Prévia do material em texto
482 13 STATISTICAL THERMODYNAMICS energy levels will be written εJ and the degeneracies gJ ; derivatives with respect to β will be assumed to be at constant V . First, an expression for CV is developed. U = −N 1 q dq dβ = −N 1 q d dβ ∑ J gJe−βε J = N 1 q ∑ J gJεJe−βε J Noting that d/dT = −kβ2(d/dβ) CV = dU dT = −kβ2 dU dβ = −Nkβ2 d dβ ⎡⎢⎢⎢⎣ 1 q ∑ J gJεJe−βε J ⎤⎥⎥⎥⎦ = −Nkβ2 ⎡⎢⎢⎢⎣ −1 q 2 dq dβ ∑ J gJεJe−βε J − 1 q ∑ J gJε2J e −βε J ⎤⎥⎥⎥⎦ = −Nkβ2 ⎡⎢⎢⎢⎢⎣ 1 q 2 ⎛ ⎝∑J′ gJ′ εJ′e−βε J′ ⎞ ⎠ ⎛ ⎝∑J gJεJe−βε J⎞ ⎠ − 1 q ∑ J gJε2J e −βε J ⎤⎥⎥⎥⎥⎦ �e numerator and denominator of the �nal term in the bracket are both mul- tiplied by q , and then a factor of 1/q 2 is taken outside the bracket to give CV = −Nkβ2 q 2 ⎡⎢⎢⎢⎢⎣ ⎛ ⎝∑J′ gJ′ εJ′e−βε J′ ⎞ ⎠ ⎛ ⎝∑J gJεJe−βε J⎞ ⎠ − q∑ J gJε2J e −βε J ⎤⎥⎥⎥⎥⎦ = −Nkβ2 q 2 ⎡⎢⎢⎢⎢⎣ ⎛ ⎝∑J′ gJ′ εJ′e−βε J′ ⎞ ⎠ ⎛ ⎝∑J gJεJe−βε J⎞ ⎠ − ⎛ ⎝∑J′ gJ′e−βε J′ ⎞ ⎠ ⎛ ⎝∑J gJε2J e −βε J⎞ ⎠ ⎤⎥⎥⎥⎥⎦ �e product of the sums are next rewritten as double sums CV = −Nkβ2 q 2 ⎡⎢⎢⎢⎣ ∑ J , J′ gJ gJ′ εJεJ′e−β(ε J+ε J′) −∑ J , J′ gJ gJ′ ε2J e −β(ε J+ε J′) ⎤⎥⎥⎥⎦ Taking a hint from the �nal result, consider the double sum ∑ J , J′ (εJ − εJ′)2gJ gJ′e−β(ε J+ε J′) =∑ J , J′ ε2J gJ gJ′e −β(ε J+ε J′) +∑ J , J′ ε2J′ gJ gJ′e −β(ε J+ε J′) − 2∑ J , J′ εJεJ′ gJ gJ′e−β(ε J+ε J′)