal=Sens.+Actuators+B+Chem.&title=Label-free+detection+of+%CE%B2-Amyloid+(1-42)+in+plasma+using+electrospun+SnO2+nanofiber+based+electro-analytical+sensor&author=P.+Supraja&author=S.+Tripathy&author=S.R.K.+Vanjari&author=R.+Singh&author=V.+Singh&volume=346&publication_year=2021&pages=130522&doi=10.1016/j.snb.2021.130522&</p><p>https://doi.org/10.1109%2FJSEN.2019.2912010</p><p>https://scholar.google.com/scholar_lookup?journal=IEEE+Sens.+J.&title=Synthesis+and+Application+of+MoS2+Nanosheet+Arrays/Carbon+Nanofibers+for+Simultaneous+Electrochemical+Determination+of+Levodopa+and+Uric+Acid&author=W.Q.+Wang&author=H.Y.+Yue&author=Z.M.+Yu&author=S.+Huang&author=S.S.+Song&volume=19&publication_year=2019&pages=5988-5994&doi=10.1109/JSEN.2019.2912010&</p><p>https://pubmed.ncbi.nlm.nih.gov/31075673</p><p>https://doi.org/10.1016%2Fj.jcis.2019.04.091</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Colloid+Interface+Sci.&title=Electrospun+CuO-ZnO+nanohybrid:+Tuning+the+nanostructure+for+improved+amperometric+detection+of+hydrogen+peroxide+as+a+non-enzymatic+sensor&author=S.+Daemi&author=S.+Ghasemi&author=A.A.+Ashkarran&volume=550&publication_year=2019&pages=180-189&pmid=31075673&doi=10.1016/j.jcis.2019.04.091&</p><p>https://doi.org/10.1016%2Fj.snb.2020.128827</p><p>https://scholar.google.com/scholar_lookup?journal=Sens.+Actuators+B+Chem.&title=High+sensitivity+In-Ga-Zn-O+nanofiber-based+double+gate+field+effect+transistors+for+chemical+sensing&author=E.-K.+Hong&author=W.-J.+Cho&volume=326&publication_year=2020&pages=128827&doi=10.1016/j.snb.2020.128827&</p><p>https://pubmed.ncbi.nlm.nih.gov/31761232</p><p>https://doi.org/10.1016%2Fj.msec.2019.110209</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Synthesis+and+utilization+of+Co3O4+doped+carbon+nanofiber+for+fabrication+of+hemoglobin-based+electrochemical+sensor&author=H.+Xie&author=G.+Luo&author=Y.+Niu&author=W.+Weng&author=Y.+Zhao&volume=107&publication_year=2019&pages=110209&doi=10.1016/j.msec.2019.110209&</p><p>https://doi.org/10.1016%2Fj.carbon.2019.02.058</p><p>https://scholar.google.com/scholar_lookup?journal=Carbon&title=Fabrication+of+conductive+Lignin/PAN+carbon+nanofibers+with+enhanced+graphene+for+the+modified+electrodes&author=S.D.+Mustafov&author=A.K.+Mohanty&author=M.+Misra&author=M.+Seydibeyo%C4%9Flu&volume=147&publication_year=2019&pages=262-275&doi=10.1016/j.carbon.2019.02.058&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 44/50</p><p>114. Vasita R., Katti D.S. Nano�ibers and their applications in tissue engineering. Int.	J.	Nanomed.	2006;1:15–30.</p><p>doi: 10.2147/nano.2006.1.1.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>115. Doshi J., Reneker D.H. Electrospinning process and applications of electrospun �ibers. J.	Electrost.	1995;35:151–</p><p>160. doi: 10.1016/0304-3886(95)00041-8. [CrossRef] [Google Scholar]</p><p>116. Khil M.-S., Bhattarai S.R., Kim H.-Y., Kim S.-Z., Lee K.-H. Novel fabricated matrix via electrospinning for tissue</p><p>engineering. J.	Biomed.	Mater.	Res.	2004;72B:117–124. doi: 10.1002/jbm.b.30122. [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>117. Smith L., Ma P. Nano-�ibrous scaffolds for tissue engineering. Colloids	Surf.	B	Biointerfaces.	2004;39:125–131.</p><p>doi: 10.1016/j.colsur�b.2003.12.004. [PubMed] [CrossRef] [Google Scholar]</p><p>118. Haider A., Haider S., Kang I.-K. A comprehensive review summarizing the effect of electrospinning parameters and</p><p>potential applications of nano�ibers in biomedical and biotechnology. Arab.	J.	Chem.	2018;11:1165–1188.</p><p>doi: 10.1016/j.arabjc.2015.11.015. [CrossRef] [Google Scholar]</p><p>119. Thenmozhi S., Dharmaraj N., Kadirvelu K., Kim H.Y. Electrospun nano�ibers: New generation materials for</p><p>advanced applications. Mater.	Sci.	Eng.	B.	2017;217:36–48. doi: 10.1016/j.mseb.2017.01.001. [CrossRef] [Google</p><p>Scholar]</p><p>120. Berton F., Porrelli D., Di Lenarda R., Turco G. A Critical Review on the Production of Electrospun Nano�ibres for</p><p>Guided Bone Regeneration in Oral Surgery. Nanomaterials.	2019;10:16. doi: 10.3390/nano10010016. [PMC free article]</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>121. Zhang Y., Wang T., Li J., Cui X., Jiang M., Zhang M., Wang X., Zhang W., Liu Z. Bilayer Membrane Composed of</p><p>Mineralized Collagen and Chitosan Cast Film Coated With Berberine-Loaded PCL/PVP Electrospun Nano�iber Promotes</p><p>Bone Regeneration. Front.	Bioeng.	Biotechnol.	2021;9:684335. doi: 10.3389/�bioe.2021.684335. [PMC free article]</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>122. Rastegar A., Mahmoodi M., Mirjalili M., Nasirizadeh N. Platelet-Rich Fibrin-Loaded PCL/Chitosan Core-Shell �ibers</p><p>Scaffold for Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells. Carbohydr.	Polym.	2021;269:118351.</p><p>doi: 10.1016/j.carbpol.2021.118351. [PubMed] [CrossRef] [Google Scholar]</p><p>123. Chen Y., Xu W., Sha�iq M., Tang J., Hao J., Xie X., Yuan Z., Xiao X., Liu Y., Mo X. Three-dimensional porous gas-foamed</p><p>electrospun nano�iber scaffold for cartilage regeneration. J.	Colloid	Interface	Sci.	2021;603:94–109.</p><p>doi: 10.1016/j.jcis.2021.06.067. [PubMed] [CrossRef] [Google Scholar]</p><p>124. Zhang X., Liu W., Liu J., Hu Y., Dai H. Poly-ε-caprolactone/Whitlockite Electrospun Bionic Membrane with an</p><p>Osteogenic–Angiogenic Coupling Effect for Periosteal Regeneration. ACS	Biomater.	Sci.	Eng.	2021;7:3321–3331.</p><p>doi: 10.1021/acsbiomaterials.1c00426. [PubMed] [CrossRef] [Google Scholar]</p><p>125. Xie J., MacEwan M.R., Ray W.Z., Liu W., Siewe D.Y., Xia Y. Radially Aligned, Electrospun Nano�ibers as Dural</p><p>Substitutes for Wound Closure and Tissue Regeneration Applications. ACS	Nano.	2010;4:5027–5036.</p><p>doi: 10.1021/nn101554u. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>126. Ma H., Sun Y., Tang Y., Shen Y., Kan Z., Li Q., Fang S., Lu Y., Zhou X., Li</p><p>Z. Robust Electrospun Nano�ibers from</p><p>Chemosynthetic Poly(4-hydroxybutyrate) as Arti�icial Dural Substitute. Macromol.	Biosci.	2021;21:2100134.</p><p>doi: 10.1002/mabi.202100134. [PubMed] [CrossRef] [Google Scholar]</p><p>127. Wu P., Zhang P., Zheng H., Zuo B., Duan X., Chen J., Wang X., Shen Y. Biological effects different diameters of Tussah</p><p>silk �ibroin nano�ibers on olfactory ensheathing cells. Exp.	Ther.	Med.	2018;17:123–130. doi: 10.3892/etm.2018.6933.</p><p>[PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2426767/</p><p>https://pubmed.ncbi.nlm.nih.gov/17722259</p><p>https://doi.org/10.2147%2Fnano.2006.1.1.15</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Nanomed.&title=Nanofibers+and+their+applications+in+tissue+engineering&author=R.+Vasita&author=D.S.+Katti&volume=1&publication_year=2006&pages=15-30&pmid=17722259&doi=10.2147/nano.2006.1.1.15&</p><p>https://doi.org/10.1016%2F0304-3886(95)00041-8</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Electrost.&title=Electrospinning+process+and+applications+of+electrospun+fibers&author=J.+Doshi&author=D.H.+Reneker&volume=35&publication_year=1995&pages=151-160&doi=10.1016/0304-3886(95)00041-8&</p><p>https://pubmed.ncbi.nlm.nih.gov/15389495</p><p>https://doi.org/10.1002%2Fjbm.b.30122</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Biomed.+Mater.+Res.&title=Novel+fabricated+matrix+via+electrospinning+for+tissue+engineering&author=M.-S.+Khil&author=S.R.+Bhattarai&author=H.-Y.+Kim&author=S.-Z.+Kim&author=K.-H.+Lee&volume=72B&publication_year=2004&pages=117-124&doi=10.1002/jbm.b.30122&</p><p>https://pubmed.ncbi.nlm.nih.gov/15556341</p><p>https://doi.org/10.1016%2Fj.colsurfb.2003.12.004</p><p>https://scholar.google.com/scholar_lookup?journal=Colloids+Surf.+B+Biointerfaces&title=Nano-fibrous+scaffolds+for+tissue+engineering&author=L.+Smith&author=P.+Ma&volume=39&publication_year=2004&pages=125-131&pmid=15556341&doi=10.1016/j.colsurfb.2003.12.004&</p><p>https://doi.org/10.1016%2Fj.arabjc.2015.11.015</p><p>https://scholar.google.com/scholar_lookup?journal=Arab.+J.+Chem.&title=A+comprehensive+review+summarizing+the+effect+of+electrospinning+parameters+and+potential+applications+of+nanofibers+in+biomedical+and+biotechnology&author=A.+Haider&author=S.+Haider&author=I.-K.+Kang&volume=11&publication_year=2018&pages=1165-1188&doi=10.1016/j.arabjc.2015.11.015&</p><p>https://doi.org/10.1016%2Fj.mseb.2017.01.001</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+B&title=Electrospun+nanofibers:+New+generation+materials+for+advanced+applications&author=S.+Thenmozhi&author=N.+Dharmaraj&author=K.+Kadirvelu&author=H.Y.+Kim&volume=217&publication_year=2017&pages=36-48&doi=10.1016/j.mseb.2017.01.001&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023267/</p><p>https://pubmed.ncbi.nlm.nih.gov/31861582</p><p>https://doi.org/10.3390%2Fnano10010016</p><p>https://scholar.google.com/scholar_lookup?journal=Nanomaterials&title=A+Critical+Review+on+the+Production+of+Electrospun+Nanofibres+for+Guided+Bone+Regeneration+in+Oral+Surgery&author=F.+Berton&author=D.+Porrelli&author=R.+Di+Lenarda&author=G.+Turco&volume=10&publication_year=2019&pages=16&pmid=31861582&doi=10.3390/nano10010016&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327095/</p><p>https://pubmed.ncbi.nlm.nih.gov/34350160</p><p>https://doi.org/10.3389%2Ffbioe.2021.684335</p><p>https://scholar.google.com/scholar_lookup?journal=Front.+Bioeng.+Biotechnol.&title=Bilayer+Membrane+Composed+of+Mineralized+Collagen+and+Chitosan+Cast+Film+Coated+With+Berberine-Loaded+PCL/PVP+Electrospun+Nanofiber+Promotes+Bone+Regeneration&author=Y.+Zhang&author=T.+Wang&author=J.+Li&author=X.+Cui&author=M.+Jiang&volume=9&publication_year=2021&pages=684335&pmid=34350160&doi=10.3389/fbioe.2021.684335&</p><p>https://pubmed.ncbi.nlm.nih.gov/34294355</p><p>https://doi.org/10.1016%2Fj.carbpol.2021.118351</p><p>https://scholar.google.com/scholar_lookup?journal=Carbohydr.+Polym.&title=Platelet-Rich+Fibrin-Loaded+PCL/Chitosan+Core-Shell+fibers+Scaffold+for+Enhanced+Osteogenic+Differentiation+of+Mesenchymal+Stem+Cells&author=A.+Rastegar&author=M.+Mahmoodi&author=M.+Mirjalili&author=N.+Nasirizadeh&volume=269&publication_year=2021&pages=118351&pmid=34294355&doi=10.1016/j.carbpol.2021.118351&</p><p>https://pubmed.ncbi.nlm.nih.gov/34197994</p><p>https://doi.org/10.1016%2Fj.jcis.2021.06.067</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Colloid+Interface+Sci.&title=Three-dimensional+porous+gas-foamed+electrospun+nanofiber+scaffold+for+cartilage+regeneration&author=Y.+Chen&author=W.+Xu&author=M.+Shafiq&author=J.+Tang&author=J.+Hao&volume=603&publication_year=2021&pages=94-109&pmid=34197994&doi=10.1016/j.jcis.2021.06.067&</p><p>https://pubmed.ncbi.nlm.nih.gov/34148343</p><p>https://doi.org/10.1021%2Facsbiomaterials.1c00426</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Biomater.+Sci.+Eng.&title=Poly-%CE%B5-caprolactone/Whitlockite+Electrospun+Bionic+Membrane+with+an+Osteogenic%E2%80%93Angiogenic+Coupling+Effect+for+Periosteal+Regeneration&author=X.+Zhang&author=W.+Liu&author=J.+Liu&author=Y.+Hu&author=H.+Dai&volume=7&publication_year=2021&pages=3321-3331&pmid=34148343&doi=10.1021/acsbiomaterials.1c00426&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947607/</p><p>https://pubmed.ncbi.nlm.nih.gov/20695478</p><p>https://doi.org/10.1021%2Fnn101554u</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Nano&title=Radially+Aligned,+Electrospun+Nanofibers+as+Dural+Substitutes+for+Wound+Closure+and+Tissue+Regeneration+Applications&author=J.+Xie&author=M.R.+MacEwan&author=W.Z.+Ray&author=W.+Liu&author=D.Y.+Siewe&volume=4&publication_year=2010&pages=5027-5036&pmid=20695478&doi=10.1021/nn101554u&</p><p>https://pubmed.ncbi.nlm.nih.gov/33955128</p><p>https://doi.org/10.1002%2Fmabi.202100134</p><p>https://scholar.google.com/scholar_lookup?journal=Macromol.+Biosci.&title=Robust+Electrospun+Nanofibers+from+Chemosynthetic+Poly(4-hydroxybutyrate)+as+Artificial+Dural+Substitute&author=H.+Ma&author=Y.+Sun&author=Y.+Tang&author=Y.+Shen&author=Z.+Kan&volume=21&publication_year=2021&pages=2100134&pmid=33955128&doi=10.1002/mabi.202100134&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6307394/</p><p>https://pubmed.ncbi.nlm.nih.gov/30651772</p><p>https://doi.org/10.3892%2Fetm.2018.6933</p><p>https://scholar.google.com/scholar_lookup?journal=Exp.+Ther.+Med.&title=Biological+effects+different+diameters+of+Tussah+silk+fibroin+nanofibers+on+olfactory+ensheathing+cells&author=P.+Wu&author=P.+Zhang&author=H.+Zheng&author=B.+Zuo&author=X.+Duan&volume=17&publication_year=2018&pages=123-130&pmid=30651772&doi=10.3892/etm.2018.6933&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 45/50</p><p>128. Fan Z., Shen Y., Zhang F., Zuo B., Lu Q., Wu P., Xie Z., Dong Q., Zhang H. Control of Olfactory Ensheathing Cell</p><p>Behaviors by Electrospun Silk Fibroin Fibers. Cell	Transplant.	2013;22:39–50. doi: 10.3727/096368913X672190.</p><p>[PubMed] [CrossRef] [Google Scholar]</p><p>129. Castaño O., López-Mengual A., Reginensi D., Matamoros-Angles A., Engel E., del Rio J.A. Chemotactic TEG3 Cells’</p><p>Guiding Platforms Based on PLA Fibers Functionalized With the SDF-1α/CXCL12 Chemokine for Neural Regeneration</p><p>Therapy. Front.	Bioeng.	Biotechnol.	2021;9:212. doi: 10.3389/�bioe.2021.627805. [PMC free article] [PubMed]</p><p>[CrossRef] [Google Scholar]</p><p>130. Peng Y., Ma Y., Bao Y., Liu Z., Chen L., Dai F., Li Z. Electrospun PLGA/SF/artemisinin composite nano�ibrous</p><p>membranes for wound dressing. Int.	J.	Biol.	Macromol.	2021;183:68–78. doi: 10.1016/j.ijbiomac.2021.04.021. [PubMed]</p><p>[CrossRef] [Google Scholar]</p><p>131. De France K.J., Xu F., Toufanian S., Chan K.J., Said S., Stimpson T.C., González-Martı́nez E., Moran-Mirabal J.M.,</p><p>Cranston E.D., Hoare T. Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via</p><p>sequential electrospinning and thermal wrinkling. Acta	Biomater.	2021;128:250–261.</p><p>doi: 10.1016/j.actbio.2021.04.044. [PubMed] [CrossRef] [Google Scholar]</p><p>132. Chen S., Carlson M.A., Li X., Siddique A., Zhu W., Xie J. Minimally Invasive Delivery of 3D Shape Recoverable</p><p>Constructs with Ordered Structures for Tissue Repair. ACS	Biomater.	Sci.	Eng.	2021;7:2204–2211.</p><p>doi: 10.1021/acsbiomaterials.1c00344. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>133. Niu X., Wang L., Xu M., Qin M., Zhao L., Wei Y., Hu Y., Lian X., Liang Z., Chen S., et al. Electrospun polyamide-</p><p>6/chitosan nano�ibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered membranes for guided bone</p><p>regeneration. Carbohydr.	Polym.	2021;260:117769. doi: 10.1016/j.carbpol.2021.117769. [PubMed] [CrossRef] [Google</p><p>Scholar]</p><p>134. Agrahari V., Agrahari V., Meng J., Mitra A.K. Chapter 9—Electrospun Nano�ibers in Drug Delivery: Fabrication,</p><p>Advances, and Biomedical Applications. In: Mitra A.K., Cholkar K., Mandal A., editors. Emerging	Nanotechnologies	for</p><p>Diagnostics,	Drug	Delivery	and	Medical	Devices. Elsevier; Boston, MA, USA: 2017. pp. 189–215. [CrossRef] [Google</p><p>Scholar]</p><p>135. Thao N., Lee S., Shin G., Kang Y., Choi S., Kim M. Preparation of Electrospun Small Intestinal</p><p>Submucosa/Poly(caprolactone-co-Lactide-co-glycolide) Nano�iber Sheet as a Potential Drug Carrier. Pharmaceutics.</p><p>2021;13:253. doi: 10.3390/pharmaceutics13020253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>136. Gutschmidt D., Hazra R.S., Zhou X., Xu X., Sabzi M., Jiang L. Electrospun, sepiolite-loaded poly(vinyl alcohol)/soy</p><p>protein isolate nano�ibers: Preparation, characterization, and their drug release behavior. Int.	J.	Pharm.</p><p>2020;594:120172. doi: 10.1016/j.ijpharm.2020.120172. [PubMed] [CrossRef] [Google Scholar]</p><p>137. Su Y., McCarthy A., Wong S.L., Hollins R.R., Wang G., Xie J. Simultaneous Delivery of Multiple Antimicrobial Agents</p><p>by Biphasic Scaffolds for Effective Treatment of Wound Bio�ilms. Adv.	Heal.	Mater.	2021;10:2100135.</p><p>doi: 10.1002/adhm.202100135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>138. Davani F., Alishahi M., Sabzi M., Khorram M., Arastehfar A., Zomorodian K. Dual drug delivery of vancomycin and</p><p>imipenem/cilastatin by coaxial nano�ibers for treatment of diabetic foot ulcer infections. Mater.	Sci.	Eng.	C.</p><p>2021;123:111975. doi: 10.1016/j.msec.2021.111975. [PubMed] [CrossRef] [Google Scholar]</p><p>139. Bai Y., Wang D., Zhang Z., Pan J., Cui Z., Yu D.-G., Bligh S.-W.A. Testing of fast dissolution of ibuprofen from its</p><p>electrospun hydrophilic polymer nanocomposites. Polym.	Test.	2020;93:106872.</p><p>doi: 10.1016/j.polymertesting.2020.106872. [CrossRef] [Google Scholar]</p><p>140. Liu X.-F., Zhang J., Liu J.-J., Zhou Q.-H., Liu Z., Hu P.-Y., Yuan Z., Ramakrishna S., Yang D.-P., Long Y.-Z. Bifunctional</p><p>CuS composite nano�ibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating</p><p>superbug. Chem.	Eng.	J.	2020;401:126096. doi: 10.1016/j.cej.2020.126096. [CrossRef] [Google Scholar]</p><p>https://pubmed.ncbi.nlm.nih.gov/24153024</p><p>https://doi.org/10.3727%2F096368913X672190</p><p>https://scholar.google.com/scholar_lookup?journal=Cell+Transplant.&title=Control+of+Olfactory+Ensheathing+Cell+Behaviors+by+Electrospun+Silk+Fibroin+Fibers&author=Z.+Fan&author=Y.+Shen&author=F.+Zhang&author=B.+Zuo&author=Q.+Lu&volume=22&publication_year=2013&pages=39-50&pmid=24153024&doi=10.3727/096368913X672190&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019790/</p><p>https://pubmed.ncbi.nlm.nih.gov/33829009</p><p>https://doi.org/10.3389%2Ffbioe.2021.627805</p><p>https://scholar.google.com/scholar_lookup?journal=Front.+Bioeng.+Biotechnol.&title=Chemotactic+TEG3+Cells%E2%80%99+Guiding+Platforms+Based+on+PLA+Fibers+Functionalized+With+the+SDF-1%CE%B1/CXCL12+Chemokine+for+Neural+Regeneration+Therapy&author=O.+Casta%C3%B1o&author=A.+L%C3%B3pez-Mengual&author=D.+Reginensi&author=A.+Matamoros-Angles&author=E.+Engel&volume=9&publication_year=2021&pages=212&pmid=33829009&doi=10.3389/fbioe.2021.627805&</p><p>https://pubmed.ncbi.nlm.nih.gov/33892031</p><p>https://doi.org/10.1016%2Fj.ijbiomac.2021.04.021</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Biol.+Macromol.&title=Electrospun+PLGA/SF/artemisinin+composite+nanofibrous+membranes+for+wound+dressing&author=Y.+Peng&author=Y.+Ma&author=Y.+Bao&author=Z.+Liu&author=L.+Chen&volume=183&publication_year=2021&pages=68-78&pmid=33892031&doi=10.1016/j.ijbiomac.2021.04.021&</p><p>https://pubmed.ncbi.nlm.nih.gov/33945881</p><p>https://doi.org/10.1016%2Fj.actbio.2021.04.044</p><p>https://scholar.google.com/scholar_lookup?journal=Acta+Biomater.&title=Multi-scale+structuring+of+cell-instructive+cellulose+nanocrystal+composite+hydrogel+sheets+via+sequential+electrospinning+and+thermal+wrinkling&author=K.J.+De+France&author=F.+Xu&author=S.+Toufanian&author=K.J.+Chan&author=S.+Said&volume=128&publication_year=2021&pages=250-261&pmid=33945881&doi=10.1016/j.actbio.2021.04.044&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344192/</p><p>https://pubmed.ncbi.nlm.nih.gov/33929841</p><p>https://doi.org/10.1021%2Facsbiomaterials.1c00344</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Biomater.+Sci.+Eng.&title=Minimally+Invasive+Delivery+of+3D+Shape+Recoverable+Constructs+with+Ordered+Structures+for+Tissue+Repair&author=S.+Chen&author=M.A.+Carlson&author=X.+Li&author=A.+Siddique&author=W.+Zhu&volume=7&publication_year=2021&pages=2204-2211&pmid=33929841&doi=10.1021/acsbiomaterials.1c00344&</p><p>https://pubmed.ncbi.nlm.nih.gov/33712127</p><p>https://doi.org/10.1016%2Fj.carbpol.2021.117769</p><p>https://scholar.google.com/scholar_lookup?journal=Carbohydr.+Polym.&title=Electrospun+polyamide-6/chitosan+nanofibers+reinforced+nano-hydroxyapatite/polyamide-6+composite+bilayered+membranes+for+guided+bone+regeneration&author=X.+Niu&author=L.+Wang&author=M.+Xu&author=M.+Qin&author=L.+Zhao&volume=260&publication_year=2021&pages=117769&pmid=33712127&doi=10.1016/j.carbpol.2021.117769&</p><p>https://doi.org/10.1016%2FB978-0-323-42978-8.00009-7</p><p>https://scholar.google.com/scholar_lookup?title=Emerging+Nanotechnologies+for+Diagnostics,+Drug+Delivery+and+Medical+Devices&author=V.+Agrahari&author=V.+Agrahari&author=J.+Meng&author=A.K.+Mitra&publication_year=2017&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917610/</p><p>https://pubmed.ncbi.nlm.nih.gov/33670418</p><p>https://doi.org/10.3390%2Fpharmaceutics13020253</p><p>https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&title=Preparation+of+Electrospun+Small+Intestinal+Submucosa/Poly(caprolactone-co-Lactide-co-glycolide)+Nanofiber+Sheet+as+a+Potential+Drug+Carrier&author=N.+Thao&author=S.+Lee&author=G.+Shin&author=Y.+Kang&author=S.+Choi&volume=13&publication_year=2021&pages=253&pmid=33670418&doi=10.3390/pharmaceutics13020253&</p><p>https://pubmed.ncbi.nlm.nih.gov/33321171</p><p>https://doi.org/10.1016%2Fj.ijpharm.2020.120172</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Pharm.&title=Electrospun,+sepiolite-loaded+poly(vinyl+alcohol)/soy+protein+isolate+nanofibers:+Preparation,+characterization,+and+their+drug+release+behavior&author=D.+Gutschmidt&author=R.S.+Hazra&author=X.+Zhou&author=X.+Xu&author=M.+Sabzi&volume=594&publication_year=2020&pages=120172&pmid=33321171&doi=10.1016/j.ijpharm.2020.120172&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222186/</p><p>https://pubmed.ncbi.nlm.nih.gov/33887126</p><p>https://doi.org/10.1002%2Fadhm.202100135</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Heal.+Mater.&title=Simultaneous+Delivery+of+Multiple+Antimicrobial+Agents+by+Biphasic+Scaffolds+for+Effective+Treatment+of+Wound+Biofilms&author=Y.+Su&author=A.+McCarthy&author=S.L.+Wong&author=R.R.+Hollins&author=G.+Wang&volume=10&publication_year=2021&pages=2100135&doi=10.1002/adhm.202100135&</p><p>https://pubmed.ncbi.nlm.nih.gov/33812603</p><p>https://doi.org/10.1016%2Fj.msec.2021.111975</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Dual+drug+delivery+of+vancomycin+and+imipenem/cilastatin+by+coaxial+nanofibers+for+treatment+of+diabetic+foot+ulcer+infections&author=F.+Davani&author=M.+Alishahi&author=M.+Sabzi&author=M.+Khorram&author=A.+Arastehfar&volume=123&publication_year=2021&pages=111975&doi=10.1016/j.msec.2021.111975&</p><p>https://doi.org/10.1016%2Fj.polymertesting.2020.106872</p><p>https://scholar.google.com/scholar_lookup?journal=Polym.+Test.&title=Testing+of+fast+dissolution+of+ibuprofen+from+its+electrospun+hydrophilic+polymer+nanocomposites&author=Y.+Bai&author=D.+Wang&author=Z.+Zhang&author=J.+Pan&author=Z.+Cui&volume=93&publication_year=2020&pages=106872&doi=10.1016/j.polymertesting.2020.106872&</p><p>https://doi.org/10.1016%2Fj.cej.2020.126096</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Eng.+J.&title=Bifunctional+CuS+composite+nanofibers+via+in+situ+electrospinning+for+outdoor+rapid+hemostasis+and+simultaneous+ablating+superbug&author=X.-F.+Liu&author=J.+Zhang&author=J.-J.+Liu&author=Q.-H.+Zhou&author=Z.+Liu&volume=401&publication_year=2020&pages=126096&doi=10.1016/j.cej.2020.126096&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 46/50</p><p>141. Qiu M., Wang D., Liang W., Liu L., Zhang Y., Chen X., Sang D.K., Xing C., Li Z., Dong B., et al. Novel concept of the</p><p>smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc.	Natl.	Acad.	Sci.</p><p>USA.	2018;115:501–506. doi: 10.1073/pnas.1714421115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>142. Anothra P., Pradhan D., Naik P.K., Ghosh G., Rath G. Development and characterization of 5-�luorouracil</p><p>nano�ibrous �ilm for the treatment of stomach cancer. J.	Drug	Deliv.	Sci.	Technol.	2020;61:102219.</p><p>doi: 10.1016/j.jddst.2020.102219. [CrossRef] [Google Scholar]</p><p>143. Gao S., Liu Y., Jiang J., Li X., Ye F., Fu Y., Zhao L. Thiram/hydroxypropyl-β-cyclodextrin inclusion complex</p><p>electrospun nano�ibers for a fast dissolving water-based drug delivery system. Colloids	Surf.	B	Biointerfaces.</p><p>2021;201:111625. doi: 10.1016/j.colsur�b.2021.111625. [PubMed] [CrossRef] [Google Scholar]</p><p>144. Liu Q., Ouyang W.-C., Zhou X.-H., Jin T., Wu Z.-W. Antibacterial Activity and Drug Loading of Moxi�loxacin-Loaded</p><p>Poly(Vinyl Alcohol)/Chitosan Electrospun Nano�ibers. Front.	Mater.	2021;8:36. doi: 10.3389/fmats.2021.643428.</p><p>[CrossRef] [Google Scholar]</p><p>145. Sheng S., Yin X., Chen F., Lv Y., Zhang L., Cao M., Sun Y. Preparation and Characterization of PVA-Co-PE Drug-Loaded</p><p>Nano�iber Membrane by Electrospinning Technology. AAPS	PharmSciTech.	2020;21:199. doi: 10.1208/s12249-020-</p><p>01715-y. [PubMed] [CrossRef] [Google Scholar]</p><p>146. Martin P. Wound Healing—Aiming for Perfect Skin Regeneration. Science.	1997;276:75–81.</p><p>doi: 10.1126/science.276.5309.75. [PubMed] [CrossRef] [Google Scholar]</p><p>147. Advancements in Nano�ibers for Wound Dressing: A Review—ScienceDirect. [(accessed on 28 August 2021)].</p><p>Available online: https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0014305719304720</p><p>148. Sylvester M.A., Amini F., Tan C.K. Electrospun nano�ibers in wound healing. Mater.	Today	Proc.	2020;29:1–6.</p><p>doi: 10.1016/j.matpr.2020.05.686. [CrossRef] [Google Scholar]</p><p>149. Azimi B., Maleki H., Zavagna L., De La Ossa J.G., Linari S., Lazzeri A., Danti S. Bio-Based Electrospun Fibers for</p><p>Wound Healing. J.	Funct.	Biomater.	2020;11:67. doi: 10.3390/j�b11030067. [PMC free article] [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>150. Mirbehbahani F.S., Hejazi F., Najmoddin N., Asefnejad A. Artemisia annua L. as a promising medicinal plant for</p><p>powerful wound healing applications. Prog.	Biomater.	2020;9:139–151. doi: 10.1007/s40204-020-00138-z. [PMC free</p><p>article] [PubMed] [CrossRef] [Google Scholar]</p><p>151. Ullah A., Saito Y., Ullah S., Haider K., Nawaz H., Duy-Nam P., Kharaghani D., Kim I.S. Bioactive Sambong oil-loaded</p><p>electrospun cellulose acetate nano�ibers: Preparation, characterization, and in-vitro biocompatibility. Int.	J.	Biol.</p><p>Macromol.	2020;166:1009–1021. doi: 10.1016/j.ijbiomac.2020.10.257. [PubMed] [CrossRef] [Google Scholar]</p><p>152. Hashemikia S., Farhangpazhouh F., Parsa M., Hasan M., Hassanzadeh A., Hamidi M. Fabrication of cipro�loxacin-</p><p>loaded chitosan/polyethylene oxide/silica nano�ibers for wound dressing application: In vitro and in vivo evaluations.</p><p>Int.	J.	Pharm.	2021;597:120313. doi: 10.1016/j.ijpharm.2021.120313. [PubMed] [CrossRef] [Google Scholar]</p><p>153. Dos Santos A.E.A., dos Santos F.V., Freitas K.M., Pimenta L.P.S., Andrade L.D.O., Marinho T.A., de Avelar G.F., da</p><p>Silva A.B., Ferreira R.V. Cellulose acetate nano�ibers loaded with crude annatto extract: Preparation, characterization,</p><p>and in vivo evaluation for potential wound healing applications. Mater.	Sci.	Eng.	C.	2020;118:111322.</p><p>doi: 10.1016/j.msec.2020.111322. [PubMed] [CrossRef] [Google Scholar]</p><p>154. Okur N., Hökenek N., Okur M.E., Ayla S., Yoltaş A., Siafaka P.I., Cevher E. An alternative approach to wound healing</p><p>�ield; new composite �ilms from natural polymers for mupirocin dermal delivery. Saudi	Pharm.	J.	2019;27:738–752.</p><p>doi: 10.1016/j.jsps.2019.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5776980/</p><p>https://pubmed.ncbi.nlm.nih.gov/29295927</p><p>https://doi.org/10.1073%2Fpnas.1714421115</p><p>https://scholar.google.com/scholar_lookup?journal=Proc.+Natl.+Acad.+Sci.+USA&title=Novel+concept+of+the+smart+NIR-light%E2%80%93controlled+drug+release+of+black+phosphorus+nanostructure+for+cancer+therapy&author=M.+Qiu&author=D.+Wang&author=W.+Liang&author=L.+Liu&author=Y.+Zhang&volume=115&publication_year=2018&pages=501-506&pmid=29295927&doi=10.1073/pnas.1714421115&</p><p>https://doi.org/10.1016%2Fj.jddst.2020.102219</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Drug+Deliv.+Sci.+Technol.&title=Development+and+characterization+of+5-fluorouracil+nanofibrous+film+for+the+treatment+of+stomach+cancer&author=P.+Anothra&author=D.+Pradhan&author=P.K.+Naik&author=G.+Ghosh&author=G.+Rath&volume=61&publication_year=2020&pages=102219&doi=10.1016/j.jddst.2020.102219&</p><p>https://pubmed.ncbi.nlm.nih.gov/33621750</p><p>https://doi.org/10.1016%2Fj.colsurfb.2021.111625</p><p>https://scholar.google.com/scholar_lookup?journal=Colloids+Surf.+B+Biointerfaces&title=Thiram/hydroxypropyl-%CE%B2-cyclodextrin+inclusion+complex+electrospun+nanofibers+for+a+fast+dissolving+water-based+drug+delivery+system&author=S.+Gao&author=Y.+Liu&author=J.+Jiang&author=X.+Li&author=F.+Ye&volume=201&publication_year=2021&pages=111625&pmid=33621750&doi=10.1016/j.colsurfb.2021.111625&</p><p>https://doi.org/10.3389%2Ffmats.2021.643428</p><p>https://scholar.google.com/scholar_lookup?journal=Front.+Mater.&title=Antibacterial+Activity+and+Drug+Loading+of+Moxifloxacin-Loaded+Poly(Vinyl+Alcohol)/Chitosan+Electrospun+Nanofibers&author=Q.+Liu&author=W.-C.+Ouyang&author=X.-H.+Zhou&author=T.+Jin&author=Z.-W.+Wu&volume=8&publication_year=2021&pages=36&doi=10.3389/fmats.2021.643428&</p><p>https://pubmed.ncbi.nlm.nih.gov/32676796</p><p>https://doi.org/10.1208%2Fs12249-020-01715-y</p><p>https://scholar.google.com/scholar_lookup?journal=AAPS+PharmSciTech&title=Preparation+and+Characterization+of+PVA-Co-PE+Drug-Loaded+Nanofiber+Membrane+by+Electrospinning+Technology&author=S.+Sheng&author=X.+Yin&author=F.+Chen&author=Y.+Lv&author=L.+Zhang&volume=21&publication_year=2020&pages=199&pmid=32676796&doi=10.1208/s12249-020-01715-y&</p><p>https://pubmed.ncbi.nlm.nih.gov/9082989</p><p>https://doi.org/10.1126%2Fscience.276.5309.75</p><p>https://scholar.google.com/scholar_lookup?journal=Science&title=Wound+Healing%E2%80%94Aiming+for+Perfect+Skin+Regeneration&author=P.+Martin&volume=276&publication_year=1997&pages=75-81&pmid=9082989&doi=10.1126/science.276.5309.75&</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0014305719304720</p><p>https://doi.org/10.1016%2Fj.matpr.2020.05.686</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Today+Proc.&title=Electrospun+nanofibers+in+wound+healing&author=M.A.+Sylvester&author=F.+Amini&author=C.K.+Tan&volume=29&publication_year=2020&pages=1-6&doi=10.1016/j.matpr.2020.05.686&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563280/</p><p>https://pubmed.ncbi.nlm.nih.gov/32971968</p><p>https://doi.org/10.3390%2Fjfb11030067</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Funct.+Biomater.&title=Bio-Based+Electrospun+Fibers+for+Wound+Healing&author=B.+Azimi&author=H.+Maleki&author=L.+Zavagna&author=J.G.+De+La+Ossa&author=S.+Linari&volume=11&publication_year=2020&pages=67&doi=10.3390/jfb11030067&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544745/</p><p>https://pubmed.ncbi.nlm.nih.gov/32989678</p><p>https://doi.org/10.1007%2Fs40204-020-00138-z</p><p>https://scholar.google.com/scholar_lookup?journal=Prog.+Biomater.&title=Artemisia+annua+L.+as+a+promising+medicinal+plant+for+powerful+wound+healing+applications&author=F.S.+Mirbehbahani&author=F.+Hejazi&author=N.+Najmoddin&author=A.+Asefnejad&volume=9&publication_year=2020&pages=139-151&pmid=32989678&doi=10.1007/s40204-020-00138-z&</p><p>https://pubmed.ncbi.nlm.nih.gov/33152363</p><p>https://doi.org/10.1016%2Fj.ijbiomac.2020.10.257</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Biol.+Macromol.&title=Bioactive+Sambong+oil-loaded+electrospun+cellulose+acetate+nanofibers:+Preparation,+characterization,+and+in-vitro+biocompatibility&author=A.+Ullah&author=Y.+Saito&author=S.+Ullah&author=K.+Haider&author=H.+Nawaz&volume=166&publication_year=2020&pages=1009-1021&pmid=33152363&doi=10.1016/j.ijbiomac.2020.10.257&</p><p>https://pubmed.ncbi.nlm.nih.gov/33540002</p><p>https://doi.org/10.1016%2Fj.ijpharm.2021.120313</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Pharm.&title=Fabrication+of+ciprofloxacin-loaded+chitosan/polyethylene+oxide/silica+nanofibers+for+wound+dressing+application:+In+vitro+and+in+vivo+evaluations&author=S.+Hashemikia&author=F.+Farhangpazhouh&author=M.+Parsa&author=M.+Hasan&author=A.+Hassanzadeh&volume=597&publication_year=2021&pages=120313&pmid=33540002&doi=10.1016/j.ijpharm.2021.120313&</p><p>https://pubmed.ncbi.nlm.nih.gov/33254960</p><p>https://doi.org/10.1016%2Fj.msec.2020.111322</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=Cellulose+acetate+nanofibers+loaded+with+crude+annatto+extract:+Preparation,+characterization,+and+in+vivo+evaluation+for+potential+wound+healing+applications&author=A.E.A.+Dos+Santos&author=F.V.+dos+Santos&author=K.M.+Freitas&author=L.P.S.+Pimenta&author=L.D.O.+Andrade&volume=118&publication_year=2020&pages=111322&pmid=33254960&doi=10.1016/j.msec.2020.111322&</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598503/</p><p>https://pubmed.ncbi.nlm.nih.gov/31297030</p><p>https://doi.org/10.1016%2Fj.jsps.2019.04.010</p><p>https://scholar.google.com/scholar_lookup?journal=Saudi+Pharm.+J.&title=An+alternative+approach+to+wound+healing+field;+new+composite+films+from+natural+polymers+for+mupirocin+dermal+delivery&author=N.+Okur&author=N.+H%C3%B6kenek&author=M.E.+Okur&author=S.+Ayla&author=A.+Yolta%C5%9F&volume=27&publication_year=2019&pages=738-752&pmid=31297030&doi=10.1016/j.jsps.2019.04.010&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 47/50</p><p>155. Yang S., Li X., Liu P., Zhang M., Wang C., Zhang B. Multifunctional Chitosan/Polycaprolactone Nano�iber Scaffolds</p><p>with Varied Dual-Drug Release for Wound-Healing Applications. ACS	Biomater.	Sci.	Eng.	2020;6:4666–4676.</p><p>doi: 10.1021/acsbiomaterials.0c00674. [PubMed] [CrossRef] [Google Scholar]</p><p>156. The Effects of Melatonin on Open Wounds of Aged Mice Skin, HMP Global Learning Network. 2011. [(accessed on</p><p>3 September 2021)]. Available online: https://www.hmpgloballearningnetwork.com/site/wounds/article/effects-</p><p>melatonin-open-wounds-aged-mice-skin</p><p>157. Mirmajidi T., Chogan F., Rezayan A.H., Shari�i A.M. In vitro and in vivo evaluation of a nano�iber wound dressing</p><p>loaded with melatonin. Int.	J.	Pharm.	2021;596:120213. doi: 10.1016/j.ijpharm.2021.120213. [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>158. Cerium-Doped Bioactive Glass-Loaded Chitosan/Polyethylene Oxide Nano�iber with Elevated Antibacterial</p><p>Properties as a Potential Wound Dressing—ScienceDirect. [(accessed on 28 August 2021)]. Available online:</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0272884220336762</p><p>159. Agarwal Y., Rajinikanth P., Ranjan S., Tiwari U., Balasubramnaiam J., Pandey P., Arya D.K., Anand S., Deepak P.</p><p>Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk �ibroin based electrospun nano�ibrous mat for rapid</p><p>healing of diabetic wound: An in-vitro and in-vivo studies. Int.	J.	Biol.	Macromol.	2021;176:376–386.</p><p>doi: 10.1016/j.ijbiomac.2021.02.025. [PubMed] [CrossRef] [Google Scholar]</p><p>160. Lv H., Cui S., Yang Q., Song X., Wang D., Hu J., Zhou Y., Liu Y. AgNPs-incorporated nano�iber mats: Relationship</p><p>between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Mater.	Sci.	Eng.	C.	2020;118:111331.</p><p>doi: 10.1016/j.msec.2020.111331. [PubMed] [CrossRef] [Google Scholar]</p><p>161. Antibacterial Ef�icacy of Quaternized Chitosan/poly (Vinyl Alcohol) Nano�iber Membrane Crosslinked with</p><p>Blocked Diiso-cyanate—ScienceDirect. [(accessed on 28 August 2021)]. Available online: https://www-sciencedirect-</p><p>com.libproxy1.nus.edu.sg/science/article/pii/S0144861721002976?via%3Dihub</p><p>162. Zhou L., Cai L., Ruan H., Zhang L., Wang J., Jiang H., Wu Y., Feng S., Chen J. Electrospun chitosan</p><p>oligosaccharide/polycaprolactone nano�ibers loaded with wound-healing compounds of Rutin and Quercetin as</p><p>antibacterial dressings. Int.	J.	Biol.	Macromol.	2021;183:1145–1154. doi: 10.1016/j.ijbiomac.2021.05.031. [PubMed]</p><p>[CrossRef] [Google Scholar]</p><p>163. Jung J.-W., Lee C.-L., Yu S., Kim I.-D. Electrospun nano�ibers as a platform for advanced secondary batteries: A</p><p>comprehensive review. J.	Mater.	Chem.	A.	2015;4:703–750. doi: 10.1039/C5TA06844D. [CrossRef] [Google Scholar]</p><p>164. Nguyen T.H., Fraiwan A., Choi S. Paper-based batteries: A review. Biosens.	Bioelectron.	2014;54:640–649.</p><p>doi: 10.1016/j.bios.2013.11.007. [PubMed] [CrossRef] [Google Scholar]</p><p>165. Aravindan V., Sundaramurthy J., Kumar P.S., Lee Y.-S., Ramakrishna S., Madhavi S. Electrospun nano�ibers: A</p><p>prospective electro-active material for constructing high performance Li-ion batteries. Chem.	Commun.	2014;51:2225–</p><p>2234. doi: 10.1039/C4CC07824A. [PubMed] [CrossRef] [Google Scholar]</p><p>166. Liu L., Lyu J., Mo J., Yan H., Xu L., Peng P., Li J., Jiang B., Chu L., Li M. Comprehensively-upgraded polymer</p><p>electrolytes by multifunctional aramid nano�ibers for stable all-solid-state Li-ion batteries. Nano	Energy.</p><p>2019;69:104398. doi: 10.1016/j.nanoen.2019.104398. [CrossRef] [Google Scholar]</p><p>167. Zhang T., Zhang L., Zhao L., Huang X., Li W., Li T., Shen T., Sun S., Hou Y. Free-Standing, Foldable V O /Multichannel</p><p>Carbon Nano�ibers Electrode for Flexible Li-Ion Batteries with Ultralong Lifespan. Small.	2020;16:e2005302.</p><p>doi: 10.1002/smll.202005302. [PubMed] [CrossRef] [Google Scholar]</p><p>168. Diem A.M., Hildenbrand K., Raafat L., Bill J., Burghard Z. Self-supporting V2O5 nano�iber-based electrodes for</p><p>magnesium–lithium-ion hybrid batteries. RSC	Adv.	2021;11:1354–1359. doi: 10.1039/D0RA10384E. [CrossRef]</p><p>[Google Scholar]</p><p>2 3</p><p>https://pubmed.ncbi.nlm.nih.gov/33455179</p><p>https://doi.org/10.1021%2Facsbiomaterials.0c00674</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Biomater.+Sci.+Eng.&title=Multifunctional+Chitosan/Polycaprolactone+Nanofiber+Scaffolds+with+Varied+Dual-Drug+Release+for+Wound-Healing+Applications&author=S.+Yang&author=X.+Li&author=P.+Liu&author=M.+Zhang&author=C.+Wang&volume=6&publication_year=2020&pages=4666-4676&pmid=33455179&doi=10.1021/acsbiomaterials.0c00674&</p><p>https://www.hmpgloballearningnetwork.com/site/wounds/article/effects-melatonin-open-wounds-aged-mice-skin</p><p>https://pubmed.ncbi.nlm.nih.gov/33493599</p><p>https://doi.org/10.1016%2Fj.ijpharm.2021.120213</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Pharm.&title=In+vitro+and+in+vivo+evaluation+of+a+nanofiber+wound+dressing+loaded+with+melatonin&author=T.+Mirmajidi&author=F.+Chogan&author=A.H.+Rezayan&author=A.M.+Sharifi&volume=596&publication_year=2021&pages=120213&pmid=33493599&doi=10.1016/j.ijpharm.2021.120213&</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0272884220336762</p><p>https://pubmed.ncbi.nlm.nih.gov/33561460</p><p>https://doi.org/10.1016%2Fj.ijbiomac.2021.02.025</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Biol.+Macromol.&title=Curcumin+loaded+polycaprolactone-/polyvinyl+alcohol-silk+fibroin+based+electrospun+nanofibrous+mat+for+rapid+healing+of+diabetic+wound:+An+in-vitro+and+in-vivo+studies&author=Y.+Agarwal&author=P.+Rajinikanth&author=S.+Ranjan&author=U.+Tiwari&author=J.+Balasubramnaiam&volume=176&publication_year=2021&pages=376-386&pmid=33561460&doi=10.1016/j.ijbiomac.2021.02.025&</p><p>https://pubmed.ncbi.nlm.nih.gov/33254963</p><p>https://doi.org/10.1016%2Fj.msec.2020.111331</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Sci.+Eng.+C&title=AgNPs-incorporated+nanofiber+mats:+Relationship+between+AgNPs+size/content,+silver+release,+cytotoxicity,+and+antibacterial+activity&author=H.+Lv&author=S.+Cui&author=Q.+Yang&author=X.+Song&author=D.+Wang&volume=118&publication_year=2020&pages=111331&doi=10.1016/j.msec.2020.111331&</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S0144861721002976?via%3Dihub</p><p>https://pubmed.ncbi.nlm.nih.gov/33965491</p><p>https://doi.org/10.1016%2Fj.ijbiomac.2021.05.031</p><p>https://scholar.google.com/scholar_lookup?journal=Int.+J.+Biol.+Macromol.&title=Electrospun+chitosan+oligosaccharide/polycaprolactone+nanofibers+loaded+with+wound-healing+compounds+of+Rutin+and+Quercetin+as+antibacterial+dressings&author=L.+Zhou&author=L.+Cai&author=H.+Ruan&author=L.+Zhang&author=J.+Wang&volume=183&publication_year=2021&pages=1145-1154&pmid=33965491&doi=10.1016/j.ijbiomac.2021.05.031&</p><p>https://doi.org/10.1039%2FC5TA06844D</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Mater.+Chem.+A&title=Electrospun+nanofibers+as+a+platform+for+advanced+secondary+batteries:+A+comprehensive+review&author=J.-W.+Jung&author=C.-L.+Lee&author=S.+Yu&author=I.-D.+Kim&volume=4&publication_year=2015&pages=703-750&doi=10.1039/C5TA06844D&</p><p>https://pubmed.ncbi.nlm.nih.gov/24333937</p><p>https://doi.org/10.1016%2Fj.bios.2013.11.007</p><p>https://scholar.google.com/scholar_lookup?journal=Biosens.+Bioelectron.&title=Paper-based+batteries:+A+review&author=T.H.+Nguyen&author=A.+Fraiwan&author=S.+Choi&volume=54&publication_year=2014&pages=640-649&pmid=24333937&doi=10.1016/j.bios.2013.11.007&</p><p>https://pubmed.ncbi.nlm.nih.gov/25493289</p><p>https://doi.org/10.1039%2FC4CC07824A</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Commun.&title=Electrospun+nanofibers:+A+prospective+electro-active+material+for+constructing+high+performance+Li-ion+batteries&author=V.+Aravindan&author=J.+Sundaramurthy&author=P.S.+Kumar&author=Y.-S.+Lee&author=S.+Ramakrishna&volume=51&publication_year=2014&pages=2225-2234&pmid=25493289&doi=10.1039/C4CC07824A&</p><p>https://doi.org/10.1016%2Fj.nanoen.2019.104398</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Comprehensively-upgraded+polymer+electrolytes+by+multifunctional+aramid+nanofibers+for+stable+all-solid-state+Li-ion+batteries&author=L.+Liu&author=J.+Lyu&author=J.+Mo&author=H.+Yan&author=L.+Xu&volume=69&publication_year=2019&pages=104398&doi=10.1016/j.nanoen.2019.104398&</p><p>https://pubmed.ncbi.nlm.nih.gov/33136347</p><p>https://doi.org/10.1002%2Fsmll.202005302</p><p>https://scholar.google.com/scholar_lookup?journal=Small&title=Free-Standing,+Foldable+V2O3/Multichannel+Carbon+Nanofibers+Electrode+for+Flexible+Li-Ion+Batteries+with+Ultralong+Lifespan&author=T.+Zhang&author=L.+Zhang&author=L.+Zhao&author=X.+Huang&author=W.+Li&volume=16&publication_year=2020&pages=e2005302&pmid=33136347&doi=10.1002/smll.202005302&</p><p>https://doi.org/10.1039%2FD0RA10384E</p><p>https://scholar.google.com/scholar_lookup?journal=RSC+Adv.&title=Self-supporting+V2O5+nanofiber-based+electrodes+for+magnesium%E2%80%93lithium-ion+hybrid+batteries&author=A.M.+Diem&author=K.+Hildenbrand&author=L.+Raafat&author=J.+Bill&author=Z.+Burghard&volume=11&publication_year=2021&pages=1354-1359&doi=10.1039/D0RA10384E&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 48/50</p><p>169. Feng J., Xiao M., Hui Z., Shen D., Tian Y., Hang C., Duley W.W., Zhou N.Y. High-Performance Magnesium–Carbon</p><p>Nano�iber Hygroelectric Generator Based on Interface-Mediation-Enhanced Capacitive Discharging Effect. ACS	Appl.</p><p>Mater.	Interfaces.	2020;12:24289–24297. doi: 10.1021/acsami.0c04895. [PubMed] [CrossRef] [Google Scholar]</p><p>170. Zhang Z., Liang X., Li J., Qian J., Liu Y., Yang S., Wang Y., Gao D., Xue D. Interfacial Engineering of NiO/NiCo2O4</p><p>Porous Nano�ibers as Ef�icient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. ACS	Appl.	Mater.	Interfaces.</p><p>2020;12:21661–21669. doi: 10.1021/acsami.0c03672. [PubMed] [CrossRef] [Google Scholar]</p><p>171. Production, Structural Design, Functional Control, and Broad Applications of Carbon Nano�iber-Based</p><p>Nanomaterials: A Comprehensive Review—ScienceDirect. [(accessed on 3 September 2021)]. Available online:</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S1385894720323172</p><p>172. Dennis J.O., Al-Hadeethi Y., Mkawi E.M., Adam A., Abdulkadir B.A., Usman F., Hassan Y.M., Wadi I., Sani M. State of</p><p>the Art and New Directions on Electrospun Lignin/Cellulose Nano�ibers for Supercapacitor Application: A Systematic</p><p>Literature Review. Polymers.	2020;12:2884. doi: 10.3390/polym12122884. [PMC free article] [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>173. Kim Y., Samuel E., Joshi B., Park C., Lee H.-S., Yoon S.S. Flexible metallized carbon nano�ibers decorated with two-</p><p>dimensional NiGa2S4 nanosheets as supercapacitor electrodes. Chem.	Eng.	J.	2021;420:130497.</p><p>doi: 10.1016/j.cej.2021.130497. [CrossRef] [Google Scholar]</p><p>174. Jeong J.H., Kim Y.A., Kim B.-H. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon</p><p>nano�iber/MnO2 composites for supercapacitor applications. Carbon.	2020;164:296–304.</p><p>doi: 10.1016/j.carbon.2020.03.052. [CrossRef] [Google Scholar]</p><p>175. Mukhiya T., Tiwari A.P., Chhetri K., Kim T., Dahal B., Muthurasu A., Kim H.Y. A metal–organic framework derived</p><p>cobalt oxide/nitrogen-doped carbon nanotube nanotentacles on electrospun carbon nano�iber for electrochemical</p><p>energy storage. Chem.	Eng.	J.	2021;420:129679. doi: 10.1016/j.cej.2021.129679. [CrossRef] [Google Scholar]</p><p>176. Wang H., Wang H., Ruan F., Wei A., Feng Q. High-Performance All-Solid-State Supercapacitor Electrode Materials</p><p>Using Freestanding Electrospun Carbon Nano�iber Mats of Polyacrylonitrile and Novolac Blends. Macromol.	Mater.	Eng.</p><p>2021;306:2100040. doi: 10.1002/mame.202100040. [CrossRef] [Google Scholar]</p><p>177. Singh M., Gupta A., Sundriyal S., Jain K., Dhakate S. Kraft lignin-derived free-standing carbon nano�ibers mat for</p><p>high-performance all-solid-state supercapacitor. Mater.	Chem.	Phys.	2021;264:124454.</p><p>doi: 10.1016/j.matchemphys.2021.124454. [CrossRef] [Google Scholar]</p><p>178. Suna X., Xua W., Zhangb X., Leib T., Leec S.Y., Wua Q. ZIF-67@Cellulose nano�iber hybrid membrane with controlled</p><p>porosity for use as Li-ion battery separator. J.	Energy	Chem.	2020;52:170–180. doi: 10.1016/j.jechem.2020.04.057.</p><p>[CrossRef] [Google Scholar]</p><p>179. Li Y., Chen M., Chu M., Wang X., Wang Y., Lin X., Cao X. Mono-Doped Carbon Nano�iber Aerogel as a High-</p><p>Performance Electrode Material for Rechargeable Zinc-Air Batteries. ChemElectroChem.	2020;8:829–838.</p><p>doi: 10.1002/celc.202001593. [CrossRef] [Google Scholar]</p><p>180. Kim J., Lee S.H., Park C., Kim H., Park J., Chung K.Y., Ahn H. Controlling Vanadate Nano�iber Interlayer via</p><p>Intercalation with Conducting Polymers: Cathode Material Design for Rechargeable Aqueous Zinc Ion Batteries. Adv.</p><p>Funct.	Mater.	2021;31:2100005. doi: 10.1002/adfm.202100005. [CrossRef] [Google Scholar]</p><p>181. Adepoju A.A., Williams Q.L. High C-rate performance of LiFePO4/carbon nano�ibers composite cathode for Li-ion</p><p>batteries. Curr.	Appl.	Phys.	2019;20:1–4. doi: 10.1016/j.cap.2019.09.014. [CrossRef] [Google Scholar]</p><p>182. Ni X., Chen H., Liu C., Zeng F., Yu H., Ju A. A freestanding nitrogen-doped carbon nano�iber/MoS2 nano�lowers with</p><p>expanded interlayer for long cycle-life lithium-ion batteries. J.	Alloy.	Compd.	2019;818:152835.</p><p>doi: 10.1016/j.jallcom.2019.152835. [CrossRef] [Google Scholar]</p><p>https://pubmed.ncbi.nlm.nih.gov/32364363</p><p>https://doi.org/10.1021%2Facsami.0c04895</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=High-Performance+Magnesium%E2%80%93Carbon+Nanofiber+Hygroelectric+Generator+Based+on+Interface-Mediation-Enhanced+Capacitive+Discharging+Effect&author=J.+Feng&author=M.+Xiao&author=Z.+Hui&author=D.+Shen&author=Y.+Tian&volume=12&publication_year=2020&pages=24289-24297&pmid=32364363&doi=10.1021/acsami.0c04895&</p><p>https://pubmed.ncbi.nlm.nih.gov/32354219</p><p>https://doi.org/10.1021%2Facsami.0c03672</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=Interfacial+Engineering+of+NiO/NiCo2O4+Porous+Nanofibers+as+Efficient+Bifunctional+Catalysts+for+Rechargeable+Zinc%E2%80%93Air+Batteries&author=Z.+Zhang&author=X.+Liang&author=J.+Li&author=J.+Qian&author=Y.+Liu&volume=12&publication_year=2020&pages=21661-21669&pmid=32354219&doi=10.1021/acsami.0c03672&</p><p>https://www-sciencedirect-com.libproxy1.nus.edu.sg/science/article/pii/S1385894720323172</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761209/</p><p>https://pubmed.ncbi.nlm.nih.gov/33271876</p><p>https://doi.org/10.3390%2Fpolym12122884</p><p>https://scholar.google.com/scholar_lookup?journal=Polymers&title=State+of+the+Art+and+New+Directions+on+Electrospun+Lignin/Cellulose+Nanofibers+for+Supercapacitor+Application:+A+Systematic+Literature+Review&author=J.O.+Dennis&author=Y.+Al-Hadeethi&author=E.M.+Mkawi&author=A.+Adam&author=B.A.+Abdulkadir&volume=12&publication_year=2020&pages=2884&doi=10.3390/polym12122884&</p><p>https://doi.org/10.1016%2Fj.cej.2021.130497</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Eng.+J.&title=Flexible+metallized+carbon+nanofibers+decorated+with+two-dimensional+NiGa2S4+nanosheets+as+supercapacitor+electrodes&author=Y.+Kim&author=E.+Samuel&author=B.+Joshi&author=C.+Park&author=H.-S.+Lee&volume=420&publication_year=2021&pages=130497&doi=10.1016/j.cej.2021.130497&</p><p>https://doi.org/10.1016%2Fj.carbon.2020.03.052</p><p>https://scholar.google.com/scholar_lookup?journal=Carbon&title=Electrospun+polyacrylonitrile/cyclodextrin-derived+hierarchical+porous+carbon+nanofiber/MnO2+composites+for+supercapacitor+applications&author=J.H.+Jeong&author=Y.A.+Kim&author=B.-H.+Kim&volume=164&publication_year=2020&pages=296-304&doi=10.1016/j.carbon.2020.03.052&</p><p>https://doi.org/10.1016%2Fj.cej.2021.129679</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Eng.+J.&title=A+metal%E2%80%93organic+framework+derived+cobalt+oxide/nitrogen-doped+carbon+nanotube+nanotentacles+on+electrospun+carbon+nanofiber+for+electrochemical+energy+storage&author=T.+Mukhiya&author=A.P.+Tiwari&author=K.+Chhetri&author=T.+Kim&author=B.+Dahal&volume=420&publication_year=2021&pages=129679&doi=10.1016/j.cej.2021.129679&</p><p>https://doi.org/10.1002%2Fmame.202100040</p><p>https://scholar.google.com/scholar_lookup?journal=Macromol.+Mater.+Eng.&title=High-Performance+All-Solid-State+Supercapacitor+Electrode+Materials+Using+Freestanding+Electrospun+Carbon+Nanofiber+Mats+of+Polyacrylonitrile+and+Novolac+Blends&author=H.+Wang&author=H.+Wang&author=F.+Ruan&author=A.+Wei&author=Q.+Feng&volume=306&publication_year=2021&pages=2100040&doi=10.1002/mame.202100040&</p><p>https://doi.org/10.1016%2Fj.matchemphys.2021.124454</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Chem.+Phys.&title=Kraft+lignin-derived+free-standing+carbon+nanofibers+mat+for+high-performance+all-solid-state+supercapacitor&author=M.+Singh&author=A.+Gupta&author=S.+Sundriyal&author=K.+Jain&author=S.+Dhakate&volume=264&publication_year=2021&pages=124454&doi=10.1016/j.matchemphys.2021.124454&</p><p>https://doi.org/10.1016%2Fj.jechem.2020.04.057</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Energy+Chem.&title=ZIF-67@Cellulose+nanofiber+hybrid+membrane+with+controlled+porosity+for+use+as+Li-ion+battery+separator&author=X.+Suna&author=W.+Xua&author=X.+Zhangb&author=T.+Leib&author=S.Y.+Leec&volume=52&publication_year=2020&pages=170-180&doi=10.1016/j.jechem.2020.04.057&</p><p>https://doi.org/10.1002%2Fcelc.202001593</p><p>https://scholar.google.com/scholar_lookup?journal=ChemElectroChem&title=Mono-Doped+Carbon+Nanofiber+Aerogel+as+a+High-Performance+Electrode+Material+for+Rechargeable+Zinc-Air+Batteries&author=Y.+Li&author=M.+Chen&author=M.+Chu&author=X.+Wang&author=Y.+Wang&volume=8&publication_year=2020&pages=829-838&doi=10.1002/celc.202001593&</p><p>https://doi.org/10.1002%2Fadfm.202100005</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Funct.+Mater.&title=Controlling+Vanadate+Nanofiber+Interlayer+via+Intercalation+with+Conducting+Polymers:+Cathode+Material+Design+for+Rechargeable+Aqueous+Zinc+Ion+Batteries&author=J.+Kim&author=S.H.+Lee&author=C.+Park&author=H.+Kim&author=J.+Park&volume=31&publication_year=2021&pages=2100005&doi=10.1002/adfm.202100005&</p><p>https://doi.org/10.1016%2Fj.cap.2019.09.014</p><p>https://scholar.google.com/scholar_lookup?journal=Curr.+Appl.+Phys.&title=High+C-rate+performance+of+LiFePO4/carbon+nanofibers+composite+cathode+for+Li-ion+batteries&author=A.A.+Adepoju&author=Q.L.+Williams&volume=20&publication_year=2019&pages=1-4&doi=10.1016/j.cap.2019.09.014&</p><p>https://doi.org/10.1016%2Fj.jallcom.2019.152835</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Alloy.+Compd.&title=A+freestanding+nitrogen-doped+carbon+nanofiber/MoS2+nanoflowers+with+expanded+interlayer+for+long+cycle-life+lithium-ion+batteries&author=X.+Ni&author=H.+Chen&author=C.+Liu&author=F.+Zeng&author=H.+Yu&volume=818&publication_year=2019&pages=152835&doi=10.1016/j.jallcom.2019.152835&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 49/50</p><p>183. Briscoe J., Dunn S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters.</p><p>Nano	Energy.	2015;14:15–29. doi: 10.1016/j.nanoen.2014.11.059. [CrossRef] [Google Scholar]</p><p>184. Kim W.-G., Kim D.-W., Tcho I.-W., Kim J.-K., Kim M.-S., Choi Y.-K. Triboelectric Nanogenerator: Structure,</p><p>Mechanism, and Applications. ACS	Nano.	2021;15:258–287. doi: 10.1021/acsnano.0c09803. [PubMed] [CrossRef]</p><p>[Google Scholar]</p><p>185. Korkmaz S., Kariper A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy:</p><p>Fundamentals and current status. Nano	Energy.	2021;84:105888. doi: 10.1016/j.nanoen.2021.105888. [CrossRef]</p><p>[Google Scholar]</p><p>186. Huang J., Hao Y., Zhao M., Li W., Huang F., Wei Q. All-Fiber-Structured Triboelectric Nanogenerator via One-Pot</p><p>Electrospinning for Self-Powered Wearable Sensors. ACS	Appl.	Mater.	Interfaces.	2021;13:24774–24784.</p><p>doi: 10.1021/acsami.1c03894. [PubMed] [CrossRef] [Google Scholar]</p><p>187. Kim Y., Wu X., Lee C., Oh J.H. Characterization of PI/PVDF-TrFE Composite Nano�iber-Based Triboelectric</p><p>Nanogenerators Depending on the Type of the Electrospinning System. ACS	Appl.	Mater.	Interfaces.	2021;13:36967–</p><p>36975. doi: 10.1021/acsami.1c04450. [PubMed] [CrossRef] [Google Scholar]</p><p>188. Zhang X., Lv S., Lu X., Yu H., Huang T., Zhang Q., Zhu M. Synergistic enhancement of coaxial nano�iber-based</p><p>triboelectric nanogenerator through dielectric and dispersity modulation. Nano	Energy.	2020;75:104894.</p><p>doi: 10.1016/j.nanoen.2020.104894. [CrossRef] [Google Scholar]</p><p>189. Yang Z., Zhou S., Zu J., Inman D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule.</p><p>2018;2:642–697. doi: 10.1016/j.joule.2018.03.011. [CrossRef] [Google Scholar]</p><p>190. Yang J., Zhang Y., Li Y., Wang Z., Wang W., An Q., Tong W. Piezoelectric Nanogenerators based on Graphene</p><p>Oxide/PVDF Electrospun Nano�iber with Enhanced Performances by In-Situ Reduction. Mater.	Today	Commun.</p><p>2020;26:101629. doi: 10.1016/j.mtcomm.2020.101629. [CrossRef] [Google Scholar]</p><p>191. Prasad P.D., Hemalatha J. Energy harvesting performance of magnetoelectric poly(vinylidene �luoride)/NiFe O</p><p>nano�iber �ilms. J.	Magn.	Magn.	Mater.	2021;532:167986. doi: 10.1016/j.jmmm.2021.167986. [CrossRef] [Google</p><p>Scholar]</p><p>192. Shalan A.E., Barhoum A., Elseman A.M., Rashad M.M., Lira-Cantú M. Nano�ibers as Promising Materials for New</p><p>Generations of Solar Cells. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook	of	Nano�ibers. Springer</p><p>International Publishing; Cham, Switzerland: 2018. pp. 1–33. [CrossRef] [Google Scholar]</p><p>193. Lin P.-C., Hsieh C.-T., Liu X., Chang F.-C., Chen W.-C., Yu J., Chueh C.-C. Fabricating ef�icient �lexible organic</p><p>photovoltaics using an eco-friendly cellulose nano�ibers/silver nanowires conductive substrate. Chem.	Eng.	J.</p><p>2020;405:126996. doi: 10.1016/j.cej.2020.126996. [CrossRef] [Google Scholar]</p><p>194. Nien Y.-H., Yong Z., Ho C.-S., Chou J.-C., Lai C.-H., Kuo P.-Y., Hu G.-M., Chang J.-X., Lin Y.-C. Preparization and</p><p>Characeterization of the Dye-sensitized Solar Cell with Modi�ied Photoanode by FePt/TiO2 Nano�ibers. IEEE	Trans.</p><p>Nanotechnol.	2021;20:507–511. doi: 10.1109/TNANO.2021.3088954. [CrossRef] [Google Scholar]</p><p>195. Zhai J., Yin X., Song L., Chen W.-H., Du P., Xiong J. Preparationof fabric-like</p><p>solution properties, the critical value of the voltage varies. As the applied</p><p>voltage increases over the critical limit, there is a possibility of bead formation. Flow rate con-</p><p>trols the amount of polymer being released for �iber formation, which requires adjusting and</p><p>deciding based on the solution viscosity. Generally, lower �low rate is advised as it provides a</p><p>longer time for solvent evaporation [72]. Nozzle-to-collector distance provides time for the</p><p>polymer solution to convert into a �iber while facilitating solvent evaporation [69].</p><p>Apart from solution and process conditions, environmental parameters such as humidity and</p><p>temperature also in�luence the nano�iber morphology. Temperature changes the solution</p><p>viscosity, which in turn affects the spinning process [63]. Whereas, humidity effects the rate at</p><p>which solution evaporation occurs [73]. For obtaining nano�ibers with different morphologies,</p><p>optimized parameters along with modi�ied electrospinning setup are utilized.</p><p>2.3. Electrospinning Setup Modifications</p><p>A conventional electrospinning setup consists of a spinning electrode, solution holder, pushing</p><p>pump, spinneret, high-voltage power supply, and a grounded collector. Since the development</p><p>of the electrospinning process, several modi�ication techniques have emerged in order to pro-</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 6/50</p><p>vide tailored morphology to the nano�ibers. Some of these techniques involve coaxial, gas-as-</p><p>sisted, porous hollow tube, multi-jet, self-bundling, and roller electrospinning [58,74].</p><p>Coaxial electrospinning is generally employed to fabricate core-shelled structured nano�ibers.</p><p>Here, two solutions are used, in which one acts as a sheath (shell) and the other acts as a core.</p><p>Two syringes are used in the working with different solutions which are pushed</p><p>simultaneously to release the material through their respective capillaries and facilitate forma-</p><p>tion of composite nano�ibers, illustrated in Figure 3a [75]. Solution compatibility (either immis-</p><p>cible or semi-miscible), viscosity ratio of core-to-shell solution, and concentration are the key</p><p>controlling factors for coaxial electrospinning [7]. Gas-assisted spinning is another technique</p><p>that especially aids in the spinning of polymer solution with lower conductivity, which is dif�i-</p><p>cult to spin in the normal setup. Figure 3b exhibits the electrospinning setup. In this technique,</p><p>either high-velocity hot air or compressed air is used to make the �ibers �iner [76], with high</p><p>surface area, barrier properties, and insulation value [77]. In multi-jet electrospinning shown</p><p>in Figure 3c, the basic notion involves obtaining higher productivity by increasing the number</p><p>of solution jets by implementing different methods [78]. Some of these methods involve the</p><p>application of an external electric �ield [79], using a curved collector [80], splitting the jets to</p><p>form separate sub-jets [81], and using multiple needles and needleless systems [82]. This tech-</p><p>nique enables improved production ef�iciency along with cost-effectiveness as a result of elec-</p><p>trospinning through multiple nozzles [69]. Bubble electrospinning is performed by a porous</p><p>hollow tube, which is a needleless process, and the polymer solution is pushed through the po-</p><p>res of a walled cylindrical tube that facilitates the formation of hollow nano�ibers [83]. There</p><p>are various ways of forming hollow nano�ibers by bubble electrospinning or blown bubble</p><p>spinning, in which several bubbles are generated on the solution surface using a gas pump</p><p>Figure 3d [84,85]. This is one of the most promising needleless electrospinning with advanta-</p><p>ges like high productivity and lower energy consumption due to the utilization of a third force</p><p>that helps in overcoming the surface tension [86].</p><p>Figure 3</p><p>(a) Schematic of the coaxial electrospinning system [87]. (b) Illustrative set-up used in the gas-assisted elec-</p><p>trospinning process [88]. (c) Experimental setup of the multi-jet electrospinning [89]. (d) Graphic represen-</p><p>tation of the bubble electrospinning technique [90].</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f003/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f003/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f003/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f003/</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g003.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f003/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 7/50</p><p>Besides these, a few other application-speci�ic electrospinning setups include the charge-injec-</p><p>tion method [91], near-�ield electrospinning [92], solvent-free electrospinning including super-</p><p>critical CO2-assisted electrospinning [93], magnetic �ield-assisted [94], anion-curing electros-</p><p>pinning, and UV-curing electrospinning [95], etc.</p><p>3. Applications of Nanofibers</p><p>The evolution of electrospinning technology and the ability to fabricate tunable nano�ibers</p><p>have facilitated the development of advanced applications in the �ields of health care, energy</p><p>devices, the textile industry, environmental appliances, etc.</p><p>3.1. Health Care</p><p>Being a dominant and necessary sector, health care, or biomedical applications, is of the ut-</p><p>most importance and has become a highly explored area by researchers. As a potential solu-</p><p>tion to various challenges faced in the �ield of biomedicine, nano�iber technology is bene�icial</p><p>and has attractive properties. Resolutions such as organ repair, crucial vital monitoring, burns</p><p>and wound dressing, blood puri�ication, treatment for various diseases, and etc. have been of-</p><p>fered by nano�iber technology [96].</p><p>3.1.1. Biosensors Biosensors are analytical tools that assist in the detection, quanti�ication, and</p><p>monitoring of various analytes such as enzymes, bacteria, cells, nucleic acids, antibodies, etc.</p><p>present in human body [97]. Such devices require high selectivity along with sensitivity</p><p>towards analytes where incorporation of nano�iber technology has demonstrated tremendous</p><p>potential [98]. Using nano�ibers, miniaturization of the sensing platform was made possible,</p><p>which can act in both micro/nano as well as the macro-scale while providing accurate results</p><p>[99]. Sensing platforms are classi�ied based on different types of transducers such as electro-</p><p>chemical, magnetic, thermometric, those involving optical �luorescence, luminescence, and ab-</p><p>sorbance, electromechanical, amperometric, potentiometric, etc. [96]. In general, these devices’</p><p>performances are quanti�ied in terms of selectivity, linearity, sensitivity, response time,</p><p>reproducibility, linear range, and limit of detection [100].</p><p>In this �ield, researchers have utilized dimension, porosity, and the surface-to-volume ratio of</p><p>nano�ibers to develop highly ef�icient antibody detectors [101].</p><p>Nefastin	Antibody	Detection	 For example, in their recent work, Kim et al. [102] developed FET</p><p>(�ield-effect transistor) biosensors for nesfatin-1 antibody detection using multiscale pore-con-</p><p>tained carbon nano�ibers. 1D carbon nanomaterials are preferred as channel materials in FET</p><p>biosensors as they can be easily tuned to immobilize the bioreceptors through π-stacking or</p><p>covalent bonds. In this work, carbon nano�ibers acted as signal transducers and templates for</p><p>the immobilization of the nesfatin-1 antibody, achieving a low limit of detection (LOD) of 0.1 fM</p><p>and a fast detection time of less than a second due to their multiscale porous structure. Elec-</p><p>trospun �ibers have also been explored for DNA detection.</p><p>transparent electrodefor �lexible</p><p>perovskite solar cell. Thin	Solid	Film.	2021;729:138698. doi: 10.1016/j.tsf.2021.138698. [CrossRef] [Google Scholar]</p><p>196. Bhatta T., Maharjan P., Cho H.O., Park C., Yoon S.H., Sharma S., Salauddin M., Rahman M.T., Rana S.M.S., Park J.Y.</p><p>High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene �luoride composite</p><p>nano�ibers. Nano	Energy.	2020;81:105670. doi: 10.1016/j.nanoen.2020.105670. [CrossRef] [Google Scholar]</p><p>197. Guan X., Xu B., Wu M., Jing T., Yang Y., Gao Y. Breathable, washable and wearable woven-structured triboelectric</p><p>nanogenerators utilizing electrospun nano�ibers for biomechanical energy harvesting and self-powered sensing. Nano</p><p>Energy.	2020;80:105549. doi: 10.1016/j.nanoen.2020.105549. [CrossRef] [Google Scholar]</p><p>2 4</p><p>https://doi.org/10.1016%2Fj.nanoen.2014.11.059</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Piezoelectric+nanogenerators%E2%80%94A+review+of+nanostructured+piezoelectric+energy+harvesters&author=J.+Briscoe&author=S.+Dunn&volume=14&publication_year=2015&pages=15-29&doi=10.1016/j.nanoen.2014.11.059&</p><p>https://pubmed.ncbi.nlm.nih.gov/33427457</p><p>https://doi.org/10.1021%2Facsnano.0c09803</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Nano&title=Triboelectric+Nanogenerator:+Structure,+Mechanism,+and+Applications&author=W.-G.+Kim&author=D.-W.+Kim&author=I.-W.+Tcho&author=J.-K.+Kim&author=M.-S.+Kim&volume=15&publication_year=2021&pages=258-287&pmid=33427457&doi=10.1021/acsnano.0c09803&</p><p>https://doi.org/10.1016%2Fj.nanoen.2021.105888</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Pyroelectric+nanogenerators+(PyNGs)+in+converting+thermal+energy+into+electrical+energy:+Fundamentals+and+current+status&author=S.+Korkmaz&author=A.+Kariper&volume=84&publication_year=2021&pages=105888&doi=10.1016/j.nanoen.2021.105888&</p><p>https://pubmed.ncbi.nlm.nih.gov/34015919</p><p>https://doi.org/10.1021%2Facsami.1c03894</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=All-Fiber-Structured+Triboelectric+Nanogenerator+via+One-Pot+Electrospinning+for+Self-Powered+Wearable+Sensors&author=J.+Huang&author=Y.+Hao&author=M.+Zhao&author=W.+Li&author=F.+Huang&volume=13&publication_year=2021&pages=24774-24784&pmid=34015919&doi=10.1021/acsami.1c03894&</p><p>https://pubmed.ncbi.nlm.nih.gov/34339166</p><p>https://doi.org/10.1021%2Facsami.1c04450</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=Characterization+of+PI/PVDF-TrFE+Composite+Nanofiber-Based+Triboelectric+Nanogenerators+Depending+on+the+Type+of+the+Electrospinning+System&author=Y.+Kim&author=X.+Wu&author=C.+Lee&author=J.H.+Oh&volume=13&publication_year=2021&pages=36967-36975&pmid=34339166&doi=10.1021/acsami.1c04450&</p><p>https://doi.org/10.1016%2Fj.nanoen.2020.104894</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Synergistic+enhancement+of+coaxial+nanofiber-based+triboelectric+nanogenerator+through+dielectric+and+dispersity+modulation&author=X.+Zhang&author=S.+Lv&author=X.+Lu&author=H.+Yu&author=T.+Huang&volume=75&publication_year=2020&pages=104894&doi=10.1016/j.nanoen.2020.104894&</p><p>https://doi.org/10.1016%2Fj.joule.2018.03.011</p><p>https://scholar.google.com/scholar_lookup?journal=Joule&title=High-Performance+Piezoelectric+Energy+Harvesters+and+Their+Applications&author=Z.+Yang&author=S.+Zhou&author=J.+Zu&author=D.+Inman&volume=2&publication_year=2018&pages=642-697&doi=10.1016/j.joule.2018.03.011&</p><p>https://doi.org/10.1016%2Fj.mtcomm.2020.101629</p><p>https://scholar.google.com/scholar_lookup?journal=Mater.+Today+Commun.&title=Piezoelectric+Nanogenerators+based+on+Graphene+Oxide/PVDF+Electrospun+Nanofiber+with+Enhanced+Performances+by+In-Situ+Reduction&author=J.+Yang&author=Y.+Zhang&author=Y.+Li&author=Z.+Wang&author=W.+Wang&volume=26&publication_year=2020&pages=101629&doi=10.1016/j.mtcomm.2020.101629&</p><p>https://doi.org/10.1016%2Fj.jmmm.2021.167986</p><p>https://scholar.google.com/scholar_lookup?journal=J.+Magn.+Magn.+Mater.&title=Energy+harvesting+performance+of+magnetoelectric+poly(vinylidene+fluoride)/NiFe2O4+nanofiber+films&author=P.D.+Prasad&author=J.+Hemalatha&volume=532&publication_year=2021&pages=167986&doi=10.1016/j.jmmm.2021.167986&</p><p>https://doi.org/10.1007%2F978-3-319-42789-8_51-1</p><p>https://scholar.google.com/scholar_lookup?title=Handbook+of+Nanofibers&author=A.E.+Shalan&author=A.+Barhoum&author=A.M.+Elseman&author=M.M.+Rashad&author=M.+Lira-Cant%C3%BA&publication_year=2018&</p><p>https://doi.org/10.1016%2Fj.cej.2020.126996</p><p>https://scholar.google.com/scholar_lookup?journal=Chem.+Eng.+J.&title=Fabricating+efficient+flexible+organic+photovoltaics+using+an+eco-friendly+cellulose+nanofibers/silver+nanowires+conductive+substrate&author=P.-C.+Lin&author=C.-T.+Hsieh&author=X.+Liu&author=F.-C.+Chang&author=W.-C.+Chen&volume=405&publication_year=2020&pages=126996&doi=10.1016/j.cej.2020.126996&</p><p>https://doi.org/10.1109%2FTNANO.2021.3088954</p><p>https://scholar.google.com/scholar_lookup?journal=IEEE+Trans.+Nanotechnol.&title=Preparization+and+Characeterization+of+the+Dye-sensitized+Solar+Cell+with+Modified+Photoanode+by+FePt/TiO2+Nanofibers&author=Y.-H.+Nien&author=Z.+Yong&author=C.-S.+Ho&author=J.-C.+Chou&author=C.-H.+Lai&volume=20&publication_year=2021&pages=507-511&doi=10.1109/TNANO.2021.3088954&</p><p>https://doi.org/10.1016%2Fj.tsf.2021.138698</p><p>https://scholar.google.com/scholar_lookup?journal=Thin+Solid+Film.&title=Preparationof+fabric-like+transparent+electrodefor+flexible+perovskite+solar+cell&author=J.+Zhai&author=X.+Yin&author=L.+Song&author=W.-H.+Chen&author=P.+Du&volume=729&publication_year=2021&pages=138698&doi=10.1016/j.tsf.2021.138698&</p><p>https://doi.org/10.1016%2Fj.nanoen.2020.105670</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=High-performance+triboelectric+nanogenerator+based+on+MXene+functionalized+polyvinylidene+fluoride+composite+nanofibers&author=T.+Bhatta&author=P.+Maharjan&author=H.O.+Cho&author=C.+Park&author=S.H.+Yoon&volume=81&publication_year=2020&pages=105670&doi=10.1016/j.nanoen.2020.105670&</p><p>https://doi.org/10.1016%2Fj.nanoen.2020.105549</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=Breathable,+washable+and+wearable+woven-structured+triboelectric+nanogenerators+utilizing+electrospun+nanofibers+for+biomechanical+energy+harvesting+and+self-powered+sensing&author=X.+Guan&author=B.+Xu&author=M.+Wu&author=T.+Jing&author=Y.+Yang&volume=80&publication_year=2020&pages=105549&doi=10.1016/j.nanoen.2020.105549&</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 50/50</p><p>198. Shi L., Jin H., Dong S., Huang S., Kuang H., Xu H., Chen J., Xuan W., Zhang S., Li S., et al. High-performance</p><p>triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nano�ibers for energy</p><p>harvesting. Nano	Energy.	2020;80:105599. doi: 10.1016/j.nanoen.2020.105599. [CrossRef] [Google Scholar]</p><p>199. Kim M., Fan J. Piezoelectric Properties of Three Types of PVDF and ZnO Nano�ibrous Composites. Adv.	Fiber	Mater.</p><p>2021;3:160–171. doi: 10.1007/s42765-021-00068-w. [CrossRef] [Google Scholar]</p><p>200. Rana S.M.S., Rahman M.T., Salauddin M., Sharma S., Maharjan P., Bhatta T., Cho H., Park C., Park J.Y. Electrospun</p><p>PVDF-TrFE/MXene Nano�iber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS	Appl.	Mater.</p><p>Interfaces.	2021;13:4955–4967. doi: 10.1021/acsami.0c17512. [PubMed] [CrossRef] [Google Scholar]</p><p>https://doi.org/10.1016%2Fj.nanoen.2020.105599</p><p>https://scholar.google.com/scholar_lookup?journal=Nano+Energy&title=High-performance+triboelectric+nanogenerator+based+on+electrospun+PVDF-graphene+nanosheet+composite+nanofibers+for+energy+harvesting&author=L.+Shi&author=H.+Jin&author=S.+Dong&author=S.+Huang&author=H.+Kuang&volume=80&publication_year=2020&pages=105599&doi=10.1016/j.nanoen.2020.105599&</p><p>https://doi.org/10.1007%2Fs42765-021-00068-w</p><p>https://scholar.google.com/scholar_lookup?journal=Adv.+Fiber+Mater.&title=Piezoelectric+Properties+of+Three+Types+of+PVDF+and+ZnO+Nanofibrous+Composites&author=M.+Kim&author=J.+Fan&volume=3&publication_year=2021&pages=160-171&doi=10.1007/s42765-021-00068-w&</p><p>https://pubmed.ncbi.nlm.nih.gov/33475336</p><p>https://doi.org/10.1021%2Facsami.0c17512</p><p>https://scholar.google.com/scholar_lookup?journal=ACS+Appl.+Mater.+Interfaces&title=Electrospun+PVDF-TrFE/MXene+Nanofiber+Mat-Based+Triboelectric+Nanogenerator+for+Smart+Home+Appliances&author=S.M.S.+Rana&author=M.T.+Rahman&author=M.+Salauddin&author=S.+Sharma&author=P.+Maharjan&volume=13&publication_year=2021&pages=4955-4967&pmid=33475336&doi=10.1021/acsami.0c17512&</p><p>In a DNA molecule, guanine is the</p><p>most oxidizable chemical base which is highly exploited in DNA sensing. Recently, Civan et al.</p><p>[103] synthesized a hybrid cellulose nano�iber to monitor guanine-base oxidation in single-</p><p>strand DNA by electrochemical methods. Because of its biocompatibility as well as its mechani-</p><p>cal, physical, and chemical properties, cellulose is used for a variety of applications. When con-</p><p>verted into �ibrous form high surface-to-volume ratio, it provides a larger number of DNA mo-</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 8/50</p><p>lecules to be absorbed on the surface, supporting higher sensitivity. Here, hybrid nano�ibers</p><p>were synthesized by the electrospinning of cellulose monoacetate and tetraethyl orthosilicate.</p><p>The �iber diameter, here, was controlled by the catalyzer and hydrochloric acid and attained</p><p>between 42–958 nm. Here, the nano�iber played a role in monitoring guanine-base oxidation</p><p>in single-strand DNA by electrochemical methods.</p><p>Glucose	Sensing	 In the �ield of glucose sensing, electrospun nano�iber-based biosensors are</p><p>highly explored because of their high surface area, which provides a large immobilization site</p><p>resulting in increased interaction with analytes, shorter detection time, and increased lifetime</p><p>[104]. A novel self-powered glucose biosensor was developed by Li et al. [105], as depicted in</p><p>Figure 4a. The synthesis process involves encapsulation of the enzyme into a zeolitic imidazo-</p><p>late metal organic framework (ZIF-8) during in-situ growth on cellulose acetate (CA) nano�i-</p><p>bers. In �inal device, highly �lexible electrodes were prepared by step-by-step adsorption of</p><p>MWCNTs and AuNPs on CA/ZIF-8@enzyme membranes. Here, due to its hydrophilic nature,</p><p>cellulose can act as an inherent electrolyte reservoir where porous �ibrous structure helps in</p><p>transferring the diffused ions within electrolytes and electrochemically active materials. On the</p><p>other hand, in-situ growth of ZIF-8 not only provides a successful enzyme encapsulation</p><p>strategy, but also improves the enzyme stability aided by structural constraints. The addition of</p><p>CNTs promotes direct electron transfer within the device. BET surface area values for CA nano-</p><p>�ibers and CA/ZIF-8@enzyme/MWCNTs/Au were 9.879 m g and 99.356 m g ,</p><p>respectively. Here, inclusion of ZIF-8 crystal within CA �iber network contributed in achieving</p><p>higher porous structure and high absorption capacity. During cyclic voltammetry measure-</p><p>ments, signi�icant redox peaks were observed at ~0.39 V and ~0.51 V. These nano�iber mem-</p><p>branes showed long-term stability up to 15 h. Recently, another glucose sensor was reported</p><p>by Sapountzi et al. [106]. Here, polyacrylonitrile (PAN) nano�iber mats of 650 ± 10 nm diame-</p><p>ter coated with conductive polypyrrole (PPy) layers were produced by a two-step process in-</p><p>volving electrospinning and vapor-phase polymerization. The electrospun PAN NFs acted as a</p><p>backbone with a non-conductive structure (core �ibers) whilst facilitating the growth of PPy-</p><p>based coatings onto their surfaces. Here, the carboxyl group nano�ibers introduced into the</p><p>PPy coatings enabled covalent binding of a model enzyme, glucose oxidase, which was utilized</p><p>for the detection of glucose content. The device could act within a broad detection range of 20</p><p>nM–2 μM glucose concentration with a very low detection limit of 2 nM. Another electrochemi-</p><p>cal biosensor for glucose detection was synthesized by decorating Cu-nano�lower onto the</p><p>gold nanoparticles (AuNPs)/graphene oxide (GO) PVA nano�iber (Figure 4b). GO acted as a �i-</p><p>ber precursor, improving electrochemical properties of the �iber matrix. It was further decora-</p><p>ted with AuNPs via electrostatic interaction to increase electrical conductivity and detection</p><p>sensitivity. Finally, the surface coating of unique organic-inorganic nanostructured materials</p><p>(Cu-nano�lower) enhanced catalytic properties. These composite nano�ibers facilitated in</p><p>yielding an ef�icient electro-catalyzed reaction that converted glucose to gluconic acid. The �inal</p><p>device, Cu-nano�lower@AuNPs-GO NFs-coated Au chip, exhibited a wider linear range (0.001–</p><p>0.1 mM) with LOD of 0.018 μM [107].</p><p>2 −1 2 −1</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f004/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f004/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 9/50</p><p>Figure 4</p><p>(a) Schematic of the self-powered glucose biosensor; SEM-EDS elemental mapping images of CA/ZIF-</p><p>8@enzyme/MWCNTs/Au electrode; BET analysis of as-prepared samples [105]. (b) Schematic illustration</p><p>for the fabrication of Cu-nano�lower/AuNPs-GO NFs-based electrochemical glucose biosensor and FE-SEM</p><p>image formation of Cu-nano�lowers [107].</p><p>β-Amyloid	Detection	 Another type of electrochemical sensor has been recently developed by</p><p>Supraja et al. [108] using electrospun Tin oxide (SnO ) nano�iber. These were used for label-</p><p>free detection of β-Amyloid (1–42) in early-stage diagnosis of Alzheimer’s Disease. This hor-</p><p>mone-speci�ic capture antibody was covalently immobilized on the carbon electrode modi�ied</p><p>by SnO nano�ibers. SnO is an intrinsic n-type semiconductor containing a number of oxygen</p><p>vacancies present at the grain boundaries. These vacancies enable absorption of external mo-</p><p>lecules which increases Schottky barrier height, resulting in a reduction of conductivity which</p><p>in turn controls the electrical behavior of the sensor. This inherent heterogeneity of SnO can</p><p>facilitate target analyte detection in fairly low concentrations of analyte. It has been noted that</p><p>within the concentration range of 1 fg/mL μg/mL, the sensing platform shows a sensitivity of</p><p>274.96 (kΩ/ng.mL )/cm and 0.146 fg/mL LOD.</p><p>Levodopa	Detection	 In another study Wang et al. [109] used Molybdenum disul�ide (MoS ) na-</p><p>nosheet arrays/carbon nano�ibers. These nano�ibers were used as an electrode in a biosensor</p><p>for detection of levodopa and uric acid. MoS nanosheet arrays are promising materials for</p><p>sensing applications due to their large surface area, excellent conductivity, high catalytic</p><p>ef�iciency, and biocompatibility. When combined with nano�ibers, the composite material pos-</p><p>sessed high electronic conductivity with improved electrochemical active sites by increasing</p><p>the speci�ic surface area of CNFs network. These composite nano�ibers facilitated in achieving</p><p>stability, good repeatability, and higher sensitivity (0.91 μA μM for levodopa and 0.73 μA</p><p>μM for uric acid) within the range of 1–60 μM.</p><p>2</p><p>2 2</p><p>2</p><p>−1</p><p>−1 2</p><p>2</p><p>2</p><p>−1</p><p>−1</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g004.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f004/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 10/50</p><p>H O 	Detection	 In the �ield of biosensing, hydrogen peroxide (H O ) detection plays an impor-</p><p>tant role for disease determination, as it is a common by-product of some biochemical proces-</p><p>ses, catalyzed by enzymes (such as glucose oxidase, cholesterol oxidase etc.) and triggering</p><p>cancer growth. Daemi et al. [110] worked in a non-enzymatic biosensor for H O detection</p><p>with ZnO-CuO hybrid nano�iber that has a sensitive amperometric response and LOD of 2.4</p><p>µM. Though ZnO is a low-cost inorganic n-type semiconductor with a wide band gap of 3.37 eV,</p><p>high mobility, and non-toxicity, it suffers from weak cycling performance when used as an elec-</p><p>trode material. To address this issue, CuO (a p-type stable semiconductor with narrow band</p><p>gap 1.2–1.9 eV) was incorporated to synthesize a hybrid nanostructure which provided</p><p>synergetic electrochemical sensing properties due to the presence of binary metal oxides. This</p><p>hybrid nano�iber exhibited the lowest charge transfer resistance and the highest</p><p>electrocatalytic performance among other modi�ied electrodes used for the detection of H O .</p><p>Among various biosensing platforms, FETs have diverse applications in the detection of</p><p>enzyme, immune, DNA, cell-based materials with advantages like fast response speed, accurate</p><p>detection, low cost, and low power consumption. Recently, Hong et al. [111] fabricated In-Ga-</p><p>Zn-O nano�iber-based double-gate FETs biosensors for chemical sensing with high sensitivity</p><p>(998 and 383 mV/pH, pH sensitivities for In-Ga-Zn-O nano�iber and In-Ga-Zn-O �ilm-based sen-</p><p>sors respectively). Here, In-Ga-Zn-O nano�iber was synthesized by electrospinning of In-Ga-Zn-</p><p>O precursor along with polyvinylpyrrolidone (PVP) polymer. Unlike the conventional chemical</p><p>vapor deposition or solution-processing methods, here, electrospinning was employed to</p><p>synthesize In-Ga-Zn-O nano�ibers that improved a capacitive coupling effect. These �ibers were</p><p>applied to the channel layers to increase the sensitivity without adjusting the gate-oxide mate-</p><p>rials or thickness.</p><p>Depending on the origin of the polymers, these biosensors can also be classi�ied into two ma-</p><p>jor categories: natural and synthetic polymer-based biosensors, as shown in Table 1. These</p><p>studies include natural polymers like cellulose, CA, etc., and synthetic polymers like PVA, PAN,</p><p>PPY, PVP, etc. for developing biosensors for their biocompatibility, biodegradability, and non-to-</p><p>xic nature.</p><p>2 2 2 2</p><p>2 2</p><p>2 2</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t001/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 11/50</p><p>Table 1</p><p>Role of nano�iber materials in various biosensing applications.</p><p>Polymer</p><p>Type</p><p>Materials Property	and	Role Applications Ref.</p><p>Natural</p><p>polymer</p><p>Cellulose</p><p>Monoacetate/Tetraethyl</p><p>Orthosilicate Hybrid</p><p>Nano�ibers</p><p>Monitored guanine base</p><p>oxidation in single-strand DNA</p><p>by electrochemical methods</p><p>Electrochemical</p><p>DNA biosensor</p><p>[103]</p><p>Natural</p><p>polymer</p><p>Cellulose acetate nano�iber</p><p>CA/ZIF-</p><p>8@enzyme/MWCNTs/Au</p><p>membranes were utilized as</p><p>highly �lexible electrodes</p><p>Glucose biosensor [105]</p><p>Synthetic</p><p>polymer</p><p>Activated multiscale pore</p><p>contained carbon nano�iber</p><p>(a-MPCNF)</p><p>Signal transducer and template</p><p>for immobilization of nesfatin-1</p><p>antibody</p><p>FET (�ield-effect</p><p>transistor)-based</p><p>biosensor</p><p>[102]</p><p>Synthetic</p><p>polymer</p><p>In-Ga-Zn-O (IGZO)</p><p>nano�iber</p><p>Facilitated increase in the</p><p>sensitivity without adjusting</p><p>the gate-oxide materials or</p><p>thickness</p><p>FET-based</p><p>chemical and</p><p>biosensor</p><p>[111]</p><p>Synthetic</p><p>polymer</p><p>Polyacrylonitrile/</p><p>Polypyrrole Core-Shell</p><p>Nano�ibers</p><p>Facilitated covalent binding of</p><p>the enzyme, glucose oxidase</p><p>Glucose biosensor [106]</p><p>Synthetic</p><p>polymer</p><p>Copper nano�lower</p><p>decorated Au NPs graphene</p><p>oxide nano�iber</p><p>Enabled conversion from</p><p>glucose to gluconic acid</p><p>through electro-catalyzed</p><p>reaction while improving the</p><p>electrochemical properties</p><p>Glucose biosensor [107]</p><p>Synthetic</p><p>polymer</p><p>ZnO-CuO nano�ibers</p><p>Tuned nanostructure for</p><p>improved amperometric</p><p>detection of H O .</p><p>Non-enzymatic</p><p>biosensor</p><p>[110]</p><p>Synthetic</p><p>polymer</p><p>SnO nano�iber</p><p>β-Amyloid (1–42) is a viable</p><p>biomarker for early diagnosis of</p><p>Alzheimer’s Disease. Speci�ic</p><p>capture antibody was</p><p>covalently immobilized on the</p><p>SNF nano�iber-modi�ied carbon</p><p>working electrode for</p><p>immunoassay</p><p>Immunosensor [108]</p><p>Combined the high</p><p>2 2</p><p>2</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 12/50</p><p>3.1.2. Tissue Regeneration Regenerating the growth of cells and tissues is a part of tissue engi-</p><p>neering that aims to repair or replace function to the damaged tissues through biological prin-</p><p>ciples [69]. The major challenge in tissue engineering is the development of scaffolds that can</p><p>replicate tissue architecture at the nanoscale level. Nano�ibers have been used as basic buil-</p><p>ding blocks for tissue-regenerating scaffolds for the past few decades. They serve as an excel-</p><p>lent framework for cell adhesion, proliferation, and differentiation by meeting existing challen-</p><p>ges [114,115].</p><p>Among various existing techniques, electrospun nano�ibers are most widely used for tissue en-</p><p>gineering applications due to their higher surface area and porosity, which aid as favorable</p><p>factors for cell interactions [116,117]. Both natural and synthetic materials possessing</p><p>biocompatibility, biomimicking, hydrophilicity or hydrophobicity, polymer-drug adhesion, and</p><p>control over drug release have been extensively explored for these applications [114,118]. The</p><p>nano�ibers possessing these qualities are utilized in various types of tissue regeneration appli-</p><p>cations such as musculoskeletal (involving bone, ligament, cartilage, and skeletal muscle), vas-</p><p>cular, skin, neural, as carriers for the controlled delivery of drugs proteins, and DNA [119].</p><p>Few contemporary studies in the �ield of tissue regeneration through integration of nano�iber</p><p>technology were discussed here.</p><p>Bone	Tissue	Regeneration	 Bone tissue regeneration is a complicated procedure which depends</p><p>on several factors that involve maintaining the defect shape while preventing any further com-</p><p>pression to the initial blood clot, along with the capability to shield soft tissues cells in�iltration</p><p>during maturation of the bone matrix. At the same time, maintaining suitable mechanical pro-</p><p>perties for required regeneration timeline withholding appropriate biodegradability is also ne-</p><p>eded to avoid post-surgical complications [120]. Recently, Zhang and team [121] produced a</p><p>biodegradable synthetic scaffold for stimulating bone tissue repair. In this study, a mineralized</p><p>collagen and chitosan cast �ilm was coated with polycaprolactone (PCL)/polyvinylpyrrolidone</p><p>(PVP) electrospun nano�ibers and loaded with berberine (drug), which yielded a bilayer mem-</p><p>brane (Figure 5a). PCL, being a synthetic polymer, has good elasticity as well as</p><p>biodegradability and biocompatibility, which make it suitable for tissue engineering applicati-</p><p>ons. However, it suffers from low water absorption capacity and hydrophobicity. Hence, by</p><p>combining it with PVP, which is a water-soluble polymer, the biodegradation and hydrophilicity</p><p>of PCL can be improved. The bilayer membrane of uniform diameter (548 ± 150 nm) compo-</p><p>site nano�ibers showed favorable mechanical properties (Young’s modulus 120 MPa) while</p><p>enhancing the attachment and proliferation. For testing the practical applicability, this scaffold</p><p>was implanted within a rat femoral bone defect for in vitro attachment, proliferation, and rege-</p><p>neration of MC3T3-E1 (osteoblast precursor cell line) cells.</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f005/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 13/50</p><p>Figure 5</p><p>(a) Representation of the method of preparation and implantation of the bilayer membrane [121]. (b) Illustra-</p><p>tion of scaffolds synthesis their application for cartilage tissue engineering [123]. (c) Schematic of preparing</p><p>core-shell nano�ibrous scaffold and osteogenic differentiation of human mesenchymal stem cells into osteo-</p><p>blasts on the scaffolds [122].</p><p>Among various types of scaffolds, coaxial structures provide an environment conducive to</p><p>bone tissue regeneration, as they can encapsulate proteins, growth factors, drugs, and other</p><p>bioactive substances. As in these structures core solution does not need spinnability, these</p><p>substances are incorporated within the core structure which</p><p>is released in a sustained manner</p><p>for controlled therapy [14]. With the help of the coaxial electrospinning method, Rastegar et al.</p><p>[122] fabricated a platelet-rich �ibrin loaded/chitosan (CS) core-shell nano�ibrous scaffold. CS</p><p>holds various outstanding properties including biocompatibility, biodegradability, and antibac-</p><p>terial, which are required for biomedical applications. However, it cannot be electrospun alone</p><p>and thus should be blended with some polymers like PCL which has high solubility in organic</p><p>solvents and slow biodegradation. The core-shell nano�ibrous structure enhanced osteogenic</p><p>differentiation of mesenchymal stem cells (ability to self-renew and differentiate into multiple</p><p>cell) (Figure 5c) in this study. By loading �ibrin to the nano�iber structure, elastic modulus and</p><p>speci�ic surface area of the scaffold were observed to increase from 25 to 44 MPa and 9.98 to</p><p>16.66 m /g respectively.</p><p>Articular	Cartilage	Regeneration	 Cartilage degeneration is one of the most common joint disea-</p><p>ses. Due to the absence of blood vessels and the innervation network, the mature articular car-</p><p>tilage regeneration rate is poor, which may lead to various disabilities, affecting quality of life.</p><p>Recently, Chen et al. [123] engineered a gas-foamed extracellular matrix mimicking a 3D po-</p><p>rous electrospun nano�iber scaffold for articular cartilage regeneration. In this study, 2D elec-</p><p>trospun poly(L-lactide-co-e-caprolactone) (PLCL)/silk �ibroin (SF) scaffolds were fabricated by</p><p>a dynamic liquid support electrospinning system which was then cross-linked with hyaluronic</p><p>acid to mimic the microarchitecture of native cartilage (Figure 5b). PLCL-based scaffolds are</p><p>2</p><p>https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=8587893_polymers-13-03746-g005.jpg</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f005/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f005/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f005/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 14/50</p><p>extensively researched for tissue engineering applications due to their mechano-elastic and bi-</p><p>odegradable properties which impart mechanical stability in the scaffolds. Further addition of</p><p>SF improves the hydrophilicity and cytocompatibility of the hybrid nanostructures, meeting re-</p><p>quirements for the optimal cartilage regeneration. For the real-time application, the scaffold</p><p>was implanted within a rabbit model. It was observed that these fabricated 3D scaffolds</p><p>showed satisfactory proliferation and phenotypic maintenance of chondrocytes while exhibi-</p><p>ting good hemocompatibility, cytocompatibility, biocompatibility, and low density, high porosity</p><p>with a large pore area, good water absorption capacity, and mechanical stability.</p><p>Periosteal	Regeneration	 Found around the cortical bone, periosteum is a dense layer of vascu-</p><p>lar connective tissues, osteoprogenitor cells, and stem cells. It plays an important role in repai-</p><p>ring bone defects. However, existing arti�icial periosteum materials suffer with poor mechani-</p><p>cal properties and bionic structure construction, osteogenic differentiation, and vascularization</p><p>capabilities. In order to address this issue, Zhang and group [124] prepared poly-ε-caprolac-</p><p>tone (PCL)/whitlockite through electrospinning technology. PCL is an FDA-approved synthetic</p><p>polyester material with good processability and biocompatibility and moderate degradation</p><p>velocity which, is highly suitable for long-term in vivo usage. However, it lacks inherent osteoin-</p><p>ductive abilities, which limits its application. This can be improved by introducing calcium</p><p>phosphate (CaPs) like whitlockite. Whitlockite is the second-most-present CaP in natural bone</p><p>tissues which inhibits osteoclast activity, promoting angiogenesis. By testing this material in vi-</p><p>tro mineralization experiments, the rapid ion release from whitlockite was observed to pro-</p><p>mote the deposition of mineralized hydroxyapatite for human umbilical vein endothelial cell</p><p>angiogenesis and migration along with collagen formation and calcium deposition.</p><p>Dural	Regeneration	 Dura mater is the outermost layer of meninges that surrounds brain and</p><p>spinal cord. It provides cover and support to the dural sinuses and carries blood from the</p><p>brain to the heart. For healing and regeneration of this layer, a radially aligned nanoscale sur-</p><p>face is desirable as an arti�icial dural substitute. Hence scaffolds constructed with electrospun</p><p>nano�ibers could meet such a demand by guiding and enhancing cell migration from the edge</p><p>of a dural defect to the center [125]. The most commonly used synthetic dural substitutes ex-</p><p>perience local tissue rejection or in�lammation reactions induced by their acidic products,</p><p>which causes degradation by forming foreign-body giant cells through monocyte/macrophage</p><p>fusion. Hence, to achieve ef�icient dural healing, high molecular weight poly(4-</p><p>hydroxybutyrate) (P4HB) polymer-based nano�iber membranes were synthesized via electros-</p><p>pinning, which exhibited high elasticity, biocompatibility, and long-term strength retention pro-</p><p>perties. A cyto-compatible platform in which �ibroblasts can migrate, adhere, and proliferate</p><p>with the lower limit of 2.15 EU (endotoxin)/devices contacting cerebrospinal �luid was</p><p>successfully achieved with other characteristics such as conformability, wettability, and</p><p>strength to an underlying tissue surface, for dural tissue repair. In a rabbit duraplasty model in</p><p>vivo, the membrane could form a continuous neodural tissue mimicking native dura mater,</p><p>which produced a watertight closure to prevent cerebrospinal �luid leakage without systematic</p><p>or local infection [126].</p><p>Olfactory ensheathing cells comprise a type of glial cell which can penetrate the transition zone</p><p>between the peripheral and central nervous systems. They play a key role in central nervous</p><p>system repair as seed cells. Many studies have reported that the diameter of electrospun nano-</p><p>�ibers has a signi�icant effect on cell behavior along with cell adhesion, viability, morphology,</p><p>differentiated functions, and proliferation [127,128]. Castano and group [129] produced func-</p><p>tionalized nanoscale meshes of PLA nano�ibers, seeded with chemotactic TEG3 cells, an</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 15/50</p><p>olfactory ensheathing-derived cell line to study its attachment, morphology, and directionality</p><p>in neural regeneration. The less rigid and more amorphous topographies of PLA nano�ibers,</p><p>which are functionalized with different concentrations of a chemotactic agent, guided the mi-</p><p>gration of TEG3 cells toward more chemokine-concentrated surfaces better than the other</p><p>polymer scaffolds. It was observed that the size of the nano�ibers has a strong effect on TEG3</p><p>cell adhesion and migration; here, nano�ibers with 950 nm diameter showed highly dynamic</p><p>behavior in migratory terms. The roles of different nano�iber materials used in various tissue</p><p>regeneration applications are summarized in Table 2.</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t002/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 16/50</p><p>Table 2</p><p>Role of nano�iber materials in various tissue engineering applications.</p><p>Materials Property	and	Role Applications Ref.</p><p>Platelet-rich �ibrin loaded/chitosan core-</p><p>shell nano�ibrous scaffold</p><p>Helps in protecting and</p><p>preserving the</p><p>biomolecules from direct</p><p>contact with solvents and</p><p>changing</p><p>microenvironment during</p><p>in vitro studies</p><p>and in vivo</p><p>implantation.</p><p>Bone tissue</p><p>engineering</p><p>[124]</p><p>Polycaprolactone/polyvinylpyrrolidone</p><p>nano�ibers</p><p>Attachment and</p><p>proliferation of osteoblasts</p><p>in vitro while potentially</p><p>enhancing the cell–cell</p><p>interactions and cell</p><p>migration necessary for</p><p>bone healing</p><p>Bone regeneration [121]</p><p>Polylactic acid glycolic acid/silk �ibroin</p><p>membranes loaded with artemisinin</p><p>Polylactic acid glycolic</p><p>acid can provide good</p><p>mechanical properties, and</p><p>SF can improve the</p><p>biocompatibility and drug-</p><p>release property of</p><p>dressings. ART was loaded</p><p>on membranes as an anti-</p><p>in�lammatory agent</p><p>Wound dressing [130]</p><p>Poly-ε-caprolactone (PCL)/whitlockite (WH)</p><p>nano�iber membrane</p><p>This biomimetic nano�iber</p><p>membrane combines the</p><p>positive osteogenic</p><p>differentiation ability and</p><p>angiogenic ability of</p><p>calcium phosphate</p><p>materials, and is expected</p><p>to be used for arti�icial</p><p>periosteum.</p><p>Periosteal</p><p>Regeneration</p><p>[123]</p><p>Nano�iber alignment</p><p>played a supporting role on</p><p>cell alignment, with</p><p>parallel-oriented �ibers</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 17/50</p><p>3.1.3. Drug Delivery System A drug delivery system is a formulation that facilitates therapeutic</p><p>material to selectively reach the site of action without disrupting the functioning of other hu-</p><p>man body systems. Drugs are usually toxic when administered at the wrong doses. Hence, for</p><p>vital cases, customization is required, which cannot be provided with conventional medication</p><p>such as injections, pills, syrups, etc. Drug delivery through smaller-size suitable coating mate-</p><p>rial improves their capability to be digested or absorbed by the targeted site in a much feasible</p><p>manner. Electrospun �ibers with controllable material composition and structural properties</p><p>such as �iber diameter, geometry, and their �lexibility to be formulated in various shapes effect</p><p>the release pro�ile of bioactive molecules. These properties facilitate targeted and controlled</p><p>drug delivery [15,118]. The nano�ibers are also capable of encapsulating labile molecules for</p><p>rendered drug delivery by enhancing their stability in harsh biological environments [134].</p><p>A few of the current innovations in the �ield of drug delivery were detailed in this section.</p><p>Recently, Thao et al. [135] prepared an electrospun small intestinal submucosa (SIS) and</p><p>poly(caprolactone-co-Lactide-co-glycolide) (PCLA) nano�iber sheet, which acted as a potential</p><p>drug (dexamethasone and silver sulfadiazine) carrier related to anti-in�lammation (Figure 6a).</p><p>Here, amongst several synthetic polyesters, PCLA was chosen, as it offers several potential ad-</p><p>vantages like ease of preparation and better in vivo controllability due to biodegradable and</p><p>biocompatible properties. The ratio between SIS and PCLA was varied from 1:1 to 5:1 to ob-</p><p>tain various porosities (50% to 75%), pore size (ranged within 20–60 µm), �iber diameters</p><p>(ranging from 380 to 100 nm), and the tensile strength (ranged within 0.75 to 0.15 N) of the �i-</p><p>bers for optimized performance. The produced nano�iber sheet exhibited good biocompatible,</p><p>bioresorbable, and non-immunogenic properties. Sustained release of the drugs while sup-</p><p>pressing the macrophage in�iltration was ensured through in vitro and in vivo studies. In</p><p>another study, PVA/soy protein isolate (SPI) nano�iber mats were produced as drug carriers.</p><p>PVA is a nontoxic water-soluble polymer that shows high mechanical properties and good �ilm-</p><p>forming capability. It has been reported that SPI has been widely used in many biomedical ap-</p><p>plications, as it has the capability to decrease the proliferation of tumor cells and reduce the</p><p>activities of immunocompetent cells and bone-resorbing cells. Hence, for achieving synergic</p><p>properties, PVA/SPI nano�ibers were utilized in this study. The synthesized mats were loaded</p><p>with ketoprofen by dissolving the drug in the solutions for nano�iber during electrospinning.</p><p>To improve drug-release control of the nano�iber mats, a natural tubular nanoparticle named</p><p>sepiolite was utilized as a secondary release-control tool. Here, three types of nano�iber mats</p><p>were fabricated by direct mixing of PVA, SPI, and ketoprofen (average �iber diameter 137 nm;</p><p>speci�ic surface area 153.36 m /g); direct mixing of PVA, SPI, sepiolite, and ketoprofen (ave-</p><p>rage �iber diameter 117 nm; speci�ic surface area 168.24 m /g); and mixing PVA, SPI, and keto-</p><p>profen-preloaded sepiolite (average �iber diameter 129 nm; speci�ic surface area 194.27</p><p>m /g). Experiments showed that incorporation of SPI and sepiolite into the PVA nano�ibers in-</p><p>creased the mechanical strength of the mats up to 40%, making them long lasting and easier to</p><p>handle [136].</p><p>2</p><p>2</p><p>2</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f006/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 18/50</p><p>Figure 6</p><p>(a) Preparation and evaluation of drug-loaded nano�iber [135]. (b) Graphical representation of the fabrication</p><p>of scaffolds; preparation of antimicrobial agents/core–sheath nano�iber mats using coaxial electrospinning;</p><p>ef�icacy of single and multiple antimicrobial agents containing biphasic scaffolds against mixed-MRSA/P. ae-</p><p>ruginosa bio�ilms using different administration strategies [137].</p><p>A research team from the University of Nebraska fabricated biphasic scaffolds by integrating</p><p>nano�iber mats with dissolvable microneedle arrays (with 100 to 150 needles on a 6 mm disk)</p><p>through coaxial electrospinning for simultaneous drug delivery (Figure 6b). This type of</p><p>delivery system facilitates a complementary killing mechanism exhibiting synergistic ef�icacy.</p><p>This scaffold was reported as an antimicrobial delivery system for the effective treatment of</p><p>bacterial bio�ilms. In this study, polyvinylpyrrolidone (PVP) microneedle arrays and Pluronic F-</p><p>127-poly(ε-caprolactone) nano�iber mats were exploited with incorporation of different com-</p><p>binations of antimicrobial agents (AgNO, Ga(NO ) , and vancomycin) where a biphasic scaffold</p><p>served as the delivery agent for the eradication of mature bio�ilms on arti�icial wounds created</p><p>on ex vivo human skin explants [137].</p><p>A different study involved the production of dual drug delivery of vancomycin and</p><p>imipenem/cilastatin through core-shell nano�ibers composed of polyethylene oxide (PEO), chi-</p><p>tosan, PVP, and gelatin (with average �iber diameter varying from 218 to 342 nm) for the treat-</p><p>ment of diabetic foot ulcer infections. For such types of wounds, methicillin-resistant</p><p>Staphylococcus	aureus is one of the main sources of infection, which can be treated using com-</p><p>prehensive drugs like vancomycin and imipenem. For controlled drug delivery, these drugs can</p><p>be incorporated within the nano�iber matrix to reduce negative side effects and hazards like</p><p>nephrotoxicity, cytotoxicity, and hypersensitivity reaction. In this work, a dual drug-loaded na-</p><p>no�iber was prepared using PEO, CS, and vancomycin as shell materials and PVP, gelatin, and</p><p>imipenem/cilastatin as the core-forming matrix which can perform a simultaneous release of</p><p>vancomycin and imipenem at different rates into the wound sites. The results showed signi�i-</p><p>cant antibacterial activity against methicillin-resistant Staphylococcus	aureus, Escherichia	coli,</p><p>and Pseudomonas	aeruginosa with no recorded cytotoxicity [138].</p><p>Bai et al. [139] synthesized ibuprofen (IBU)-541 loaded PVP nano�ibers utilizing a coaxial so-</p><p>lid-core spinneret. IBU is a widely used drug for its anti-in�lammatory, analgesic, and</p><p>antipyretic properties. In this study, testing of fast dissolution of IBU from its electrospun</p><p>hydrophilic polymer nanocomposites was carried out. Here, the PVP nano�iber matrix was</p><p>chosen as drug carrier as it has a �ine physiological compatibility that does not have any stimu-</p><p>lation to skin, mucous membrane, eyes,</p><p>etc., and can act without interfering in the human meta-</p><p>bolism. These nano�ibers were observed to have an average diameter of 740 ± 130 nm with li-</p><p>near morphology, large surface cross-section, and porosity without any solid phase separation,</p><p>providing synergistic effects with an amorphous state of the drug. Liu et al. [140] fabricated bi-</p><p>functional copper sul�ide (CuS)/PVP/gelatin composite green synthesized nano�ibers by porta-</p><p>ble in situ electrospinning for rapid hemostasis and ablate super bacteria. CuS exhibited strong</p><p>absorption in NIR irradiation, which exerts an effective bactericidal effect on super bacteria.</p><p>3 3</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f006/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f006/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 19/50</p><p>However, it shows cytotoxicity which can be inhibited by incorporating it within a biodegrada-</p><p>ble and water-soluble polymer like gelatin and PVP, which helps in avoiding immediate contact</p><p>between CuS nanoparticles and cells. This composite �iber can be used to excite surface-plas-</p><p>mon effects that provide greater depth of penetration into the skin. It also effectively prevents</p><p>water superheating and skin damage caused by UV light. Here, nano�ibers were directly depo-</p><p>sited onto the wound to accelerate the hemostatic effect and improve the adhesion between</p><p>the membrane and skin. The nano�ibers with average diameter of 400 nm were produced on</p><p>the wound site and showed better compactness which facilitated the shortening of the overall</p><p>healing time by accelerating hemostasis to less than 6 s.</p><p>Precise drug delivery to tumor sites in cancer treatment is crucial for improved therapeutic</p><p>ef�icacy and minimizing adverse effects, which is an unmet clinical need [141]. Gastric cancer is</p><p>the third leading cause of death worldwide. Recently, to improve the chemotherapeutic perfor-</p><p>mance in gastric cancer, a study was carried out by Anothra and team [142]. To treat such a</p><p>cancer, 5-FU was extensively used in clinical practice. In this work, 5-FU loaded Eudragit S-100</p><p>composite nano�ibers (diameter ranging from 150–180 nm, porosity of 78%, and tensile</p><p>strength 170 g/cm ) were synthesized and optimized through a single-nozzle electrospinning</p><p>technique. Eudragit S-100 was chosen because of its polyanionic and biocompatible nature</p><p>which can exhibit controlled swelling in a gastric environment, providing customized drug rele-</p><p>ase. It is water insoluble, as well, as an acidic and is considered as a food-grade polymer due to</p><p>its non-toxicity. The developed system showed superior thermal stability, tumor regression po-</p><p>tential, and pharmacokinetic pro�ile when compared with the plain drug with 90% release of</p><p>encapsulated drug therapeutic after 12 h, making it a potential approach for localized treat-</p><p>ment of gastric cancer. The roles of different nano�iber materials used in various drug delivery</p><p>applications are summarized in Table 3.</p><p>2</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t003/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 20/50</p><p>Table 3</p><p>Role of nano�iber materials in various drug delivery applications.</p><p>Materials Property	and	Role Applications Ref.</p><p>Small intestine submucosa/poly(ε-</p><p>caprolactone-ran-L-lactide) Nano�iber</p><p>Sheets</p><p>Facilitated controlled drug delivery</p><p>related to anti-in�lammation</p><p>Drug</p><p>delivery</p><p>[135]</p><p>Poly (vinyl alcohol)/soy protein isolate</p><p>(PVA/SPI) nano�iber mats</p><p>The mats were loaded with</p><p>ketoprofen by dissolving the drug in</p><p>the solutions for nano�iber</p><p>electrospinning, providing</p><p>channelization.</p><p>Drug</p><p>delivery</p><p>[136]</p><p>Pluronic F-127-polycaprolactone</p><p>nano�iber mats</p><p>Nano�ibrous core helped in</p><p>encapsulating antimicrobial agents</p><p>with a hydrophilic nature</p><p>Drug</p><p>delivery</p><p>[137]</p><p>Ibuprofen (IBU)-loaded</p><p>polyvinylpyrrolidone nano�ibers</p><p>Concurred �ine functional</p><p>performances of electrospun</p><p>nano�ibers on improving the</p><p>dissolution of IBU</p><p>Drug</p><p>delivery</p><p>[139]</p><p>Thiram/hydroxypropyl-β-cyclodextrin</p><p>inclusion complex electrospun</p><p>nano�ibers</p><p>Improved the water solubility of</p><p>thiram</p><p>Drug</p><p>delivery</p><p>[143]</p><p>5-�luorouracil (5-FU) loaded Eudragit S-</p><p>100 composite nano�ibers</p><p>The developed nano�iber</p><p>formulation exhibited superior</p><p>tumor regression potential and</p><p>pharmacokinetic pro�ile compared</p><p>with the plain drug</p><p>Drug</p><p>delivery</p><p>[142]</p><p>Core-shell nano�ibrous system</p><p>containing vancomycin and</p><p>imipenem/cilastatin</p><p>The nano�ibers showed signi�icant</p><p>activity against both gram-positive</p><p>and negative bacteria, causing</p><p>diabetic foot ulcers.</p><p>Drug</p><p>delivery</p><p>[138]</p><p>Poly(vinyl alcohol) and chitosan</p><p>incorporated with moxi�loxacin</p><p>hydrochloride nano�ibers</p><p>Nano�ibers exhibited good</p><p>antibacterial properties against</p><p>Staphylococcus	aureus and</p><p>Pseudomonas	aeruginosa due to the</p><p>moxi�loxacin hydrochloride</p><p>incorporation.</p><p>Drug</p><p>delivery</p><p>[144]</p><p>Sulindac vinyl alcohol-co-ethylene</p><p>nano�iber membrane</p><p>Nano�iber membranes</p><p>demonstrated characteristics of</p><p>high drug loading and stability</p><p>Drug</p><p>delivery</p><p>[145]</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 21/50</p><p>3.1.4. Wound Dressing Wound dressing is a process of regenerating dermal and epidermal tis-</p><p>sues and a vital step for rapid healing of the affected part while offering protection against in-</p><p>fection due to environmental exposure. A number of biochemical actions/phases such as proli-</p><p>feration, homeostasis, in�lammation, and remodeling are involved in this dynamic activity</p><p>[146]. For these purposes, drug-embedded nano�ibers are potential substitutes in wound hea-</p><p>ling due to surface functionality, ability in inhibiting microorganism contact, oxy-permeability,</p><p>and lasting drug release [118,147]. As chronic wounds are prone to infection that might cause</p><p>sepsis and affect the overall healing process, studies have revealed that nano�ibers can offer</p><p>enhanced cell proliferation, migration, and angiogenesis for effective wound healing [148]. In</p><p>this regard, recently, lots of research has been carried out on multifunctional wound dressing,</p><p>which can provide all the requirements at a time for effective wound healing in order to boost</p><p>restoration within the wound site and prevent undesirable effects such as infection. In these</p><p>kinds of studies, nano�iber scaffolds are produced by blending various natural or synthetic</p><p>polymers and incorporating drugs, nanoparticles, and bioactive agents (as growth factors, vita-</p><p>mins, and anti-in�lammatory molecules) through the electrospinning process [149]. A few of</p><p>the recent works published on the bene�its of using electrospun nano�ibers in wound dressing</p><p>were summarized here.</p><p>Artemisia	annua L. is a type of annual herb that has been used for various treatments and</p><p>wound healing [150]. In their recent study, Peng and team [130] utilized Artemisinin (ART), a</p><p>sesquiterpene lactone compound with therapeutic properties like anti-in�lammatory and anti-</p><p>bacterial activity, to evaluate in vivo wound healing in a rat model with dorsal full-thickness</p><p>wound defects. Polylactic acid glycolic acid (PLGA)/silk �ibroin (SF) membranes loaded with</p><p>ART composite nano�ibrous membranes were electrospun for this study. PLGA NFMs is a bio-</p><p>degradable polymer with good mechanical properties along with controlled degradability and</p><p>drug release quality, which are necessary in biomedical applications. However, there are some</p><p>drawbacks like poor hydrophilicity and cell af�inity which can be improved by combining it</p><p>with natural polymers like SF. SF, a Bombyx	mori cocoon extract, has good cytocompatibility</p><p>and biocompatibility in both in vivo or in vitro applications.</p><p>SF possesses attractive characteris-</p><p>tics such as cell adhesion and proliferation that promotes wound healing. The fabricated mem-</p><p>brane showed breaking strength ranging from 4.0 ± 1.0 MPa to 7.4 ± 0.3 MPa and Young’s mo-</p><p>dulus from 215.3 ± 2.0 MPa to 394.9 ± 1.3 MPa with elongation at break from 34.0 ± 7.8% to</p><p>127.0 ± 7.0%. The study proved that the obtained mechanical and anti-in�lammatory property</p><p>was suitable for wound dressing, without cytotoxicity. This provided a new method for the de-</p><p>velopment and application of ART for wound healing.</p><p>Chronic wounds, such as diabetic ulcers and burns, are complex wounds with slow healing ra-</p><p>tes, and when left untreated for longer periods of time become fatal and may result in hospita-</p><p>lization. In such cases, Blumea	balsamifera (BB), which is also known as “Sambong”, is one of</p><p>the essential oils which have been used for thousands of years in Southeast Asian countries.</p><p>Ullah et al. [151] prepared ultra�ine, bead-free, bioactive sambong oil-loaded electrospun cellu-</p><p>lose acetate nano�ibers for wound dressing applications. The as-synthesized �ibrous materials</p><p>exhibited in-vitro biocompatibility, cell viability, breathability (moisture vapor transport rate of</p><p>2450–1750 g/m /day), and good antibacterial and antioxidant properties. The inclusion of BB</p><p>oil resulted in a decrease in tensile strength and increase in �iber diameter, reducing porosity</p><p>of the materials. They were also observed to undergo �irst-order release kinetics immediately</p><p>after biphasic release. Cipro�loxacin is another well-known antibacterial drug that has been uti-</p><p>lized for healing a wide range of wound infections. A study involving in vitro and in vivo evalu-</p><p>ations of cipro�loxacin (antibacterial drug)-loaded chitosan/polyethylene oxide/silica nano�i-</p><p>2</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 22/50</p><p>bers fabrication through electrospinning for treating cutaneous wounds of Balb/C mice was</p><p>carried out by Hashemikia and coworkers (Figure 7a). It was noticed that �ibers’ structural</p><p>integrity was intact for more than 7 days in the phosphate buffer saline, while demonstrating</p><p>excellent antibacterial properties. The synthesized nano�iber scaffold was able to absorb water</p><p>while maintaining morphological integrity during drug release and degradation processes. It</p><p>was observed here that silica played a crucial role in collagen creation, accelerating the wound-</p><p>healing process through degradation products of silica-materials [152].</p><p>Figure 7</p><p>(a) Interactions of the inorganic framework with chitosan and polyethylene oxide; SEM images, �ibers size</p><p>distribution, EDX and X-ray mapping [152]. (b) Schematic Illustration of fabrication process of nano�iber</p><p>scaffolds; concentration of hemoglobin in blood clots on scaffolds; blood clotting time and blood absorption</p><p>capacity of the medical gauze control and PCLM, CSLD, and CSLD-PCLM nano�iber scaffolds * p < 0.05, ** p <</p><p>0.01 [155].</p><p>Annatto is a natural dye obtained from tropical plants and is mainly studied for its anti-</p><p>in�lammatory, antioxidant, antimicrobial, and anti-cancer activity and potential applications in</p><p>the �ields of wound healing and tissue engineering. A study was conducted by Santos et al. to</p><p>explore wound healing ef�icacy, �ibroblast cellular proliferation, and in vitro cytotoxicity by</p><p>evaluating annatto functionalized cellulose acetate nano�iber scaffolds in a rat model. Here, the</p><p>bioactive molecule included in the nano�iber and �ibroblast cells was attached and penetrated</p><p>to modulate the in vivo in�lammatory process favorably. In the analysis, cytotoxicity found no</p><p>irritation produced in hen’s egg-chorioallantois membrane test assays, which veri�ied</p><p>biocompatibility. It was observed to be viable in mouse �ibroblasts even after 48 h of culture</p><p>[153]. Mupirocin is an antibacterial agent that effectively reacts with the pathogens and treats</p><p>various topical wounds like burns and foot ulcers [154]. Yang et al. [155] worked on designing</p><p>multifunctional lidocaine hydrochloride (LID) and mupirocin-loaded</p><p>chitosan/polycaprolactone (CSLD-PCLM) scaffolds using dual spinneret electrospinning and</p><p>studied its varied dual drug release capability (Figure 7b). Nano�ibrous scaffolds showed rapid</p><p>release of LID, sustained release of mupirocin, and enhanced interfacial interaction with blood</p><p>cells while possessing blood coagulation capacity. Re-epithelialization along with collagen de-</p><p>position in the skin defect model of rat was also reported.</p><p>Melatonin is a hormone that exhibits positive effects on wound healing. It possesses abilities</p><p>such as stimulation of �ibroblasts, epithelial cell proliferation, and growth factors for collagen</p><p>�ibers formation [156]. A three-layer chitosan-polycaprolactone/polyvinylalcohol</p><p>melatonin/chitosan-polycaprolactone wound dressing loaded with melatonin was fabricated</p><p>by Minmajidi and group [157] to obtain 45% reduced burst release and sustained melatonin</p><p>release for 11 days. The scaffold was tested on a full-thickness excisional model of rat skin by</p><p>the local administration of the drug. During a similar timeline, Saatchi et al. [158] studied �ive</p><p>different electrospun chitosan-based scaffolds with a wide range of cerium-doped bioactive</p><p>glass-loaded chitosan/polyethylene oxide nano�iber ratio for wound-healing applications. In-</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f007/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f007/</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/figure/polymers-13-03746-f007/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 23/50</p><p>creasing the content of cerium doped bioactive glass enhanced the swelling degree and mecha-</p><p>nical properties (break elongation 28.6%) of the scaffolds. The roles of different nano�iber ma-</p><p>terials used in various wound dressing applications are summarized in Table 4.</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/table/polymers-13-03746-t004/</p><p>02/02/2023 12:19 Uma revisão sobre aplicações avançadas baseadas em nanofibras eletrofiadas: de cuidados de saúde a dispositivos de ene…</p><p>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587893/ 24/50</p><p>Table 4</p><p>Role of nano�iber materials in various wound-dressing applications.</p><p>Materials Property	and	Role Applications Ref.</p><p>Blumea	balsamifera oil loaded cellulose</p><p>acetate nano�iber mats</p><p>The oil loaded nano�iber mats</p><p>showed good antibacterial</p><p>ef�icacy against the E.	coli and</p><p>S.	aureus in agar disc diffusion</p><p>and OD (bactericidal effect</p><p>with time-dependence) tests</p><p>Wound</p><p>dressing</p><p>[151]</p><p>cipro�loxacin-loaded chitosan/polyethylene</p><p>oxide/silica nano�ibers</p><p>For the �irst time, this hybrid</p><p>organic/inorganic material was</p><p>introduced for wound dressing</p><p>and the in vitro and in vivo</p><p>preclinical examination of the</p><p>prepared nano�iber.</p><p>Wound</p><p>dressing</p><p>[152]</p><p>Cellulose acetate/annatto extract nano�ibers</p><p>(CA/annatto)</p><p>Cellulose acetate nano�ibers</p><p>containing crude annatto</p><p>extract potential for biomedical</p><p>applications</p><p>Wound</p><p>dressing</p><p>[153]</p><p>Lidocaine hydrochloride (LID) and</p><p>mupirocin-loaded chitosan/polycaprolactone</p><p>(CSLD-PCLM) Nano�iber scaffolds</p><p>The nano�iber structure</p><p>enhanced the interfacial</p><p>interaction between the</p><p>scaffold and blood cells</p><p>Wound</p><p>dressing</p><p>[155]</p><p>Cerium-doped bioactive glass-loaded</p><p>chitosan/polyethylene oxide nano�iber</p><p>Scaffold in its wet state had</p><p>mechanical properties very</p><p>close to the skin and its</p><p>elongation at break was 28.6%,</p><p>which was only 20% less than</p><p>the required elongation at</p><p>break for skin tissue scaffolds.</p><p>Wound</p><p>dressing</p><p>[158]</p><p>Curcumin loaded</p><p>polycaprolactone-/polyvinyl alcohol-silk</p><p>�ibroin nano�ibers mat</p><p>Polycaprolactone and</p><p>polyvinyl alcohol helped to</p><p>strengthen the nano�iber</p><p>Wound</p><p>dressing</p><p>[159]</p><p>Chitosan -polycaprolactone/polyvinylalcohol</p>

Mais conteúdos dessa disciplina