Buscar

INTRODUÇÃO A MINERALOGIA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

INTRODUÇÃO PARA O BANCO DE DADOS DE
MINERAIS
 	                                                                                                                    
O termo mineralogia deriva da palavra latina MINERA, de provável origem céltica, (mina, jazida de minério, filão), de provável origem céltica, que forma o adjetivo do Latim mineralis, “relativo às minas” e o substantivo do Latim minerale (produto das minas), que deu origem ao adjetivo e substantivo português mineral, acrescido do sufixo Grego logia (ciência, tratado, estudo); portanto mineralogia é o estudos dos minerais em todos os seus aspectos.
	A definição de MINERAL possui algumas controvérsias: para alguns é toda substância homogênea, sólida ou líquida, de origem inorgânica e que surge, naturalmente, na crosta terrestre, normalmente com composição química definida e, que se formado em condições favoráveis, terá estrutura atômica ordenada condicionando sua forma cristalina e suas propriedades físicas; para outros, trata-se de substância com estrutura interna ordenada (cristais), de composição química definida, origem inorgânica e que ocorre naturalmente na crosta terrestre ou em outros corpos celestes.
	
	
	As substâncias originadas por atividades ou processos biológicos (animal ou vegetal), a exemplo do carvão, âmbar, marfim, pérola, petróleo, que não se incluem em nenhuma das definições, devem ser denominadas mineralóides, como também as substâncias não cristalinas, excluídas na segunda definição. 
Os minerais são caracterizados pela maneira com que os átomos (cátions e ânions) estão dispostos (estrutura interna) e pela composição química, expressa por fórmula química. A composição química dos minerais pode variar dentro de limites definidos e previsíveis pelas características atômicas, gerando os diferentes grupos de minerais ou soluções sólidas.
	
	
	Os minerais constituem os diferentes tipos de rochas, mono ou poliminerálicas, sedimentares, metamórficas, magmáticas, hidrotermais ou pneumatolíticas. Algumas dessas rochas, devido à granulação muito fina, a exemplo de alguns tipos de basaltos, mostram-se em um exame a olho nu, com aparência de um único mineral (massas homogêneas). Todavia, quando observado ao microscópio petrográfico e em casos extremos ao microscópio eletrônico, verifica-se que são constituídos por várias substâncias cristalinas e, às vezes, também por material amorfo (vidro).
As substâncias produzidas em laboratório, com estrutura interna ordenada e composições químicas definidas, são denominadas cristais ou minerais artificiais ou sintéticos, e as sem estrutura interna, de vidro. Atualmente o homem consegue reproduzir em laboratório, com bastante semelhança, praticamente todos os minerais e gemas naturais. Desta forma, em laboratórios são produzidos o diamante, a safira, o rubi, o quartzo, o espinélio, a esmeralda etc. 
 CLASSIFICAÇÃO DOS MINERAIS: Os minerais, a exemplo dos animais e vegetais, necessitam serem ordenados ou classificados de acordo com princípios científicos para racionalizar o estudo. O princípio básico de classificação elaborado por Linné (1758) no livro “In Nature” serviu de base para outras classificações, como a elaborada por: Berzelius (1827), que estabeleceu o sistema puramente químico;  Niggli o sistema cristalográfico ou classificação isotípica, onde agrupou os minerais com base na sua morfologia (cúbico, hexagonal, ortorrômbico etc.); Machatscki o sistema paragenético (associação de minerais naturais que cristalizam-se juntos).
A classificação mais usada na mineralogia, por melhor atender à necessidades científicas, uma vez que considera a estrutura e composição química dos minerais, foi elaborada por Strunz (1935). Esta classificação subdivide os minerais em 12 grandes grupos, baseando-se na composição química, sendo que esses grupos são subdivididos com base na organização estrutural. Dessa forma tem-se: elementos nativos; sulfetos; sulfossais; óxidos e hidróxidos; halogenetos; carbonatos; nitratos; boratos; sulfatos e cromatos; fosfatos, arsenietos e vanadatos; tungstatos e molibdatos, e silicatos (nesossilicatos, sorossilicatos, ciclossilicatos, inossilicatos, filossilicatos e tectossilicatos).
Existem muitas outras classificações mineralógicas desenvolvidas para atender necessidades específicas, tais como a do elemento constituinte mais importante presente nos minerais, o modo de ocorrência deles na natureza, gêneses e associações paragenéticas, bem como as propriedades físicas. Dentre estas destacam-se:
 Classificação de acordo com o elemento constituinte: Nesse caso os minerais são agrupados de acordo com o elemento químico mais importante, não levando em consideração a composição química dos minerais, as propriedades cristalográficas e físicas. Assim, todos os minerais de Fe importantes vão estar reunidos em uma mesma classe: hematita - Fe2 O3 (trigonal romboédrico), magnetita Fe3O4 (isométrico), siderita FeCO3 (trigonal romboédrico), goethita HFeO2 (ortorrômbico), pirita FeS2 (isométrico), marcassita FeS2 (ortorrômbico),  troillita (FeS) (hexagonal), pirrotita Fe1-xS (hexagonal/ortorrômbico) etc. No caso do cobre, tem-se no mesmo grupo antlerita Cu3(OH)4SO4 (ortorrômbico); atacamita Cu2Cl(OH)3 (ortorrômbico); malaquita Cu2(CO3 )(OH)2 (monoclínico), azurita Cu3(CO3)2 (OH) 2 (monoclínico), bornita Cu5FeS4 (isométrico), calcocita Cu2S (ortorrômbico), calcopirita CuFeS2 (tetragonal), covelita CuS (hexagonal), cuprita Cu2O (isométrico), enargita Cu3AsS4 (ortorrômbico), tetraedrita (Cu,Fe,Zn,Ag)12Sb4S13 (isométrico); etc. 
Classificação segundo a gênese e tipo de ocorrência do mineral: Esta maneira de agrupar os minerais, baseando-se no modo de formação e tipo de ocorrência, foi bastante usada pelos mineralogistas e geólogos e ainda hoje vem sendo usada especialmente na área da Geologia Econômica. Aqui, os minerais são classificados em magmáticos, metamórficos, sublimados, pneumatolíticos, hidrotermais e/ou formados a partir de soluções quentes ou frias.
	Minerais magmáticos são aqueles que resultam da cristalização do magma e constituem as rochas ígneas ou magmáticas. Os magmas podem ser considerados soluções químicas em temperaturas muito elevadas, que originam fases cristalinas de acordo com as leis das soluções, sendo extremamente rara a cristalização de um magma gerar apenas uma fase cristalina; o normal é a presença de vários minerais com composições e propriedades diferentes. De um modo geral, a formação dos minerais nos magmas com o resfriamento e mudanças no ambiente de pressão litostática ou de fluídos, entre outros fatores, é controlada especialmente pela concentração dos elementos e solubilidade dos constituintes na solução magmática. Quanto mais rápido for o processo de cristalização, menores serão as fases cristalinas e maior o volume de material não cristalino (obsidianas ou vidros vulcânicos), podendo chegar a resultar apenas vidro; por outro lado quanto mais lenta a cristalização maiores serão os constituintes, gerando os pegmatitos. 
	
A cristalização dos magmas resultam nas diferentes rochas magmáticas (basaltos, gabros, granitos, dioritos, peridotitos, dunitos, sienitos, piroxenitos etc.) e, às vezes, também alguns depósitos minerais importantes, contendo magnetita, ilmenita, cromita, pirrotita, calcopirita, pentlandita etc. resultantes de segregação devido a insolubilidade (especialmente no caso dos sulfetos) e/ou diferenças de densidade do mineral ou líquido imissível em relação ao magma de origem. Para alguns pesquisadores, esses minerais de segregação, formam uma classe à parte, denominada minerais acumulados por segregação magmática. 
	
	Minerais metamórficos originam-se principalmente pela ação da temperatura, pressão litostática e pressão das fases voláteis sobre rochas magmáticas, sedimentares e também sobre outras rochas metamórficas. Os processos metamórficos (regional, contato, dinâmico, termal, de fundo oceânico, carga, impacto etc.) geram uma grande quantidade de minerais, dentre os quais muitos dificilmenteseriam formados por outros processos, como é o caso do diopsídio, wollastonita, idocrásio, granada, estaurolita, andaluzita, cianita, sillimanita, epidoto, tremolita, actinolita etc. 
	Minerais sublimados são aqueles formados diretamente da cristalização de um vapor, como também da interação entre vapores e destes com as rochas dos condutos por onde passam. O exemplo mais comum de sublimação é a formação da neve, cristalização do gelo a partir de vapor d’água, já associado as atividades ígneas, pelo fato dos magmas possuírem voláteis como a água; o enxofre, o gás carbônico, o cloro, o flúor, o boro e seus compostos voláteis, além de outros constituintes menores, aparecem muitos minerais sublimados.
	
Os voláteis contidos nos magmas concentram-se nas fases residuais e quando os magmas chegam próximo ou na superfície terrestre, as fases voláteis tendem a escapar, aspecto que ocorre nas erupções vulcânicas ou nas fumarolas e aí podem depositar minerais por sublimação direta, formando halita (NaCl - sal-gema ou sal de cozinha), sal amoníaco (NH4Cl), enxofre, silvita (KCl), boratos, cloretos e fluoretos. Outros minerais, a exemplo da hematita, podem aparecer em cavidades vulcânicas, gerados por processos de sublimação, resultante da interação do FeCl3 com o vapor de água, conforme a reação: 2FeCl3 + 3H2O = Fe2O3 + 6HCl.
	
	Minerais pneumatolíticos são formados pela reação dos constituintes voláteis oriundos da cristalização magmática, desgaseificação do interior terrestre ou de reações metamórficas sobre as rochas adjacentes. Nesse processo podem ser formados topázio, berilo, turmalina, fluorita, criolita, cassiterita, wolframita, flogopita, apatita, escapolita etc. Na formação da cassiterita, o composto volátil SnF4 rege com o vapor d’água, segundo a reação: SnF4 + 2(H2O) = SnO2 + 4HF. 
Minerais formados a partir de soluções originam-se pela deposição devido a evaporação, variações de temperatura, pressão, porosidade, pH e/ou eH. Esse processo ocorre na superfície da terra e em diferentes profundidades. Na superfície da Terra as soluções quando não diretamente ligadas a atividades magmáticas, normalmente possuem temperaturas do ambiente, sendo consideradas frias e diluídas, enquanto que aquelas que circulam lentamente em profundidades e/ou estão associadas a atividades vulcânicas são quentes e possuem grande quantidade de cátions e ânions dissolvidos, e podem gerar importantes depósitos minerais. Os principais processos de formação de minerais a partir de soluções estão relacionados abaixo.
-           Evaporação do solvente: neste processo a precipitação ocorre devido à concentração ultrapassar o coeficiente de solubilidade pelo processo de evaporação, fato que ocorre principalmente em regiões quentes e secas, formando sulfatos (anidrita, gipsita etc.), halogenetos (halita, silvita etc.) etc.
-           Perda de gás agindo como solvente: processo que ocorre quando uma solução contendo gases entra em contados com rochas provocando reação a exemplo do que ocorre quando solução aquosa contendo bióxido de carbono entra em contato com rochas calcárias,  caso em que o carbonato de cálcio é parcialmente dissolvido formando o bicarbonato de cálcio (CaH2(CO3)2), composto solúvel na solução. O bicarbonato de cálcio é instável e, por causa do aumento de concentração resultante de evaporação e/ou devido a desgaseificação da solução e a outros fatores, ocorre a reversão da reação de dissolução precipitando o carbonato de cálcio [CaCO3 + H2O +CO2 (( CaH2(CO3)2]. Esse processo pode dar origem às estalactites e estalagmites, ao mármore ônix, ônix das cavernas e  mármore travertino.
-           Diminuição da temperatura e/ou pressão: as soluções de origem profunda resultantes de transformações metamórficas (desidratação, descarbonatação, etc.) ou de cristalizações magmáticas normalmente contêm significativas quantidade de material dissolvido. Quando essas soluções esfriam ou a pressão diminui, formam-se minerais hidrotermais, depositados na forma de veios ou filões. As fontes termais e os géiseres possuem uma grande quantidade de minerais depositados (carbonatos, sulfetos, arsenietos, halogenetos etc.), constituindo-se em evidências da atuação desse processo.
-           Interação de soluções: O encontro de soluções aquosas com solutos diferentes, ao se interagirem, pode   formar composto insolúvel ou com coeficiente de solubilidade bem mais baixo, que se precipita. Como exemplo pode ser citado o encontro de uma solução com sulfato de cálcio (CaSO4) com outra contendo carbonato de bário (BaCO3), resultando na formação de um precipitado de barita (BaSO4).
-           Interação de soluções e cristais: Nesse caso uma solução com determinado composto solúvel reage com minerais originando outras fases minerais, como o que ocorre quando uma solução com sulfato de zinco entra em contato com calcita, contida em mármores ou calcários, originando  smithsonita (ZnCO3) e a anidrita (CaSO4) ou gipsita (CaSO4.2H2O).
-           Interação de gases com soluções: A passagem de gás por uma solução contendo íons pode gerar precipitados, a exemplo do que ocorre com a passagem de H2S (gás sulfídrico) por uma solução contendo cátions de Fe, Cu, Zn etc., formando sulfetos de ferro (pirita FeS2), calcopirita (CuFeS2), esfalerita (ZnS), etc..
-           Ação de organismos sobre soluções: Esse processo resulta da ação dos organismos vivos, animais ou vegetais, sobre as soluções. Dessa forma um grande número de seres marinhos (corais, crinóides, moluscos etc.) extraem o carbonato de cálcio das águas salgadas para formar suas conchas e partes duras de seus corpos, resultando na formação de calcita (CaCO3) e em menor quantidade aragonita (CaCO3) e dolomita [MgCa(CO3)2]. Da mesma forma as esponjas, os radiolários e as diatomáceas provocam a precipitação da sílica amorfa. Algumas bactérias precipitam o ferro (limonita, goethita) ou promovem a deposição do enxofre, nitratos etc.
 
Classificação química: Neste caso os minerais estão arranjados de acordo com as suas composições químicas, resultando nos grupos: elementos nativos, sulfetos, sulfossais, óxidos etc. 
 
Classificação quanto à coloração: Quanto à coloração os minerais classificam-se em: Minerais máficos ou fêmicos, aqueles que possuem cores escuras por conterem ferro, magnésio, titânio, manganês etc., a exemplo da olivina, piroxênios, anfibólios etc., e Minerais félsicos ou siálicos, os que são incolores ou brancos, compostos à base de sílica e/ou alumina, tais como quartzo, feldspato, zeólita etc.
 
A história da utilização dos minerais resulta da observação dos achados arqueológicos. O homem pré-histórico, para cobrir as suas necessidades, fez uso do sílex e outras variedades de quartzo. Nas sociedades neolíticas, o homem usou gemas ( minerais utilizados em joalharia e ourivesaria ) como moeda de troca. Quando descobriu os metais ( ouro, cobre, estanho, ferro ) passou a fazer uso deles. O conhecimento dos metais e a sua utilização caracterizou alguns períodos da antiguidade, como a Idade do bronze ou a Idade do ferro. Actualmente, o homem faz uso directo ou indirecto de quase todos os minerais conhecidos, mais de 2.600 espécies minerais. 
As características fundamentais de espécie mineral são a ordem geométrica, a periodicidade no arranjo da matéria, bem como a natureza dos átomos que entram na composição química da espécie mineral.
No contexto do Terra Planeta "Vivo", estamos preocupados em dar a conhecer alguns aspectos dos minerais, porque eles são os constituintes das rochas que por sua vez fazem parte da composição superficial da Terra.
O domínio da Geologia que estuda os minerais chama-se Mineralogia, sendo um domínio com vários subdomínios, um dos quais é a Cristalografia que se ocupa do estudo dos cristais.
O conceito de mineral é complexo e de difícil definição, de resto como todas as definições. Contudo, atendendo aos nossos objectivos, podemos considerá-los como substâncias naturais, inorgânicas, caracterizados porpropriedades físicas e químicas determinadas. De modo controverso, podemos estender aquela definição aos líquidos e gases encontrados na natureza (água, gases atmosféricos), bem como aos materiais orgânicos fósseis (petróleo – óleos minerais, carvões, resinas, asfaltos e betumes). Porém, quase todos os minerais se encontram no estado sólido e sob a forma cristalina. De acordo com a definição, os minerais são elementos ou compostos químicos, podendo-se expressar por meio de fórmulas químicas que admitem uma pequena variação, mas conservam fixa a estrutura. Deste modo, os minerais são constituídos por átomos dispostos segundo um modelo regular tridimensional característico para cada mineral. A maior parte dos minerais aparece na forma de cristais, apenas visíveis ao microscópio de luz polarizada. Os cristais são sólidos geométricos limitados por faces planas (poliedros) e de composição química definida. As faces planas de um cristal são paralelas aos planos da sua malha elementar. A malha elementar delimita uma porção de espaço dotado de uma certa quantidade de átomos. A malha elementar repetindo-se periodicamente em três direcções do espaço define uma rede de três dimensões que será o suporte geométrico das estruturas atómicas dos cristais. As propriedades geométricas de um cristal, tais como as arestas, ângulos e planos das faces, estão directamente ligadas à sua malha elementar, podendo ser descritas a partir de um certo número de operações de simetria.Os elementos de simetria de um cristal são fundamentalmente o plano de simetria, o eixo de simetria e o centro de simetria. A combinação de todos os elementos de simetria origina 32 classes de simetria, pelas quais se repartem todos os cristais. De acordo com certas características comuns ou parecidas, podem-se distribuir estas 32 classes por sete grandes grupos, os chamados sistemas cristalinos (cúbico, romboédrico, hexagonal, tetragonal, ortorrômbico, monoclínico e triclínico). 
A germinação e o crescimento de um cristal estão sempre dependentes das condições físico-químicas do meio. As condições físico-químicas que determinam a génese dos minerais são, a maioria das vezes, muito complexas e, actualmente, impossíveis de reproduzir em laboratório. Os principais factores condicionantes são a temperatura, a pressão e a concentração dos elementos químicos. Estes factores não são independentes: numa solução, a solubilidade de um composto cresce com a temperatura, salvo raras excepções. Um cristal germinado a partir de uma solução sobressaturada cresce fixando as moléculas (unidades de crescimento) à sua superfície.
As propriedades químicas dos minerais estão estreitamente relacionadas, como é óbvio, com a sua composição química, com a natureza dos átomos e iões que os constituem. Mas dependem também, tal como as propriedades físicas, da sua estrutura, isto é, do arranjo das partículas elementares.
As características das ligações interatómicas nos minerais são tais que podemos considerar uma estrutura como uma associação de esferas cujas dimensões são definidas pelo raio iónico do átomo. Os catiões, as esferas mais pequenas, seriam cercadas por aniões, as esferas maiores. A associação catião mais anião forma, deste modo, um poliedro de coordenação (Ver a figura "Modelo da rede cristalina da halite NaCl"). Os poliedros de coordenação necessitam de uma neutralidade eléctrica. De acordo com este modelo, poderíamos pensar que a cada mineral corresponderia uma única estrutura e uma única composição química, expressa por uma fórmula química perfeitamente definida. Acontece que a maioria dos minerais de igual composição química pertence a uma única classe de simetria e a um único sistema cristalino. Porém, as excepções são muitas devido, fundamentalmente, às diferentes condições de pressão e temperatura em que se formam os minerais. Assim sendo e a título de exemplo vejamos o caso de um mineral chamado olivina. A sua composição química é (Fe, Mg)2(SiO4). Isto explica que o ferro (Fe) e o magnésio (Mg) são miscíveis em todas as proporções, logo a composição química da olivina não é definida. Quando se dá a substituição total do ferro pelo magnésio, passamos a ter a forsterite Mg2(SiO4) com composição química definida, no caso inverso temos a fayalite Fe2(SiO4). Entre estes dois pólos todas as composições intermédias podem existir, mantendo-se a estrutura. Estamos perante um caso de isomorfismo. Podemos, então, dizer que dois elementos são isomorfos, caso do Fe e do Mg, se podem substituir-se mutuamente dentro da mesma estrutura. Como a estrutura não se altera, as substâncias isomorfas apresentam forma cristalina muito semelhante, independentemente, da sua natureza química.
Vejamos, ainda, outra situação de excepção, embora haja muitas mais. O diamante é constituído, quimicamente, só por átomos de carbono (C); outra espécie mineral, a grafite, é igualmente constituída só por átomos de carbono (C). Embora constituídos pela mesma substância química, o carbono, estas duas espécies minerais assumem, ao cristalizar em condições físico-químicas específicas, formas cristalinas muito diversas, com graus de simetria diferentes. Enquanto o diamante cristaliza no sistema cúbico, a grafite cristaliza no sistema hexagonal. Dizemos que estes dois compostos são polimorfos, porque sendo quimicamente idênticos têm simetria diferente. Entre as referidas condições físico-químicas específicas, a temperatura tem uma importância primacial. Por exemplo, se cristais de diamante forem aquecidos a uma temperatura superior a 1500o C, à pressão normal e no vazio, dar-se-á uma transformação lenta da sua rede cristalina na rede cristalina da grafite. A 1900o C, essa transformação duma rede cristalina na outra é rápida. Isto apenas tem interesse académico, já que não existe motivo algum para transformar uma pedra preciosa como o diamante num material muito mais barato e abundante como a grafite.
A ocorrência de espécies minerais com formas cristalinas próprias de outras é um fenómeno relativamente vulgar na Natureza e tem o nome de pseudomorfismo. Neste caso os minerais apresentam falsas-formas. As pseudomorfoses podem ter géneses variadas.
Os minerais apresentam propriedades físicas, químicas e ópticas que permitem fazer a sua caracterização e identificação.
De entre as propriedades físicas destacamos a dureza, cor, cor da risca, transparência e o brilho. A dureza é, por definição, a resistência que um mineral oferece à risca provocada por uma acção mecânica externa. Na prática mineralógica utilizam-se escalas de dureza relativas, representadas por determinados minerais. A mais comum é a escala de Mohs, que contem 10 graus e é composta unicamente por minerais de risca branca. Os minerais estão ordenados segundo o seu grau de dureza, do menos ao mais duro e do seguinte modo: 1-talco, 2-gesso, 3-calcite, 4-fluorite, 5-apatite, 6-ortóclase, 7-quartzo, 8-topázio, 9-corindon, 10-diamante. Exemplificando, um mineral terá uma dureza aproximada de 8½ se risca o topázio mas é riscado pelo corindon
A cor sendo uma das características importantes não é muito fiável. Por exemplo, o berilo pode ser incolor, branco, amarelo pálido, verde, rosa, azulado, roxo. O berilo apresenta um grande número de variedades, segundo a cor. A cor de um mineral depende da absorção de algumas das vibrações da luz branca e da reflexão de outras. A cor resulta, normalmente, da composição química, isto é da presença de átomos de um determinado elemento, na estrutura do mineral (exemplos: a esmeralda, variedade de berilo de cor verde, contêm pequenas quantidades de Cr2O3; a água marinha, outra variedade de berilo de cor azul esverdeado a azul claro, contêm Mn e Cr em pequenas quantidades). Os minerais com Al, Na, K, Ca, Mg, Ba, apresentam cores claras ou são incolores, enquanto aqueles que contêm Fe, Cr, Mn, Co, Ni, Ti, Va, são corados, apresentando, por vezes, cores intensas de acordo com os teores daqueles elementos na sua composição química. Também, o modo como os elementos estão dispostos na redecristalina do mineral e a valência que possuem afectam a cor.
A cor da risca dos minerais, pode-se determinar de uma maneira simples. Riscando o mineral num fragmento de porcelana não vidrada. A cor do pó deixado sobre a porcelana é a cor da risca.
A transparência é a propriedade que os minerais têm de se deixarem atravessar pela luz. Segundo o grau de transparência podemos distinguir os minerais transparentes, semitransparentes, translúcidos, não transparentes e opacos.
O brilho é a propriedade que o mineral tem de reflectir a luz. Depende de numerosos factores, entre eles, o índice de refracção, a dispersão cromática, a absorção da luz e as características da superfície estudada ( lisa ou rugosa). Podemos distinguir vários tipos de brilho: metálico, adamantino, vítreo, gorduroso, nacarado.
Longe de estarmos a ser exaustivos, vamos, ainda, citar mais algumas propriedades dos minerais, pensando naqueles(as) que querem fazer a identificação de minerais, quanto mais não seja para as suas colecções particulares ou, quem sabe, pelo prazer do estudo.
A piroelectricidade consiste no aparecimento de uma polarização eléctrica quando determinado mineral é submetido ao calor.
A piezoelectricidade consiste no aparecimento de uma polarização eléctrica quando determinado mineral é submetido a forças de compressão ou tensão.
A clivagem é a propriedade que os cristais têm de se partirem segundo planos reticulares bem definidos. Estes planos, tal como referimos atrás, são paralelos a possíveis faces do cristal, existindo uma dependência entre a clivagem e a estrutura atómica do mineral. É bem conhecida a clivagem das micas e da calcite.
O estudo das propriedades ópticas dos minerais é complexo e como tal referimos apenas dois aspectos: 1) é necessária a feitura de lâminas delgadas a partir dos minerais e/ou rochas; 2) é necessário um microscópio de luz polarizada para se fazer o estudo das lâminas delgadas. Para mais informação deve ser feita a consulta de bibliografia especializada.
Nos laboratórios mineralógicos modernos, para além do estudo das propriedades atrás referidas, utilizam-se técnicas sofisticadas, tais como difracção de raios X, análise térmica diferencial, análise espectral, microssonda electrónica e outras, para a identificação dos minerais. Todas estas técnicas exigem equipamento de laboratório complexo e muito caro, bem como formação especializada. Porquê a utilização de técnicas sofisticadas? Por várias razões: 1) não podemos esquecer que estamos a trabalhar à escala do átomo, 2) as redes cristalinas dos minerais sofrem vários graus de desordem o que pode afectar profundamente as propriedades do cristal, 3) os cristais com faces desenvolvidas, tais como as fotografias dos exemplares apresentados nesta página, são raros ou pouco frequentes porque, tal como já foi dito antes, para que as faces cresçam é preciso que todas as condições físico-químicas sejam favoráveis; o que acontece, normalmente, é que as condições físicas de temperatura, pressão, espaço e tempo, bem como as condições químicas de concentração de elementos, não são favoráveis ao desenvolvimento de grandes massas cristalinas, mas sim de agregados de diferentes cristais microscópicos que vão dar origem às rochas.
A origem do nome dado às diferentes espécies minerais é bastante diversificada. Existem nomes derivados da composição química do mineral (exemplos: cuprite = óxido de cobre; manganite = hidróxido de manganês), nomes derivados do nome de uma localidade onde o mineral foi descoberto (exemplos: autunite = Autun (França); labradorite = Labrador (Canadá), nomes derivados de uma das propriedades do mineral [exemplos: cor – albite = albus (branco); densidade – barite = barus (pesado); clivagem – ortóclase ou ortose = clivagens ortogonais], nomes derivados do nome de uma pessoa (exemplos: berzelianite = Berzelius; smithsonite = Smithson). Os problemas de nomenclatura não são simples.
Como em todas as ciências naturais, é indispensável classificar os minerais mediante uma sistemática que permita compará-los entre si e identificá-los. Graças ao emprego dos raios X e ao estudo da composição química e das propriedades cristalográficas foi possível repartir, todos os minerais conhecidos, por classes, subclasses e grupos. Esta classificação é denominada por cristaloquímica. Nela os minerais estão agrupados em 9 classes: classe I – elementos nativos e ligas metálicas (metais, semi-metais, metalóides), classe II – sulfuretos,…(sulfuretos simples, duplos; sulfossais…), classe III – halogenetos (halogenetos simples, duplos e oxihalogenetos), classe IV – óxidos e hidróxidos (óxidos simples, múltiplos; hidróxidos, arseniatos,…), classe V – carbonatos, nitratos, boratos, classe VI – sulfatos, cromatos, molibdatos, volframatos, classe VII – fosfatos, arseniatos, vanadatos, classe VIII – silicatos (subclasses – nesossilicatos, sorossilicatos, ciclossilicatos, inossilicatos, filossilicatos, tectossilicatos) e classe IX – minerais orgânicos. Os silicatos formam a classe mais abundante e importante da crosta terrestre. Sendo a classificação cristaloquímica a mais usada, queremos deixar claro que se utilizam outras classificações.
Depois do oxigénio, o silício é o elemento mais abundante da crusta terrestre. Na Natureza só aparece sob a forma de compostos. Por exemplo, o quartzo é um dióxido de silício ( SiO2 ); a anortite é um silicato de alumínio e cálcio ( Ca[Al2Si2O8] ); a moscovite é um silicato de alumínio e potássio ( KAl2[AlSi3O10](OH,F)2 ). Os silicatos são compostos formados pela substituição de átomos de hidrogénio dos diferentes ácidos silícicos (ácido ortosilícico, ácido metasilícico) por metais.
A titulo de curiosidade, sobretudo das mulheres, passamos a referir alguns aspectos das chamadas pedras preciosas. Já na primeira página fizemos uma breve referência às gemas. Costuma-se dividir as gemas em duas categorias: as preciosas e as semipreciosas. As pedras preciosas não são mais que minerais que, particularmente, pela sua raridade e beleza, depois de talhadas (lapidadas), têm um elevado valor comercial. O grupo das pedras preciosas inclui apenas quatro espécies minerais: diamante, rubi (variedade do corindon), safira (variedade do corindon) e a esmeralda (variedade de berilo). O grupo das semipreciosas é formado, essencialmente, por: variedades de berilo, turmalina, topázio, quartzo, opala, turquesa, jade, granada, zircão e feldspatos.
Para terminar este tema, podemos dizer que os minerais se formam a partir de três grandes processos: magmático, metamórfico e sedimentar. No tema Rochas iremos abordar estes grandes e complexos processos naturais.

Continue navegando