Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.

Prévia do material em texto

482 13 STATISTICAL THERMODYNAMICS
energy levels will be written εJ and the degeneracies gJ ; derivatives with respect
to β will be assumed to be at constant V .
First, an expression for CV is developed.
U = −N 1
q
dq
dβ
= −N 1
q
d
dβ
∑
J
gJe−βε J
= N 1
q
∑
J
gJεJe−βε J
Noting that d/dT = −kβ2(d/dβ)
CV = dU
dT
= −kβ2
dU
dβ
= −Nkβ2
d
dβ
⎡⎢⎢⎢⎣
1
q
∑
J
gJεJe−βε J
⎤⎥⎥⎥⎦
= −Nkβ2
⎡⎢⎢⎢⎣
−1
q 2
dq
dβ
∑
J
gJεJe−βε J − 1
q
∑
J
gJε2J e
−βε J
⎤⎥⎥⎥⎦
= −Nkβ2
⎡⎢⎢⎢⎢⎣
1
q 2
⎛
⎝∑J′
gJ′ εJ′e−βε J′
⎞
⎠
⎛
⎝∑J
gJεJe−βε J⎞
⎠
− 1
q
∑
J
gJε2J e
−βε J
⎤⎥⎥⎥⎥⎦
�e numerator and denominator of the �nal term in the bracket are both mul-
tiplied by q , and then a factor of 1/q 2 is taken outside the bracket to give
CV = −Nkβ2
q 2
⎡⎢⎢⎢⎢⎣
⎛
⎝∑J′
gJ′ εJ′e−βε J′
⎞
⎠
⎛
⎝∑J
gJεJe−βε J⎞
⎠
− q∑
J
gJε2J e
−βε J
⎤⎥⎥⎥⎥⎦
= −Nkβ2
q 2
⎡⎢⎢⎢⎢⎣
⎛
⎝∑J′
gJ′ εJ′e−βε J′
⎞
⎠
⎛
⎝∑J
gJεJe−βε J⎞
⎠
−
⎛
⎝∑J′
gJ′e−βε J′
⎞
⎠
⎛
⎝∑J
gJε2J e
−βε J⎞
⎠
⎤⎥⎥⎥⎥⎦
�e product of the sums are next rewritten as double sums
CV = −Nkβ2
q 2
⎡⎢⎢⎢⎣
∑
J , J′
gJ gJ′ εJεJ′e−β(ε J+ε J′) −∑
J , J′
gJ gJ′ ε2J e
−β(ε J+ε J′)
⎤⎥⎥⎥⎦
Taking a hint from the �nal result, consider the double sum
∑
J , J′
(εJ − εJ′)2gJ gJ′e−β(ε J+ε J′)
=∑
J , J′
ε2J gJ gJ′e
−β(ε J+ε J′) +∑
J , J′
ε2J′ gJ gJ′e
−β(ε J+ε J′) − 2∑
J , J′
εJεJ′ gJ gJ′e−β(ε J+ε J′)

Mais conteúdos dessa disciplina