Buscar

Anestésicos Locais

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 8 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 1 
 
Anestésicos Locais 
 
Introdução 
 
Anestésicos locais (AL) são substâncias capazes de bloquear, de forma totalmente reversível, a geração e a propagação do 
potencial de ação em tecidos eletricamente excitáveis. 
Cocaína, o primeiro AL, foi obtida da Erythroxylon coca, uma planta originada das montanhas andinas. Sua primeira utilização 
clínica foi anestesia tópica de córnea para procedimento oftálmico, por Köller em 1884. Halstead reconheceu a propriedade da 
droga em interromper a condução nervosa, sugerindo sua aplicação em anestesia de condução de nervos periféricos ou ao nível 
espinhal. 
A primeira raquianestesia foi realizada em 1898, por Bier, para analgesia cirúrgica de joelho com cocaína. A associação de 
adrenalina e glicose a 5% foi idealizada em 1903, por Braun. O objetivo da adição de glicose foi tornar a mistura anestésica mais 
pesada que o liquor, o que permitiu sua "condução" no espaço subaracnóideo: nascia a solução hiperbárica. 
O primeiro AL sintético foi um derivado éster, a procaína, introduzida por Einhörn, em 1905. Em 1943, Löfgren sintetizou a 
lidocaína, um AL amino-amida. A bupivacaína, uma amida de ação mais prolongada, foi sintetizada em 1957, por Ekstam. No final 
da década de 1970, iniciaram-se estudos sobre a utilização de opióides, com Wang, para melhorar a qualidade e duração da 
anestesia. Na década seguinte, os estudos concentraram-se mais na preocupação com a cardiotoxicidade da bupivacaína 
racêmica e na busca de alternativas para sua prevenção. Já na década de 1990 e neste século, identificou-se o menor potencial 
cardiotóxico dos enantiômeros levógiros dos AL amídicos, culminando com a proposta do uso clínico da ropivacaína e da 
levobupivacaína. 
Os AL têm diversos usos clínicos. O uso mais comum é em anestesia e analgesia regional. São utilizados em anestesia/analgesia 
subaracnóidea, peridural, bloqueios periféricos de plexos ou de troncos nervosos, além de infiltração local para bloqueio de 
terminações nervosas (anestesia local propriamente dita). A aplicação contínua ou intermitente através de cateteres permite 
técnicas de analgesia ou anestesia prolongadas. Ainda podem ser aplicados sobre mucosas (tópicas) para propiciar, por exemplo, 
instrumentação de vias aéreas ou procedimentos oculares superficiais. Algumas misturas de AL têm a capacidade de penetração 
no tegumento cutâneo íntegro, o que também permite procedimentos cutâneos superficiais. Os AL também são utilizados por via 
venosa, como antiarrítmicos, sendo a lidocaína uma das drogas de escolha para reversão de taquicardias ventriculares. AL 
administrados por via venosa também podem propiciar diminuição de sensibilidade de vias aéreas (lidocaína 2 mg/kg) durante 
instrumentação, como podem potencializar anestesia geral, como a infusão contínua de procaína utilizada, entre nós, no passado, 
e ainda assim utilizada na Argentina. 
 
Mecanismos de Ação dos Anestésicos Locais 
 
Eletrofisiologia da condução neural 
O potencial de repouso da membrana neuronal é de -60 a -70 mV, sendo o interior negativo em relação ao exterior. Este potencial 
de membrana é, predominantemente, mantido pela ação da bomba de sódio e potássio, que transporta ativamente sódio para o 
extracelular e potássio para o intracelular, contra um gradiente de concentração, portanto, com gasto de energia. A excitabilidade 
do tecido nervoso depende da instabilidade dos gradientes iônicos através da membrana. 
A despolarização ocorre pelo súbito influxo de sódio para dentro da célula através dos canais rápidos de sódio, voltagem-
dependente. Esses canais são estruturas glicoprotéicas localizadas na membrana celular que funcionam como poros aquosos. 
Eles existem em diversas conformações, dependendo da voltagem transmembrana. Na fase de repouso estão na conformação 
fechada, impedindo entrada do sódio devido ao seu pequeno raio anatômico. 
Durante a despolarização da membrana, há mudança na conformação do canal pelo que o sódio passa a penetrar dez vezes mais 
fácil que o potássio. Os canais de sódio são relativamente seletivos, mas outros íons monovalentes, como o lítio, podem 
atravessá-los, porém numa quantidade dez vezes menor. 
Após a despolarização, o potencial transmembrana atinge cerca de +30 mV, no caso do tecido nervoso, o que altera novamente a 
conformação do canal, que irá se fechar. Desse modo, pode ser iniciada a repolarização que ocorre através do efluxo de potássio, 
restaurando o potencial de repouso. 
A onda de despolarização descrita estende-se, na membrana, para áreas vizinhas e, assim, mais canais vão se abrindo 
(retroalimentação positiva). 
 
Classificação e estrutura 
Os AL usados de uso clínico são constituídos de um anel benzênico (porção lipossolúvel) ligado a um grupamento amina (terciária 
ou quaternária dependendo do pK e do pH) através de uma cadeia intermediária que pode ser uma ligação éster (-C-O) ou amida 
(-C-NH). Esse tipo de ligação permite uma das classificações dos AL: amino-ésteres e amino-amidas, respectivamente. Esse tipo 
de classificação também serve como diferencial de biotransformação, já que os amino-ésteres são transformados, por hidrólise, 
em ácido paraaminobenzóico (PABA) através da colinesterase plasmática. Em função desta estrutura - PABA - há um potencial 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 2 
 
alergênico com os amino-ésteres. As amino-amidas sofrem metabolização hepática (citocromo P 450) por N-desalquilação e 
hidrólise e são de meia-vida mais prolongada. Atualmente, os AL mais comumente usados são as amino-amidas. 
A modificação da estrutura química produz efeitos farmacológicos. Por exemplo, o aumento do número de átomos de carbono na 
amina terciária ou no anel aromático modifica lipossolubilidade, potência, taxa de metabolismo e duração de ação. Assim, ao 
substituirmos o grupo butil do grupamento amina da procaína por um anel benzênico, teremos a tetracaína. Em relação à procaína, 
a tetracaína é mais lipossolúvel e dez vezes mais potente, com maior duração de ação em função de uma diminuição do seu 
metabolismo em torno de quatro a cinco vezes. A etidocaína foi sintetizada a partir da lidocaína com a substituição de um grupo 
propil por um grupo etil na amina e adicionando um grupamento etil no carbono alfa da cadeia intermediária. Isto levou a um 
aumento de 50 vezes na lipossolubilidade e de duas a três vezes na duração de ação. Com a halogenação da procaína em 
cloprocaína resulta aumento da taxa de hidrólise em quatro vezes pela colinesterase plasmática, o que reduz quatro vezes a 
duração de ação e a toxicidade sistêmica deste AL. 
A mepivacaína, bupivacaína e ropivacaína são classificadas como pipecolilxilididas. A mepivacaína tem um grupamento metil no 
átomo de nitrogênio piperidínico, isto é, no grupamento amina. A adição de um grupo butil ao nitrogênio piperidínico resulta na 
bupivacaína, que é 35 vezes mais lipossolúvel e que tem potência e duração de ação quatro vezes maior. A ropivacaína apresenta 
um grupamento propil ligado ao nitrogênio piperidínico na molécula e assemelha-se muito à bupivacaína farmacologicamente. 
Os AL também podem ser classificados de acordo com suas propriedades físico-químicas, como será visto adiante. 
 
Farmacodinâmica e mecanismo de ação 
O local básico de ação dos AL é o canal de sódio, que são os próprios receptores das moléculas de AL. Esses canais são 
glicoproteínas de membrana que contêm uma subunidade a maior e uma ou duas subunidades b menores. A subunidade a é o 
local de condução iônica e o sítio de ligação do anestésico local. Essa subunidade apresenta quatro domínios homólogos (D1-D4), 
cada um com seis segmentos transmembrana (S1-S6). As afinidades de ligação dos AL aos canais de sódio dependem da 
conformação do canal que pode estar na forma ativada-aberta,inativada-fechada. No estado de repouso da membrana, os canais 
de sódio estão em equilíbrio entre os estados aberto e fechado. 
A ligação do AL com o canal é favorecida pelos potenciais de ação e por repetidas despolarizações, sendo esse último fenômeno 
chamado de "uso-dependente" ou bloqueio fásico ou bloqueio freqüência-dependente Esse fenômeno refere-se ao fato de que 
quanto mais estimulada for uma membrana, mais canais de sódio ficarão abertos e, portanto, mais AL penetra nesses canais, 
impedindo sua reabertura numa próxima estimulação. A etidocaína, por exemplo, bloqueia nervos motores antes dos sensitivos 
por causa desse fenômeno anteriormente descrito. Seletivamente, os AL podem ligar-se aos canais inativados e, dessa forma, 
estabilizá-los nessa configuração (fechados), mesmo na presença de um potencial de ação. Nesse estado, os canais são 
impermeáveis ao sódio e, portanto, não há despolarização da membrana. 
Ainda permanece desconhecida a percentagem de decréscimo no potencial de ação para que ocorra bloqueio, mas estudos 
recentes em animais sugerem que o potencial de ação precisa ser reduzido em 50% para que ocorra déficit de função neuronal. 
Quando se aplica um AL a um feixe nervoso misto, inicialmente a sensação de temperatura é perdida, seguida da perda da 
sensibilidade dolorosa e, por último, da sensibilidade à pressão ou toque. Assim, foi postulado que as fibras inicialmente 
bloqueadas e mais suscetíveis são aquelas com menor diâmetro, desmielinizadas e que conduzem sensação de temperatura. As 
fibras A (mais calibrosas e que transmitem impulsos táteis) são bloqueadas mais tardiamente. Uma extensão mínima das fibras 
nervosas mielinizadas precisa ser exposta a uma adequada concentração de AL para que ocorra bloqueio. Por exemplo, se 
apenas um nodo de Ranvier é bloqueado, o impulso nervoso pode "pular" esse nodo e se propagar. Assim, para condução do 
bloqueio numa fibra A é necessário expor ao anestésico local, pelo menos, dois ou até três nodos sucessivos (aproximadamente 1 
cm). Ambos os tipos de fibras que conduzem dor, como as fibras C não-mielinizadas e as fibras A - delta, mielinizadas, são 
bloqueados com concentrações similares de AL. As fibras B pré-ganglionares são as mais rapidamente bloqueadas pelos AL, 
apesar de serem mielinizadas (tabela 1). Entretanto, estudos experimentais sugerem que o mecanismo é mais complexo. Na 
verdade, quando um bloqueio local é realizado numa extensão menor ou igual a um centímetro de um nervo, as fibras A exibem 
uma suscetibilidade maior ao bloqueio tônico do que as fibras C. Já as fibras C são mais suscetíveis ao bloqueio uso-dependente. 
Do ponto de vista clínico, ainda deve-se levar em conta a distribuição dos vários tipos de fibras dentro da estrutura do nervo 
periférico. Como os AL difundem-se da periferia do nervo para o seu interior, a seqüência do bloqueio das atividades pode se 
iniciar com bloqueio motor (fibras mais periféricas, embora mais grossas) e culminar com o bloqueio da sensibilidade dolorosa 
(fibras mais centrais, embora mais finas), como acontece no bloqueio dos nervos que compõem o plexo braquial. 
 
Tabela 1. Classificação das fibras nervosas 
Fibra Diâmetro (mm) mielina Veloc. condução Função 
A a 6-22 + 30-120 Motor e propriocepção 
A g 3-6 + 15-35 Tônus muscular 
A d 1-4 + 5-25 Dor, toque, temperatura 
B < 3 + 3-15 Função autonômica 
C 0,3-1,3 - 0,7-1,3 Dor, temperatura 
* Extraído de Barash PG, Cullen BF, Stoelting: "Clinical Anesthesia", 4 ed., pg. 451. 
 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 3 
 
Além disso, o bloqueio diferencial de fibras mais grossas ou mais finas é também dependente do tipo de AL utilizado. Aqueles com 
um grupamento amida, com elevado pK e baixa lipossolubilidade são mais potentes bloqueadores de fibras C. 
Todos os AL utilizados são bases fracas que podem existir tanto na forma hidrossolúvel, lipossolúvel ou na forma neutra. A 
combinação do pH do meio e do pK ou constante de dissociação da droga determina a quantidade de composto que existe em 
cada forma. A penetração da forma lipossolúvel através da membrana lipídica neuronal parece ser a primeira forma de acesso do 
AL para dentro da célula, embora possa ocorrer algum acesso pela forma hidrofílica através do poro aquoso do canal de sódio. A 
diminuição do pK da droga em relação a um dado pH do meio pode aumentar a quantidade da forma lipofílica, facilitando a 
penetração da droga na membrana neuronal. A lipossolubilidade determina atividade e potência do AL e pode ser usada como 
critério de classificação (tabela 2). 
Embora o aumento da lipossolubilidade facilite a penetração na membrana, pode, também, resultar num aumento do seqüestro do 
AL na mielina e em outros compartimentos lipídicos. Portanto, o aumento na lipossolubilidade, freqüentemente, atrasa o início de 
ação da droga, aumentando a latência. Similarmente, a duração de ação é aumentada se a absorção do AL pelos compartimentos 
lipídicos como a mielina é maior, funcionando como um depósito com liberação lenta dos AL. Assim, quanto mais lipossolúvel, 
maior a duração de ação. 
O grau de lipossolubilidade e, portanto, a potência, aumentam em função da quantidade de átomos de carbono da molécula. A 
bupivacaína apresenta o grupo butil ligado ao grupo amina e tem o maior coeficiente de solubilidade (27,5). Já a lidocaína 
apresenta o grupo metil e tem o menor coeficiente de lipossolubilidade (2,9). A ropivacaína tem sua ligação com o grupamento 
propil. 
O grau de ligação protéica também afeta a atividade do AL, já que a forma livre é que tem atividade farmacológica. A a-1 
glicoproteína ácida é a proteína com a qual o AL tem maior afinidade, mas também pode haver ligação com a albumina. O 
aumento da taxa de ligação protéica está relacionado com aumento da duração de ação. A ligação à proteína está relacionada 
com menor filtração glomerular. Assim, a bupivacaína é o AL que tem maior ligação protéica (97%) e, portanto, com maior duração 
da anestesia, seguida pela ropivacaína (94%) e lidocaína (65%). (tabela 2) 
Uma outra propriedade importante e que, atualmente, está sendo uma das mais utilizadas para classificação dos AL, é a 
estereoisomeria. Uma substância química tem a propriedade de apresentar isômeros quando possui a presença de um carbono 
assimétrico na molécula. Os estereoisômeros podem ser levógiros (S de sinistro) ou dextrógiros (R de retus). A notação da 
isomeria inclui ainda o sinal + ou - na dependência do sentido da rotação da luz polarizada que passa pela solução (+ quando no 
sentido horário e - quando anti-horário). Assim, os estereoisômeros podem ter a notação S(+), S(-), R(+) ou R(-). Os AL 
pipecoloxilidídicos são também chamados de drogas quirais por possuírem um átomo de carbono assimétrico. A mepivacaína e a 
bupivacaína, utilizadas na prática clínica, são misturas racêmicas (50:50) de enantiômeros. Os enantiômeros de uma droga 
apresentam propriedades farmacocinéticas, farmacodinâmicas e toxicidade diferentes. Assim, ao administrarmos uma substância 
racêmica é como se estivéssemos administrando duas drogas distintas. É importante ressaltar que a lidocaína não apresenta 
quiralismo e que a ropivacaína tenha sido lançada no mercado exclusivamente levógira. Os aminoácidos dos canais de sódio dos 
nervos e do miocárdio são todos levógiros e, portanto, a ligação e o desligamento de um AL levógiro puro ocorrem com mais 
facilidade e mais rapidamente. Já a bupivacaína é encontrada na forma racêmica [50% S(-) e 50% R(+)] e tem uma ligação mais 
estável nos canais de sódio, levando a uma maior toxicidade cardíaca (teoria da estereosseletividade). Os enantiômeros S da 
mepivacaína e da bupivacaína (levobupivacaína) parecem ser menos tóxicos do que as misturas racêmicas desses AL. 
Outra propriedade dos AL constitui a chamada concentraçãoefetiva mínima (CEM), que é a menor concentração do AL capaz de 
bloquear a condução do impulso nervoso. Essa concentração é afetada pelo tamanho da fibra nervosa (fibras C, mais finas, são 
mais sensíveis), acidose, hipocalemia e hipercalcemia (que bloqueiam a ação dos AL), freqüência de estimulação e temperatura. 
Um aumento no pH ou uma alta freqüência de estimulação diminuem a CEM. A CEM das fibras motoras é, aproximadamente, 
duas vezes maior que a das fibras sensoriais e, portanto, anestesia sensorial não precisa ser sempre acompanhada de bloqueio 
motor. Apesar de não ocorrer mudança na CEM, menos AL é necessário para a anestesia raquidiana do que para a peridural 
devido ao melhor acesso do AL às fibras nervosas no espaço subaracnóideo. 
Os AL são bases fracas que têm valores de pK geralmente acima do pH fisiológico. Em conseqüência, menos da metade dos AL 
estão na forma não-ionizada (molecular) no pH fisiológico. Se tomarmos a tetracaína como exemplo, em pH de 7,4, somente 5% 
dela (pK de 8,5) está na forma molecular. Se o AL é adicionado a um meio ácido (local infectado) aumenta-se a fração ionizada da 
droga, o que deteriora sua penetrabilidade (aumentando a latência). Assim, podemos observar que aqueles AL com pK próximo ao 
pH fisiológico têm início de ação mais rápido (por apresentarem maior fração na forma molecular) (tabela 1). 
 
Tabela 2. Propriedades físico-químicas dos AL 
Anestésico local pKa % ionizada (7,4) ipossolubilidade % ligação protéica 
AMIDAS 
Bupivacaína 8,1 83 3420 95 
Etidocaína 7,7 66 7317 94 
Lidocaína 7,9 76 366 64 
Mepivacaína 7,6 61 130 77 
Prilocaína 7,9 76 129 55 
Ropivacaína 8,1 83 775 94 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 4 
 
ÉSTERES 
Cloroprocaína 8,7 95 810 - 
Procaína 8,9 97 100 6 
Tetracaína 8,5 93 5822 94 
AL possuem uma atividade vasodilatadora intrínseca que, aparentemente, influencia a potência e duração de ação. Assim, a 
lidocaína apresenta uma atividade vasodilatadora maior que a mepivacaína e isso resulta numa maior absorção sistêmica e, 
portanto, menor duração de ação. Se compararmos a etidocaína com a bupivacaína, apesar de possuírem propriedades 
vasodilatadoras similares, as concentrações plasmáticas da primeira excedem as da última após injeção epidural, provavelmente 
pela maior lipossolubilidade da etidocaína com maior seqüestração tecidual. 
Outro aspecto importante a ser ressaltado é a taquifilaxia dos AL: taquifilaxia é definida como diminuição da eficácia de uma 
droga após repetidas injeções e, nesse caso, é explicada pelo eventual consumo de tampões extracelulares pela solução ácida de 
AL (pH entre 4 e 6) com menor restauração da base anestésica ativa. A adição de adrenalina favorece a taquifilaxia, pois a 
vasoconstrição local favorece a isquemia e aumenta a acidez. Caso haja adição de bicarbonato à solução ao invés de sais ácidos, 
pode haver melhora do bloqueio. 
Farmacocinética 
Absorção e distribuição: a absorção é influenciada por dose, local de injeção, características de cada droga e uso ou não de 
vasoconstritores. Geralmente, áreas ricamente vascularizadas têm uma maior absorção. Esta diminui dependendo do local onde a 
droga é injetada e, portanto, na seguinte ordem: intercostal> caudal> epidural> plexo braquial> ciático/femoral. Quanto maior a 
dose injetada maior será a absorção sistêmica e os picos de concentração plasmática (Cmáx). Essa relação é quase linear e não é 
afetada pela concentração e velocidade de injeção. Dependendo da droga utilizada, após o término da injeção há um rápido 
decréscimo na concentração plasmática, que é acompanhada pelo aumento da distribuição para tecidos mais ricamente 
vascularizados (captação inicial ou fase a) como coração, cérebro e rins. A lipossolubilidade é importante na redistribuição. Após a 
distribuição para tecidos mais perfundidos, o AL é redistribuído para os tecidos menos perfundidos (fase b), incluindo músculos 
esqueléticos e gordura. Além dos fatores anteriormente mencionados, idade, estado cardiovascular, função hepática também 
influenciam as concentrações plasmáticas dos AL. 
Os pulmões são capazes de extrair drogas como a lidocaína, bupivacaína e prilocaína da circulação, limitando, portanto, a 
concentração sistêmica atingida pela droga, diminuindo o volume de distribuição. No caso da bupivacaína, a primeira passagem 
nos pulmões é dose-dependente. Propranolol diminui a extração pulmonar de bupivacaína devido à competição por um mesmo 
receptor. Ao mesmo tempo, o propranolol diminui o clearance plasmático da bupivacaína, provavelmente por diminuir o fluxo 
hepático ou inibir o próprio metabolismo no fígado. 
Quanto ao clearance e metabolismo dos AL tipo amida, é representado, principalmente, pelo metabolismo hepático (enzimas 
microssomais). O estudo da farmacocinética dos ésteres é um pouco limitado, já que eles apresentam uma meia-vida mais curta 
pela rápida hidrólise pelas colinesterases plasmáticas e no fígado (tabela 3). 
• Amidas: prilocaína tem o metabolismo mais rápido; lidocaína e mepivacaína são intermediários e etidocaína, bupivacaína e 
ropivacaína têm o metabolismo mais lento das amidas. A primeira etapa na metabolização é a conversão da base em ácido 
aminocarboxílico. O metabolismo completo inclui hidroxilação e N-desalquilação do ácido aminocarboxílico. 
• Ésteres: sofrem hidrólise pela colinesterase plasmática, principalmente no plasma e em menor extensão no fígado. A taxa de 
hidrólise depende do AL, sendo a cloroprocaína a mais rápida, procaína a intermediária e a tetracaína a mais lenta. Os 
produtos metabólicos são farmacologicamente inativos, que são o ácido paraaminobenzóico (PABA), que é responsável por 
reações alérgicas. A única exceção de um éster que não sofre hidrólise é a cocaína, que apresenta metabolismo 
predominantemente hepático. Sabe-se que quanto maior a toxicidade sistêmica, menor a taxa de hidrólise. É importante 
ressaltarmos que a colinesterase plasmática está diminuída na gestação, doenças hepáticas, uremia e em pacientes na 
vigência de tratamento com quimioterápicos. Outro aspecto a ser considerado é que no líquido cerebrospinal há uma 
concentração muito pequena ou quase nula dessa enzima. Portanto, quando um éster é injetado no espaço subaracnóideo, 
sua ação cessa apenas quando ele é reabsorvido para a circulação sistêmica. 
Quanto à eliminação renal, sabe-se que a baixa solubilidade dos AL em água limita sua excreção renal como droga in natura a, 
aproximadamente, 5%. A exceção é a cocaína, em que 10 a 15% da droga é excretada na urina sem metabolização. Produtos do 
metabolismo como o PABA também são eliminados na urina. 
Freqüentemente, o comportamento farmacocinético de uma droga é difícil de predizer, já que características individuais podem 
afetá-lo. Sabe-se que há aumento dos níveis séricos dos AL nos extremos de idade, isto é, pessoas muito jovens ou muito idosas, 
devido a um clearance diminuído e absorção aumentada. 
 
Tabela 3. Parâmetros farmacocinéticos dos AL 
Anestésico local VD(l/kg) Cl (l/kg/h) T1/2 (h) 
Bupivacaína 1,02 0,41 3,5 
Levobupivacaína 0,78 0,32 2,6 
Cloroprocaína 0,50 2,96 0,11 
Etidocaína 1,9 1,05 2,6 
Lidocaína 1,3 0,85 1,6 
* Extraído de Barash PG, Cullen BF, Stoelting RF: "Clinical Anesthesia" 4 ed., pg. 453. 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 5 
 
Mepivacaína 1,2 0,67 1,9 
Prilocaína 2,73 2,03 1,6 
Procaína 0,93 5,62 0,14 
Ropivacaína 0,84 0,63 1,9 
Toxicidade dos Anestésicos Locais 
 
Sistêmica 
• Sistema Nervoso Central: os AL rapidamente atravessam a barreira hematoencefálica e a toxicidade no SNC pode ocorrer 
tanto por injeçãodireta no vaso quanto por absorção sistêmica. Os sinais de intoxicação são dose-dependentes. Baixas doses 
produzem depressão, enquanto altas doses resultam em excitação e convulsão. Os efeitos dos AL no SNC são bloquear 
neurônios inibitórios. Geralmente, uma baixa ligação às proteínas plasmáticas e um baixo clearance aumentam o potencial de 
toxicidade. Acidose, aumento na PaCO2 também aumentam o risco de toxicidade, talvez pelo aumento do fluxo sangüíneo 
cerebral. A adição de epinefrina diminui o grau de toxicidade, talvez pela diminuição da taxa de absorção sistêmica. No 
entanto, o limiar convulsivo com a administração de lidocaína intravenosa em ratos é diminuído em, aproximadamente, 42% 
com a injeção de epinefrina (1:100.000), norepinefrina ou fenilefrina. Esse mecanismo de aumento da toxicidade ainda não 
está muito claro, já que esses estudos são recentes, mas acredita-se que esteja relacionado com o desenvolvimento de 
hipertensão relacionada com a vasoconstrição. Um estado circulatório hiperdinâmico pode alterar ainda mais a 
permeabilidade da barreira hematoencefálica e aumentar a distribuição do AL no cérebro. Além disso, esse estado 
hiperdinâmico diminuiria o clearance hepático por uma diminuição de fluxo local. Náuseas e vômitos ocorrem, principalmente, 
por hipóxia bulbar por causa da hipertensão arterial, tremores e convulsões. 
• Cardiovascular: geralmente, doses muito maiores de AL são necessárias para produzir toxicidade cardiovascular do que no 
sistema nervoso central (tabela 4). Da mesma forma, a toxicidade cardiovascular do AL está relacionada com sua potência. 
Observou-se que agentes mais lipossolúveis com bupivacaína, levobupivacaína e ropivacaína têm uma seqüência diferente 
de cardiotoxicidade do que os agentes menos potentes. Doses aumentadas de lidocaína levam a hipotensão, bradicardia e 
hipóxia, enquanto a bupivacaína leva a colapso cardiocirculatório por disritmias ventriculares, difíceis de ser revertidas com 
ressuscitação. A toxicidade cardiovascular pode ser mediada no SNC. Tem sido demonstrado que o sistema nervoso 
central e periférico estão envolvidos no aumento da toxicidade pela bupivacaína. O núcleo do trato solitário é um local 
importante de controle autonômico do sistema cardiovascular. Além disso, a bupivacaína tem efeitos no sistema nervoso 
autônomo periférico, com efeito inibitório potente nos reflexos simpáticos. Ainda apresenta um potente efeito vasodilatador 
direto. A toxicidade cardiovascular também ocorre diretamente no músculo cardíaco. Quanto mais potente o AL, maior o 
efeito direto tóxico no miocárdio. Em um experimento com ratos, foi verificado que tanto a lidocaína quanto a bupivacaína ou a 
ropivacaína apresentavam efeitos equivalentes na contratilidade miocárdica, mas em compensação a bupivacaína e lidocaína 
apresentaram maior efeito na eletrofisiologia cardíaca do que a lidocaína (prolongamento do QRS). Apesar de todos os AL se 
ligarem aos canais de sódio no miocárdio, a bupivacaína apresenta maior afinidade pelos canais de sódio em repouso ou 
inativados do que a lidocaína. 
 
Os AL ligam-se aos canais de sódio durante a sístole e se dissociam durante a diástole. No entanto, a bupivacaína dissocia-se dos 
canais mais vagarosamente que a lidocaína (fast-in, slow-out). A dissociação é tão vagarosa que em freqüências cardíacas 
normais não há tempo suficiente para o desligamento, com acúmulo de AL nos canais de sódio. A lidocaína dissocia-se 
rapidamente (fast-in, fast-out), com menor acúmulo miocárdico. A explicação para o que foi apresentado anteriormente é pela 
estereoisomeria. Sabe-se que os canais de sódio são dextrógiros. Assim, drogas que possuam maior quantidade de forma 
dextrógira terão maior afinidade pelos canais de sódio, dificultando o desligamento. Como foi dito anteriormente, a bupivacaína é 
uma mistura racêmica, enquanto a ropivacaína apresenta-se somente na forma levógira e a lidocaína não apresenta quiralismo. 
Daí as tentativas atuais de se criar a levobupivacaína, que será comentada mais adiante. 
O melhor tratamento para a intoxicação por AL é a prevenção, no sentido de evitar injeção intravenosa inadvertida, respeitar os 
limites tóxicos de cada droga, realizar dose-teste (injeção de 3 ml da solução, com adrenalina, observando sinais como aumento 
de 20% na freqüência cardíaca basal ou na pressão arterial), mesmo em crianças. A negatividade do teste não exclui a 
possibilidade de injeção intravascular. Deve-se dar suporte ventilatório e cardiovascular, com intubação orotraqueal, se necessário, 
uso de soluções intravenosas para manter euvolemia e pode-se usar drogas como tiopental (50-100 mg), midazolam (2-5 mg) ou 
propofol (1 mg/kg) em caso de convulsões. Depressão cardiovascular com AL menos potentes, como a lidocaína, geralmente 
cursa com hipotensão e bradicardia e são mais fáceis de reverter, podendo ser usada efedrina (10-30 mg) ou atropina (0,01 
mg/kg). Já com AL mais potentes, como a bupivacaína, geralmente são necessárias medidas de ressuscitação cardiopulmonar e 
tratamento de disritmias. 
 
 
 
 
 
 
*Extraído de Barash PG, Cullen BF, Stoelting RF: "Clinical Anesthesia" 4 ed., pg. 458. 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 6 
 
 
 
 
 
Tabela 4. Toxicidade relativa ao nível de SNC e relação de dose necessária para toxicidade cardiovascular versus dose 
para toxicidade ao nível de Sistema Nervoso Central dos AL (CV:SNC) 
Anestésico local Toxicidade SNC CV:SNC 
Bupivacaína 4,0 2,0 
Ropivacaína 2,9 2,2 
Levobupivacaína 2,9 2,0 
Etidocaína 2,0 4,4 
Tetracaína 2,0 
Mepivacaína 1,4 7,1 
Prilocaína 1,2 3,1 
Lidocaína 1,0 7,1 
Cloroprocaína 0,3 3,7 
Procaína 0,3 3,7 
* Extraída de Barash PG, Cullen BF, Stoelting RF "Clinical Anesthesia" 4 ed., pg. 458; 
SNC: sistema nervoso central; CV:SNC: relação de dose para toxicidade cardiovascular e em sistema nervoso central. 
 
• Reações alérgicas: São raras as manifestações do tipo alérgico relacionadas aos AL e envolvem as do tipo I (mediadas por 
IgE) ou tipo IV (imunidade celular). As reações são mais comuns com AL tipo amino-ésteres por causa do metabolismo para 
PABA 
 
Nervosa local 
O mecanismo de toxicidade nervosa ainda é motivo de discussões, mas acredita-se que os AL causem lesão em células de 
Schwann, diminuição do fluxo sangüíneo neural com conseqüente isquemia. Os AL nas concentrações clínicas utilizadas são 
drogas seguras aos nervos periféricos. No entanto, no espaço subaracnóideo, os nervos são mais suscetíveis à toxicidade. 
Concentrações elevadas do AL como lidocaína 5% ou bupivacaína 1% ou doses muito elevadas de adrenalina são neurolíticas. A 
partir de 1991, há relatos de síndrome da cauda eqüina após raquianestesia com lidocaína 5% hiperbárica com massa final acima 
de 80 mg. Existem muitos estudos in vitro a respeito do assunto e esses sugerem que a lidocaína e a tetracaína podem causar 
neurotoxicidade, mesmo com as soluções clinicamente utilizadas. A administração espinhal de bupivacaína, mepivacaína e 
etidocaína parece aumentar o fluxo sangüíneo nervoso, enquanto a ropivacaína parece causar vasoconstrição e reduzir o fluxo 
sangüíneo espinhal. Quanto à radiculopatia transitória, quatro casos foram descritos em 1992 após injeção de lidocaína a 5% no 
espaço subaracnóideo, com seu acúmulo sacral em posição de litotomia, sem intercorrências. No dia seguinte, o paciente passou 
a apresentar uma dor forte do tipo muscular entre a nádega e a panturrilha, com duração de alguns dias, que foi tratada com 
diclofenaco. Não houve fraqueza das pernas ou insensibilidade perineal. A incidência varia de 0,4 a 22%, sendo mais comum após 
raquianestesia com lidocaína 5%. 
• Anestésico local e conservantes: Muitos AL apresentam conservantes e/ou antioxidantes, sendo associados com aneurotoxicidade. A maior parte dos preparados de soluções dos AL contém 0,1% de metilparabeno como agente 
antimicrobiano. Este agente é efetivo na prevenção da contaminação por bactérias e fungos, sendo pouco limitado contra 
bactérias Gram-negativos. Sua estrutura é semelhante ao ácido paraaminobenzóico, sulfonamidas e aos AL tipo éster, todos 
com potencial para desenvolver reações tipo alérgicas. 
• Anestésicos locais com estabilizantes: Os AL com vasoconstritores podem conter um ou mais antioxidantes e/ou agentes 
estabilizantes: metabissulfito de sódio, ácido ascórbico, ácido cítrico, dentre outros. Os componentes são associados aos AL 
para aumentar seu tempo de conservação e durabilidade quando autoclavados. Embora muitas destas substâncias também 
sejam usadas em produtos alimentares e bebidas (vinhos), o metabissulfito de sódio apresenta uma toxicidade importante. 
 
Novas perspectivas para os anestésicos locais 
• Anestésicos locais com menor toxicidade sistêmica: Sabe-se que a bupivacaína é um dos mais potentes AL, com longa 
duração de ação, mas que ao mesmo tempo apresenta mais efeitos tóxicos em relação aos outros AL, como explicado 
anteriormente. O relatório Allbright ao FDA, nos Estados Unidos, apontou algumas mortes de gestantes relacionadas com a 
bupivacaína a 0,75% em anestesia peridural, na década passada. Embora questionável, o relatório levou à limitação da 
concentração da bupivacaína para uso obstétrico a, no máximo, 0,5%. A partir destas preocupações, pesquisas vêm sendo 
desenvolvidas no sentido de criar drogas tão eficazes quanto a bupivacaína e que fossem menos tóxicas. Ropivacaína e 
levobupivacaína são, aproximadamente, eqüipotentes à bupivacaína racêmica para anestesia epidural e de plexos, enquanto 
têm 30% a 40% menos efeitos sistêmicos em estudos em animais e em humanos (tabela 5). Aparentemente, a menor 
toxicidade seja devida à reduzida afinidade pelo tecido cerebral e miocárdico com essas preparações isoméricas (figuras 1 e 
2). 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 7 
 
A levobupivacaína é uma droga preparada com 100% de componente levógiro. Na prática, apresenta uma grande dissociação 
entre bloqueio motor e sensitivo, semelhante ao que se obtém com a ropivacaína, o que representa, para algumas situações 
clínicas, um inconveniente. Atualmente, estudos estão sendo realizados no sentido de incrementar o bloqueio motor da 
levobupivacaína, para as situações clínicas indicadas, com o acréscimo de dextrobupivacaína, compondo uma mistura com 
excesso enantiomérico na relação de 75% de componente levógiro e 25% de componente dextrógiro. 
 
Tabela 5. Toxicidade da bupivacaína e levobupivacaína por injeção venosa em ovelhas 
Dose (mg) Convulsões (%) Número de Disritmias ventric. 
Levobupivacaína 
75 43 0 
100 83 0 
150 100 44 
200 100 100 
Bupi-racêmica 
75 83 0 
100 100 92 
150 100 183 
200 100 231 
* Extraído de Barash PG, Cullen BF, Stoelting RF "Clinical Anesthesia" 4 ed., pg. 464. 
 
 
 
 
 
 
 
 
Efeitos da ropivacaína e bupivacaína 
endovenosa 
*Extraído de Barash PG, Cullen, BF Stoelting
RF: "Clinical Anesthesia" 4 ed., pg. 464. 
Figura 1 
Efeitos da infusão de levobupivacaína e 
bupivacaína racêmica em humanos 
sobre o QTc (ms) 
*Extraído de Barash PG, Cullen, BF Stoelting RF:
"Clinical Anesthesia" 4 ed., pg. 464. 
Figura 2 
 
 
 
Sociedade Brasileira de Anestesiologia – Curso de Ensino à Distância 2002 8 
 
 
 
 
• Anestésicos locais de longa duração: Estão sendo pesquisadas preparações que possam agir por longos períodos (até sete 
dias). Parecem ser muito úteis no tratamento de dor crônica e aguda para infiltração local ou bloqueio de nervos periféricos. 
Para aumentar a duração do bloqueio, mais do que criar novos agentes está sendo mudada a maneira como são 
apresentados: encapsulados em lipossomas, microesferas ou em polímeros, com liberação lenta. Essas formas de 
apresentação também reduziriam a toxicidade dos AL no cérebro e miocárdio, por uma menor captação tecidual. 
• Combinações (misturas) de anestésicos locais: Os estudos mais recentes quanto às misturas de AL de latência curta como 
a cloroprocaína, lidocaína com AL de ação longa, como a bupivacaína e a etidocaína ainda não permitem conclusões sobre a 
efetividade dessa mistura porque a mistura, em função de pKa e pH das soluções isoladas, parece comprometer ionização 
dos agentes individualmente, o que deteriora a qualidade do conjunto. Entretanto, a toxicidade sistêmica parece ser aditiva. 
 
Referências 
1. Barash PG, Cullen BF, Stoelting RK. Clinical Anaesthesia. 4 ed., 2001;449-469. 
2. De Jong RH. Local anesthetics. St. Louis. Mosby-Year Book, Inc. 1994. 
3. Groban L, Deal DD, Vernon JC et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, 
levobupivacaine and ropivacaine in anesthetized dogs. Anesth Analg 2001;92:37-43. 
4. Imbelloni LE. Tratado de Anestesia Raquidiana. 1 ed., 2002;22-29. 
5. Morgan EGJ, Mikhail MS, Murray MJ. Clinical Anesthesiology. 3 ed., 2002; 233-240. 
6. Shneider M et al. Transient neurologic toxicity after hyperbaric subaracnoid anesthesia. Anest Analg 1993;76:1154-1157. 
7. Stoelting RKS. Pharmacology and Phisiology in Anesthetic Practice. 3 ed., 1999;158-180. 
8. Tetzlaff J. Clinical pharmacology of local anesthetics. Woburn MA: Butterworth-Heinemann, 2000. 
9. Ronald J. Faust et al. Anesthesiology Review. 3 ed., 2002.

Continue navegando