Buscar

Apostila Geologia

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 132 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 132 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 132 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS 
CENTRO DE CIÊNCIAS, EXATAS, AMBIENTAIS E DE TECNOLOGIAS 
 
 
 
GEOLOGIA 
 
 
 
ENGENHARIA CIVIL 
 
 
2014 
2 
 
 
RESUMO DO PROGRAMA 
- Introdução à Geologia; Formação da Crosta Terrestre 
- Mineralogia; 
- Tectônica de placas; 
- Petrografia – Rochas Magmáticas; Rochas Sedimentares e Rochas Metamórficas 
- Formação e Classificação dos Solos; 
- Geomorfologia; 
- Mapas e Estruturas (Perfis); 
- Métodos de Investigação do Subsolo (indiretos e diretos); 
- Geologia e Meio Ambiente; 
- Materiais Naturais de Construção; 
- Hidrogeologia – Águas de Superfície e Águas Subterrâneas 
 
BIBLIOGRAFIA (Básica) 
- GEOLOGIA GERAL 
 Viktor Leinz e Sérgio Estanislau do Amaral 
 Companhia Editora Nacional 
 
- GEOLOGIA DE ENGENHARIA – ABGE 
 Antonio M. dos Santos Oliveira 
 Sérgio N. Alves de Brito 
 Associação Brasileira de Geotecnia e Engenharia 
 
- FUNDAMENTOS DA GEOLOGIA 
 Reed Wicander / James S. Monroe 
 Revisão Técnica e Adaptação: Antonio Maurício Cordeiro 
 Editora Cengage Learning 
3 
 
BIBLIOGRAFIA (COMPLEMENTAR) 
- GEOLOGIA APLICADA A ENGENHARIA 
 Nivaldo José Chiossi 
 Grêmio Politécnico 
 
- MANUAL DE MINERALOGIA 
 Cornelius S. Hurlbut Jr. 
 Livros Técnicos e Científicos Editora 
 
- CURSO PRÁTICO DE GEOLOGIA GERAL 
 Antenor Braga Paraguassu, Nilson Gandolf e Paulo M. B. Landin 
 USP – São Carlos 
- DIÁLOGOS GEOLÓGICOS – É PRECISO CONVERSAR MAIS COM A TERRA 
 Álvaro Rodrigues Santos – ABGE 
 
- GLOSSÁRIO GEOLÓGICO 
 Viktor Leinz e Othon Henry Leonardos 
 Companhia Editora Nacional 
 
- DICIONÁRIO GEOLÓGICO – GEOMORFOLÓGICO 
 Antonio Teixeira Guerra 
 Instituto Brasileiro de Geografia e Estatística 
 
- PROSPECÇÃO GEOTÉCNICA DO SUBSOLO 
 Maria José C. Porto A. de Lima 
 Livros Técnicos e Científicos Editora S/A 
- GLOSSÁRIO DE TERMOS TÉCNICOS DE GEOLOGIA DE ENGENHARIA 
 Antonio Antenor Tognon 
 ABGE 
- NORMAS TÉCNICAS DA ABNT E DA ABGE 
4 
 
 
1º Parte: Introdução à Geologia 
DIVISÃO DA GEOLOGIA 
a) Geologia Teórica ou Natural; 
 
b) Geologia Aplicada (Geotecnia ou Geologia de Engenharia) 
 
Obs. Para Engenharia: FÍSICA + APLICADA 
 BÁSICO + GEOTECNIA 
 
DEFINIÇÃO 
GEOLOGIA é o estudo da Terra, sua origem e transformações, através da análise das 
rochas. 
GEO - TERRA (Geologia aplicada a Engenharia Geotécnica) 
LOGIA - ESTUDO (Engenharia Geotécnica) 
 
DIVISÃO DA TERRA 
 
 
- O planeta Terra é “quase” esférico, com raio de aproximadamente 6370 km na 
linha do Equador. 
5 
 
 
CONSTITUIÇÃO DA TERRA 
a) Crosta ou Litosfera: 
- constituída pelo SIMA (silício + magnésio) e pelo SIAL (silício + alumínio); estes três 
principais elementos não encontram-se puros na Crosta Terrestre, mas a junção destes 
formam os diferentes minerais que, por sua vez, se agrupam, formando as rochas. 
- temperatura: 800º à 1000ºC 
 b) Manto: 
- constituído de sulfetos e óxidos de ferro e magnésio; 
- temperatura média: 2000ºC (de 600º à 4000ºC) 
 
- Manto Superior – possui formação semelhante a da Crosta (rochas formadas por 
silicatos), possui alta pressão hidrostática. As rochas não se encontram em estado de 
fusão, mas devido a alta pressão existente, abrem-se fissuras, entra o ar, diminui a 
pressão e a rocha endurece, sofrendo constantes mudanças. 
- Manto Intermediário - constituído de rochas pesadas (silicatos de ferro e de magnésio) 
em estado pastoso, sofre ação das correntes de convecção (ar quente e ar frio) vindos do 
centro da Terra e desprende grande quantidade de energia, chegando a atingir a Crosta, 
sendo um dos prováveis motivos da ocorrência dos terremotos. 
- Manto inferior – predominam rochas metálicas (não metal puro), com densidade maior 
que a do Manto Intermediário e menor que o Núcleo. 
 
6 
 
 c) Núcleo: 
- totalmente metálico – constituído de níquel (Ni) e ferro (Fe); 
Supõe-se esta composição devido aos meteoritos, corpos que são atraídos pelo centro de 
gravidade da Terra, partindo-se da hipótese de que tudo foi formado a partir de explosões 
solares. 
- temperatura: 4000º à 6000ºC 
 
GRAU GEOTÉRMICO 
 É a quantidade de metros, em profundidade, necessários para a 
temperatura da Terra aumentar em 1ºC. 
A cada 30m de profundidade na Crosta Terrestre, a temperatura aumenta em 1ºC em 
relação a temperatura da Atmosfera. 
 
IDADE DA TERRA 
Supõe-se em 5.000.000.000 anos! 
A massa gasosa foi se resfriando de fora para dentro, formando uma crosta sólida que, 
até hoje, se encontra em constante transformação. 
 
Eras Geológicas: 
4a - Era Cenozóica - Quaternário (ou contemporâneo) - 1.000.000 anos (Homem-África) 
 - Terciário – 1.000.000 à 70.000.000 anos (Mamíferos) 
 
3a - Era Mesozóica - 70.000.000 até 220.000.000 anos (Répteis) 
 
2a – Era Paleozóica - 220.000.000 à 600.000.000 anos (Anfíbios, invertebrados, peixes, 
plantas) 
 
1a - Era Arqueozóica - 600.000.000 à 4.000.000.000 anos (Algas, esponjas, crustáceos) 
 
7 
 
CAMADA GEOLÓGICA 
Representa uma unidade Litológica da Crosta ou Litosfera. 
 
 
 
COMPOSIÇÃO QUÍMICA DA CROSTA TERRESTRE (%) 
 
Segundo Clark: 
 
 
 
8 
 
MATERIAIS FORMADORES DA CROSTA TERRESTRE 
 
Principais: 
1) Minerais 
2) Rochas: Distinguem-se pelo processo de formação: 
 2.1) Rocha Ígnea ou Magmática 
 2.2) Rocha Sedimentar 
 2.3) Rocha Metamórfica 
 3) Solo 
 3.1) Solo residual 
 3.2) Solo Transportado 
 4) Material em estado Amorfo 
 5) Mineralóide 
 6) Minério. 
 
1 – MINERAL 
 É um elemento químico ou uma combinação química formado por um 
processo inorgânico natural, o qual possui uma estrutura cristalina, ou seja, tridimensional 
ordenada, portanto, sua estrutura possui uma forma geométrica definida. 
Ex: quartzo, feldspato, mica, calcita. 
Observação: 
Todo mineral que apresenta a sua estrutura molecular regular, possível de observar “a 
olho nu”, denominamos de Cristal. 
 
2 – ROCHA 
 É o agrupamento de um ou mais tipo de minerais. Podem ser 
classificadas quanto à: 
 
9 
 
2.1 – Presença de minerais: 
- Uniminerálicas: formadas por um só tipo de mineral. Ex: calcário, mármore. 
- Pluriminerálicas: formadas por dois ou mais tipos de minerais. Ex: granito, gnaisse. 
 
2.2 – A origem: 
- Rochas ígneas ou magmáticas: formada pelo resfriamento do magma (lava de vulcão) 
em contato com a atmosfera (água ou ar) ou no interior da crosta terrestre. 
Ex: basalto, diabásio, granito. 
- Rochas sedimentares: formadas pelo acúmulo de solo, matéria orgânica ou pela 
precipitação de substâncias químicas em bacias de sedimentação. 
Ex: arenito, siltito, argilito, gipsita, coquina, folhelho. 
- Rochas metamórficas: são originadas de rochas pré-existentes que sofreram a ação 
dos agentes do metamorfismo (altas pressões e altas temperaturas), ocorrendo uma 
alteração em sua estrutura e composição mineralógica. 
Ex: gnaisse, mármore. 
 
3 – SOLO 
É o resultado final da decomposição de rochas ou dos minerais pela ação dos agentes do 
intemperismo. Estão divididos em dois grupos básicos: 
 
- Solo residual: é o material que se decompõe e permanece no mesmo local onde 
sofreu sua decomposição. 
- Solo transportado: é o material intemperizado que sofreu um transporte natural pela 
ação dos agentes geológicos. 
Ex.: solo de aluvião ou aluvionar, solo de coluvião ou coluvionar, solo de talus, solo 
glacial, solo eólico.Obs. Também temos o solo orgânico que é constituído por matéria orgânica, fundamentalmente 
vegetal. 
10 
 
4 – MATERIAL EM ESTADO AMORFO 
É um elemento químico ou uma combinação química formada por um processo inorgânico 
natural, mas não possui uma estrutura tridimensional ordenada cristalina. Ex: ágatas, 
sílex, calcedôneas. 
 
5 – MINERALÓIDE 
É um elemento químico ou uma combinação química formada por um processo orgânico 
natural. Ex: petróleo, âmbar, pedra no rim. 
 
6 – MINÉRIO 
É todo material (mineral, rocha ou solo) que tenha um aproveitamento industrial ou 
comercial. Portanto: 
SOLO + ROCHA + MINERAL = MATERIAL NATURAL DE CONSTRUÇÃO 
 
 
Observação: 
 “É verdade que experiência em Geologia (Geotecnia) não se transfere, 
mesmo que se queira, mas adquire-se na vida prática pela vivência”. 
 Tam 
 
 
 
 
 
 
 
 
11 
 
ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12 
 
2a Parte: Minerais 
1- Alguns conceitos básicos: 
 MINERALOGIA: É a ciência que estuda os minerais. 
 MINERAL: Substância sólida, de ocorrência natural, com propriedades 
físicas e composição química definidas e que possui estrutura cristalina 
tridimensional ordenada. 
 Os minerais são constituídos por elementos químicos, tais como: oxigênio, 
silício e alumínio, etc. Os elementos, por sua vez, são constituídos por átomos. 
 CRISTAL: É quando o mineral se apresenta com formas geométricas 
naturais, circundadas por superfícies planas e polidas, as quais são a expressão externa 
do arranjo regular interno dos átomos e íons. 
 De uma maneira geral, os minerais podem se formar por: resfriamento do 
magma, resfriamento de soluções ou gases magmáticos, evaporações de soluções 
salinas, reações entre substâncias e intemperismo. 
 Para identificação de mineral, dispõem-se de vários processos por meio dos 
quais se pode determinar, seja a estrutura cristalina, seja a composição química. Entre 
esses métodos podem ser citados: cristalografia, por difração de raios X, microscópica, 
cristalográfica, conjugados com análise química. São, todavia, processos requintados, 
demorados e dispendiosos. 
 Para o reconhecimento dos minerais mais comuns que entram na composição das 
rochas, existem elementos mais simples, os quais dependem das suas propriedades físicas e 
químicas. Os minerais já estudados cristalograficamente tem suas propriedades físicas e químicas 
catalogadas em tabelas facilmente manuseáveis. Assim, observando um conjunto de 
propriedades de um mineral, pode-se localizá-lo com relativa segurança nessas tabelas. 
 2 – ORIGEM: 
- Resfriamento do magma (lava de vulcão); 
- Resfriamento de soluções ou gases magmáticos; 
- Evaporação de soluções salinas; 
- Reações entre substâncias. 
 3 – IDENTIFICAÇÃO: 
- Cristalografia por difração de raio X; 
- Microscopia cristalográfica; 
- Análise química; 
- Propriedades (físicas e químicas). 
13 
 
4 – PROPRIEDADES FÍSICAS (Possíveis de identificação a olho nu) 
 - Clivagem; 
 - Fratura; 
 - Dureza; 
 - Escala de Mohs (relativa): 
 - 1 – talco 
 - 2 – gipso 
 - 3 – calcita 
 - 4 – fluorita 
 - 5 – apatita 
 - 6 – ortoclásio 
 - 7 – quartzo 
 - 8 – topázio 
 - 9 – coríndon (água marinha, safira, rubi) 
 - 10 – diamante 
- Tenacidade; 
- Peso específico ou Densidade relativa; 
- Propriedades que dependem da luz (brilho, traço, cor); 
- Magnetismo. 
 
5 – PROPRIEDADES QUÍMICAS 
 Dissolução dos calcáreos (carbonatos de cálcio) por ácidos (ácido clorídrico). 
Ex: 
 CaCO3 + HCl = CaCl2 + H2O + CO2 
 
 
14 
 
6 – ALGUNS DOS PRINCIPAIS MINERAIS 
- Quartzo (SiO2); 
- Feldspato (ortoclásio ou plagioclásio); 
- Mica (muscovita ou biotita); 
- Calcita (CaCO3); 
- Hematita (minério de ferro); 
- Pirita (minério de ferro); 
- Talco (pedra sabão); 
- Gipso; 
- Barita. 
 
7 – ESCALA PRÁTICA PARA DETERMINAÇÃO DA DUREZA 
Unha – 2,5 
Moeda – 3,0 
Canivete – 5,0 
Vidro – 5,5 
Porcelana – 6,0 
Quartzo – 7,0 
Propriedades a serem observadas na Identificação (Laboratório): 
A) Propriedades físicas 
A.1) Clivagem e fratura 
 Clivagem: um mineral apresenta clivagem quando ao romper-se sob a ação 
de uma força. Apresenta dois ou mais superfícies sempre planas e paralelas. 
 É uma propriedade condicionada pela estrutura interna, resultando o fato das 
ligações serem mais fracas em certas direções que em outras. É descrita por termos, tais 
como: proeminente, perfeita, distinta e indistinta. Nem todas as espécies minerais 
apresentam clivagem. 
15 
 
 Fratura: é a maneira pela qual se rompem os minerais, diferentemente da 
clivagem. Geralmente são superfícies irregulares. É designada por um dos termos: 
conchoidal, igual ou plana, desigual ou irregular 
 A.2) Dureza 
 É a resistência oferecida por uma superfície lisa do mineral ao ser riscado. 
 Por razões práticas, os minerais são classificados através de uma tabela 
relativa à dureza, conforme a facilidade ou não de serem riscados por outros minerais. 
Dez minerais, do mais fraco ao mais resistente, quanto à dureza, são usados para compor 
tal escala, conhecida como escala de Mohs: 
 
 1 – Talco 6 - Ortoclásio 
 2 – Gipso 7 - Quartzo 
 3 – Calcita 8 - Topázio 
 4 – Fluorita 9 - Corindon 
 5 - Apatita 10 – Diamante 
 A.3) Tenacidade 
 É a resistência oferecida pelo mineral ao ser rasgado, moído, dobrado ou 
despedaçado; é uma propriedade relacionada a coesão. Segundo ela, o mineral pode ser: 
a) Friável – pode ser transformado ou reduzido em pó; 
b) Maleável – pode ser transformado em folha de percussão; 
c) Séctil – pode ser cortado por um canivete; 
d) Dúctil – pode ser transformado em fio; 
e) Plástico – pode ser dobrado, mas não recupera a forma original, terminada a 
pressão que deforma. 
 f) Elástico – pode recuperar a forma primitiva, ao cessar a força que o deforma. 
 A.4) Peso específico ou Densidade relativa 
 É um número que exprime a relação entre seu peso e volume. 
 B) Propriedades que dependem da luz 
 B.1) Brilho: É o aspecto da superfície do mineral quando reflete a luz, podendo ser 
metálico ou não metálico. O de brilho não metálico pode ser descrito como exibindo brilho 
vítreo, sedoso, adamantino, etc. 
 B.2) Cor: É uma propriedade importante para identificação dos minerais. Os 
minerais que apresentam brilho metálico, geralmente apresentam cor constante e 
16 
 
definida. Frequentemente, os minerais, principalmente os de brilho não metálico, 
apresentam-se coloridos, devido às impurezas. 
 B.3) Traço: Constitui a cor do pó fino mineral, sendo constante; pode ser 
observado riscando uma placa de porcelana. 
 
C) Magnetismo 
 É uma propriedade que apresentam certos minerais, em seu estado natural, de 
serem atraídos por um imã. Apresentam alto teor de Fe na sua composição. 
D) Propriedades Químicas 
Com relação as propriedades químicas, cita-se apenas o fenômeno da dissolução de 
calcários por ácidos. Pingando-se uma gota de ácido clorídrico diluído sobre um mineral, 
caso seja observadoefervescência, pode-se concluir que esse se trata de um carbonato. 
As propriedades físicas presentes poderão indicar qual o tipo de carbonato em análise. 
 
Procedimentos para identificação 
1. Reconhecer o tipo de brilho do mineral: metálico ou não metálico. 
2. Examinar: 
 a)Cor do mineral 
 b)Dureza – é a propriedade relativa, devendo o mineral ser enquadrado entre 
certos valores de escala Mohs. 
 Escala prática para uso: 
 Unha - 2,5 Baixa – entre 1 e 2 
 Moeda - 3,0 Média – entre 3 e 5 
 Canivete – 5,0 Alta – entre 6 e 10 
 Vidro – 5,5 
 Porcelana – 6,0 
 Quartzo – 7,0 
 c)Cor do traço – observado numa placa de porcelana opaca. 
17 
 
 d)Hábito do mineral – é a forma como ele normalmente se apresenta como, por 
exemplo: lamelar, prismático, globular, agregado, etc. 
 e)Outras propriedades – magnetismo, flexibilidade, maleabilidade, clivagem, 
fratura, efervescência ao ácido clorídrico diluído, etc. 
 3.Com os elementos acima obtidos, recorre-se as tabelas como, por exemplo, a 
tabela em anexo, a fim de selecionar um ou mais minerais que possuam propriedades 
semelhantes. Deve-se ter em mente que este é um processo de determinação 
simplificada, utilizando-se apenas propriedades macroscópicas e fáceis de serem 
observadas, não requerendo praticamente equipamento algum. Para um trabalho mais 
rigoroso, seria necessário a utilização de outras propriedades, como: ópticas, difração de 
raios-x, peso específico, composição química, etc. 
Observação: Já foram identificados aproximadamente 3.500 minerais, mas cerca de, 
aproximadamente, uma dúzia constituem a maioria das rochas. 
 
 ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18 
 
 
19 
 
 ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20 
 
3a Parte: Ciclo das Rochas e Tectônica de Placas 
1- Introdução: 
 O Ciclo das Rochas mostra o inter-relacionamento entre os processos internos e 
externos da Terra, relaciona os três grupos de rochas existentes entre si e os processos 
internos ocorrentes. 
 O Movimento das Placas determina, até certo ponto, que tipo de rocha irá se 
formar e é o maior responsável pela reciclagem dos materiais rochosos. 
 
2- Classificação das Rochas quanto a sua origem: 
2.1 – Rochas Ígneas ou Magmáticas: 
 São produzidas quando o Magma se cristaliza ou quando a ejeção vulcânica 
(cinzas) se acumulam e se consolidam. 
 Enquanto o magma se resfria, os minerais se cristalizam e a rocha resultante é 
caracterizada pelos grãos minerais que se aderem uns aos outros. Exemplos: Granito – 
formado pelos minerais quartzo, feldspato, mica (podem ser identificados no Granito a 
olho nu). 
 Quando o resfriamento do magma ocorre mais rapidamente, por estar na 
superfície da Terra, produz rochas extrusivas. Exemplo: Basalto (granulação muito fina, 
não é possível distinguir os minerais que a formam a olho nu). 
2.2 – Rochas Sedimentares: 
 As rochas que se encontram próximas a superfície da Terra estão mais expostas 
aos processos de intemperismo e são transformadas em partículas pelos processos de 
desgaste. 
 Estes materiais transformados podem ser transportados pelo vento, pela água, 
pelo gelo, etc., e finalmente são depositados em forma de sedimentos. 
 Como o agente de transporte e até mesmo a fonte de origem da rocha 
sedimentar podem ser deduzidos, as rochas sedimentares são muito úteis para interpretar 
a história da Terra. Exemplo: Calcáreo – precipitação da Calcita da água do mar. 
 2.3 – Rochas Metamórficas: 
 São as rochas que resultam da transformação de outras rochas, geralmente sob a 
superfície da Terra, pela ação do calor, da pressão e dos fluidos da atividade química. 
21 
 
Esta transformação ocorre sempre no estado sólido. Exemplos: Mármore – resultante da 
metamorfose sofrida pelo Calcáreo (Rocha sedimentar). 
3- Teoria da Tectônica de Placas: 
 
 
 3.1- Princípios da Teoria de Placas 
 A teoria da tectônica de placas é baseada em um modelo simples da Terra. A 
litosfera rígida, consistindo em crosta oceânica e continental, assim como no manto 
superior, subjacente a elas, é composta de numerosas peças de tamanhos variados, 
denominadas de “PLACAS”, as quais variam de espessura. 
 As compostas por manto superior e crosta continental possuem cerca de 250 km 
de espessura, enquanto aquelas feitas de manto superior e crosta oceânica têm 
espessura em torno de 100 km. 
 A litosfera se sobrepõe a astenosfera, que é mais frágil, semi-plástica. Como as 
placas se movem sobre a astenosfera, elas se separam principalmente nas cadeias 
oceânicas. Em outras áreas, tais como nas fossas oceânicas, elas se colidem e são 
subductadas de volta ao manto. 
 Para visualizar este movimento, imaginem uma esteira transportadora de 
bagagens para serem passadas para um carrinho de bagagens. A esteira representa às 
correntes de convecção dentro do manto, e a bagagem as placas litosféricas da Terra. 
22 
 
Assim como a bagagem se movimenta até ser jogada no carrinho, as placas são movidas 
pelas correntes de convecção até serem subductadas para o interior da Terra. Devemos 
lembrar que este se trata de uma analogia limitada e simplificada. 
 Diferentemente das bagagens, as placas são formadas de crosta continental e 
oceânica, que tem densidades diferentes, assim, somente a crosta oceânica é 
subductada para o interior da Terra. 
 Devido às suas muitas evidências, a teoria da tectônica de placas é bem aceita 
entre os geólogos, e estas evidências interligam muitas características e acontecimentos 
geológicos ocorrentes, tais como: Os Terremotos, Vulcanismo e a formação de 
Cordilheiras de Montanhas. 
 3.2- O Ciclo do Supercontinente: 
 No final da Era Paleozóica, todos os continentes haviam se juntado para formar 
“O SUPERCONTINENTE “PANGÉIA”. 
 Logo depois, os continentes começaram a se separar nos continentes familiares 
que conhecemos hoje. 
 O rompimento do Pangéia, durante o período Triássico e o movimento 
subsequente das Placas, resultou na distribuição atual dos continentes e das bacias 
oceânicas. Considera-se que os supercontinentes se formaram, se romperam e se 
aglutinaram novamente formando o Pangéia, e que o tempo deste ciclo tenha durado, 
aproximadamente, 500 milhões de anos. 
 A primeira separação sofrida pelo Pangéia foi o Norte e Sul (formando os pólos 
da Terra), depois vieram as separações laterais e finalmente algumas placas voltaram a 
se encontrar, como é o caso das Américas do Norte e do Sul, ligadas pela América 
Central. 
 O oceano Atlântico se formou antes do oceano Índico. Supõe-se que o oceano 
Pacífico é o mais antigo dos três oceanos e tende a encolher. Já os oceanos Índico e 
Atlântico, principalmente o mar Vermelho, tendem a se expandir. 
 3.3- Limites de Placas:Os geólogos reconhecem três tipos importantes de Limites de Placas: 
- Limites Divergentes ou cadeias de expansão: Ocorrem onde as placas estão se 
separando e uma nova litosfera oceânica está se formando. Estes limites ocorrem 
mais comumente ao longo das cristas das cadeias oceânicas, sendo, portanto, 
23 
 
caracterizadas por topografia acidentada com altos relevos, resultando do deslocamento 
de rochas ao longo de grandes fraturas, terremotos fracos, fluxos de altas temperaturas e 
fluxos basálticos. 
- Limites Convergentes: Enquanto a nova crosta se forma em limites de placas 
divergentes, as crostas mais velhas devem ser destruídas e recicladas para que a área da 
superfície da Terra permaneça constante. Tal destruição ocorre nos limites 
Convergentes de Placas, onde duas placas colidem e a aresta principal de uma 
placa é subductada sob a margem de outra placa e finalmente incorporada na 
astenosfera. 
São divididos em três tipos de limites convergentes: 
Oceânico-Oceânico; Oceânico-Continental; Continental-Continental. 
Limites convergentes são caracterizados pela deformação, vulcanismo, formação de 
montanhas, terremotos e importantes depósitos minerais. 
As placas se movem, uma em direção a outra, ao longo de suas margens convergentes 
até uma placa se submergir a outra, no local conhecido como Zona de Subducção; a 
medida que a placa desce para o interior da Terra, torna-se mais quente, se desidrata e 
favorece a fusão com o manto, formando o Magma. 
As Zonas de Subducção e de Dorsais (bordas das placas) são as regiões mais 
instáveis da Terra onde, geralmente, ocorrem os terremotos e os vulcões. 
Obs: O Brasil situa-se no centro de uma grande placa, portanto, local mais estável, 
pouco provável ocorrência de instabilidades. 
- Limites Transformantes: Ocorrem ao longo das fraturas no assoalho oceânico, neste 
local as placas deslizam lateralmente, passando uma pela outra, quase em paralelo. 
Este movimento resulta em terremotos de pequena intensidade. As interações entre as 
placas determinam, até certo ponto, qual dos três tipos de rocha se formará. 
 Exemplo: Quando as placas convergem, o calor e a pressão gerados ao longo 
das margens da placa podem levar a uma atividade metamórfica, formando rochas 
metamórficas. 
Observação: Só uns tomam, por todos os demais, o encargo Nobre e Pleno de 
Responsabilidade de custodiar a Escritura Sagrada da Terra, de lê-la e interpretá-la, pois o 
enlace consciente do Homem com sua estrela está confinado a uma Ciência em Especial, a 
Geologia. (Hans Closs – 1885 – 1951) 
24 
 
4a Parte: Rochas (Petrografia) 
1 – Definição: 
 Rocha: É o agrupamento de um ou mais tipos de mineral. 
As rochas podem ser: 
a) Uniminerálicas: formadas por um só tipo de mineral. Ex: mármore (calcita). 
b) Pluriminerálicas: formadas por dois ou mais tipos de minerais. Ex: granito 
(quartzo, feldspato e mica). 
2 – Tipos de Rochas: 
2.1 – Rochas Ígneas ou Magmáticas (Primárias): 
 É a rocha resultante do resfriamento e da cristalização do material rochoso 
fundido, denominado magma, em contato com a atmosfera (água ou ar); 
 O magma (lava de vulcão) é o material de característica plasto-viscosa, que ocorre 
abaixo da crosta a altas temperaturas, composto por: 
 - Componentes voláteis: H2O, CO2, Co, N2, H2, SO3; 
 - Componentes não voláteis: O, Si, Fe, Mg. 
2.1.2 – Tipos de Magma: 
 - Magma básico (superfície): maior concentração de Fe, Mg e uma menor 
concentração de SiO2; 
 - Magma ácido (profundidade): maior concentração de Al, Na, K e de SiO2. 
 
2.1.3 – Classificação das rochas magmáticas quanto à gênese ou origem: 
2.1.3.1 – Rochas Extrusivas ou Vulcânicas: 
 É o magma que sofre o seu resfriamento em contato com o ar ou água na 
superfície da crosta terrestre. Ex: Basalto. 
 - Resfriamento rápido; 
 - Minerais de tamanho microscópico; 
 - Rc = 800 kgf/cm² (resistência à compressão simples) 
 - Cor escura (preta) 
25 
 
2.1.3.2 – Rochas Hipo-abissais: 
 É o magma que sofre o seu resfriamento no interior da crosta em profundidades 
intermediárias (+/- 50m). Ex: Diabásio. 
 - Resfriamento lento; 
 - Minerais de pequeno tamanho, mas possíveis de observar a olho nu; 
 - Rc = 1200 à 1700 kgf/cm² (resistência à compressão simples) 
 - Cor cinza escura 
2.1.3.3 – Rochas Intrusivas ou Plutônicas: 
 É o magma que sofre o seu resfriamento a grandes profundidades (+/- 300m). Ex: 
Granito. 
 - Resfriamento muito lento; 
 - Minerais bem desenvolvidos; 
 - Rc = 2500 kgf/cm² 
 - Cor clara 
 
Observação: Quanto mais lento e profundo for o resfriamento do magma, mais 
desenvolvido serão os minerais que o constitui, consequentemente, maior a resistência à 
esforços mecânicos de compressão a rocha terá. 
 
2.1.3.4 – Modos de ocorrência do Magma na Crosta: 
 - Derrame; 
 - Sill; 
 - Dique; 
 - Batolito (Stokes). 
26 
 
 
 
 
Obs: As rochas magmáticas mais utilizadas como Brita dentro da Engenharia Civil 
são: 
- basalto colunar; 
- diabásio; 
- granito. 
 
27 
 
2.2 – Rochas Sedimentares: 
 2.2.1 – Introdução: 
 As rochas sedimentares, como a própria denominação indica, são formadas por 
sedimentos. 
 São denominados sedimentos as deposições de materiais resultantes da 
decomposição, desagregação e retrabalhamento de quaisquer rochas pré-existentes. 
 O Intemperismo e a erosão são fatores fundamentais para a origem das rochas 
sedimentares. 
 2.2.2 – Agentes Formadores: 
A rocha sedimentar é o estágio final de um conjunto de processos, a saber: 
 1-Intemperismo da(s) rocha(s) geradora(s); 
 2-Transporte do material intemperado, que na maioria das vezes ocorre em 
ambientes aquosos, mas pode também ser vento ou gelo; o transporte normalmente 
reduz o tamanho das partículas e o seu arredondamento; 
 3-Deposição, que é a acumulação do material intemperizado em locais favoráveis 
(bacias sedimentares); 
 4-Litificação, que corresponde a uma série de processos de compactação e 
cimentação, através dos quais o sedimento original inconsolidado se transforma num 
agregado mais coerente. 
 Portanto, a origem das rochas sedimentares difere fundamentalmente das rochas 
magmáticas, pois enquanto estas são de gênese interna, ou seja, formadas por material 
originário do interior da Terra, as sedimentares são de origem externa, sendo formadas ou 
nas bacias sedimentares (lagos e mares) ou mesmo sobre a superfície terrestre. 
Principais agentes responsáveis pela formação das Rochas Sedimentares 
- Ventos: Transportam areia e sedimentos menores. 
- Geleiras: Transportam sólidos em movimento e transportam sedimentos de 
quaisquer tamanhos. 
- Correntes de águas marinhas e ondas: Transportam sedimentos ao longo da 
costa. 
28 
 
- Correntes de águas dos rios: É o principal tipo de transporte que favorece a 
formação de sedimentos. Mesmo as águas fracas são capazes de mover as argilas e os 
siltes, que são partículas muito pequenas. 
Durante o transporte, a abrasão reduz o tamanho das partículas, as arestas 
pontuadas e as beiradas são suavemente desgastadas por um processo conhecido como 
arredondamento. O transporte e os processos operativos no local de acumulação 
resultam em uma seleção que se refere as partículas do depósito sedimentar. 
O sedimento é caracterizado como bem selecionado se todas as partículas forem 
quase do mesmo tamanho; é considerado mal selecionado se o tamanho das partículas 
for muito variável. 
O local onde os sedimentos se depositam é conhecido como “ambiente de 
sedimentação”, e a deposição pode ocorrer em uma planície aluvial, em uma praia ou no 
assoalho oceânico.Três importantes cenários de Sedimentação: 
Continental: Sobre a terra (planícies); 
Transicional: Sobre as costas litorâneas ou próximas a elas; 
Marinho: Sobre o fundo dos oceanos. 
 
2.2.3 – Tipos de Rochas Sedimentares: 
- Rochas Sedimentares Detríticas: São formadas por detritos, partículas sólidas, como a 
areia e o cascalho, originados pelo intemperismo mecânico ou químico. Todas as rochas 
detríticas possuem uma textura clástica, ou seja, formadas por partículas conhecidas 
como “clastos”. 
- Rochas Sedimentares Químicas e Bioquímicas: Formadas por compostos variado e 
íons dissolvidos durante o intemperismo químico. Seus minerais se formam como 
resultado das reações químicas inorgânicas ou de atividades químicas dos organismos. 
Algumas destas rochas possuem textura cristalina e outras textura clástica. Os 
organismos desempenham um papel importante na origem das rochas sedimentares 
bioquímicas. 
29 
 
 O Calcáreo e o Dolomito são as rochas sedimentares químicas mais abundantes 
e são conhecidas como rochas Carbonáticas, possuindo o radical carbonato. 
 Os geólogos estudam as estruturas sedimentares e os fósseis para determinar a 
história geológica das rochas e, por consequência, da Terra. A maioria da evidência fóssil 
de vida pré-histórica é encontrada em rochas sedimentares. 
 Alguns sedimentos e rochas sedimentares são recursos naturais por si próprios 
(carvão mineral), ou contém recursos como petróleo e gás natural. 
2.3.4 – Recursos naturais oriundos de Rochas Sedimentares: 
Carvão Mineral: 
Rocha sedimentar bioquímica (uma exceção) que é constituída de restos alterados e 
compactados de plantas terrestres. Se formou em pântanos e charques, onde a água 
possui deficiência de oxigênio e as bactérias se decompõe com facilidade. Os resíduos 
desta decomposição se acumulam e matam as bactérias, formando adubo orgânico. O 
adubo enterrado e comprimido se transforma em turfa (combustível), a primeira fase do 
carvão. 
A turfa, enterrada em grandes profundidades, compactada e aquecida, converte-se com o 
passar do tempo em carvão. 
Porcentagens de carbono presente nas rochas: 
Turfa (50% carbono) 
Linhito (70% carbono) 
Carvão betuminoso (80% carbono) 
Carvão antracito (98% carbono). 
 
Petróleo e Gás Natural: 
 O petróleo e o gás natural são hidrocarbonetos, ou seja, são compostos por 
hidrogênio e carbono. Os restos dos organismos microscópios se assentam no assoalho 
ou em fundos de lados, onde existe pouco oxigênio. Caso estes microorganismos sejam 
enterrados sob camadas de sedimentos, são aquecidos e transformam-se em petróleo e 
gás natural. Para se acumularem em quantidades econômicas de exploração, eles devem 
migrar da rocha mãe, onde se originaram, para alguma espécie de rocha reservatório, e 
30 
 
esta rocha, por sua vez, deverá ter uma camada selante sobre ela. Estes reservatórios 
devem possuir porosidade apreciável, boa permeabilidade e capacidade para transmitir 
fluídos. 
Muitos reservatórios de hidrocarbonetos consistem em arenito marinho, próximos a costa 
oceânica, em proximidade com a rocha mãe. São finamente granulados e organicamente 
ricos. 
Tais armadilhas para o depósito de petróleo e gás natural são denominadas “reservas 
estratigráficas”, consistindo verdadeiras “armadilhas estratigráficas” para o precioso 
ouro negro. 
ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31 
 
3.3 – Rochas Metamórficas 
 São aquelas originadas de outras rochas que sofreram a ação de altas 
pressões e elevadas temperaturas ou tiveram contato com gases e líquidos 
magmáticos. Exemplos: 
Arenito (Sedimentar) → Quartzito (Metamórfica) 
Calcáreo (Sedimentar) → Mármore (Metamórfica) 
Granito (Magmática) → Gnaisse (Metamórfica) 
 
3.3.1 – Metamorfismo 
 São fenômenos naturais que provocam alteração na estrutura, como também na 
composição mineralógica da rocha original (magmática e sedimentar). 
 
 
3.3.2 – Tipos de Metamorfismo 
a) Cataclástico: ação de altas pressões dirigidas que provocam mudança na 
estrutura da rocha original. Ex: Cataclasito, Milonito. 
b) Termal (Contato): ação de altas temperaturas (transferência de calor de massas 
magmáticas) que provocam mudanças na composição da rocha original 
(recristalização). Ex: Mármore. 
32 
 
 
c) Dinamotermal: ação de altas pressões + pressões dirigidas que provocam 
alterações na estrutura e na composição mineralógica da rocha original. Ex: 
Itacolomito, Itabirito, Xisto, Filito, Ardósia. 
d) Plutônico: ação de altas temperaturas + pressões (hidrostática) que provocam 
alterações na estrutura e na composição mineralógica da rocha original. Ex: 
Granulito, Eclogito 
 
3.3.3 – Rochas mais empregadas na Engenharia Civil 
- Gnaisse: brita, fachada de residência; 
- Ardósia: piso, fachada (revestimento externo e interno); 
- Itacolomito (pedra mineira): piso, fachada; 
- Mármore: piso, revestimento (externo e interno), lajes polidas (pia). 
 
 
33 
 
 ANOTAÇÕES DE AULA: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34 
 
Aulas Práticas: Rochas 
As rochas constituem as unidades estruturais que compõe a crosta terrestre. São 
agregadas uma ou mais espécies de minerais. Desta forma, podem ser: 
 Rochas Uniminerálicas: formadas somente por uma espécie de mineral, como 
por exemplo: mármore (calcita), quartizito (quartzo), etc. 
 Rochas Pluriminerálicas; que são as mais comuns, contém duas ou mais 
espécies minerais, como por exemplo: granito, baslto, etc. 
 De acordo com sua origem, as rochas podem ser classificadas em três grandes 
grupos: ígneas, sedimentos e metamórficas. 
 Rochas Ígneas ou magmáticas: São aquelas formadas por material em estado de 
fusão (magma) que se consolidou por resfriamento. Ex: granitos, diabásios, sienitos, etc. 
 Rochas Sedimentares: São as resultantes da acumulação de materiais derivados 
de outras rochas pré-existentes. Ex: arenitos, argilitos, etc. 
 Rochas Metamórficas: São as rochas que, primeiramente, se originaram das 
magmáticas ou sedimentares que tenham sido submetidas a pressões ou temperaturas 
elevadas. Ex: Mármores e quartizitos. 
 
1- Rochas Ígneas ou Magmáticas 
 Classificação: Existem diversos critérios de classificação. Enumeramos apenas 
algumas propriedades principais, que são: 
1 – Cor: a cor de uma rocha depende das cores dos minerais que a compõe; 
segundo esse critério, a rocha pode ser: 
a) Melanocrática ou escura: quando contém mais de 60% de minerais ou materiais 
escuros; 
b) Mesocrática ou intermediária: quando contém entre 30% à 50% de minerais ou 
materiais escuros; 
c) Leucocrática ou clara: quando contém menos de 30% de minerais ou materiais 
escuros; 
2 – Estrutura: É o aspecto macroscópico apresentado pela rocha, relacionado com 
sua gênese e com fenômenos dinâmicos internos e externos da crosta terrestre. 
a) Vesículas: cavidades formadas durante a solidificação; 
b) Amígdalas: cavidades que foram preenchidas posteriormente à solidificação das 
rochas; 
35 
 
c) Diaclases ou juntas: fraturas geralmente decorrentes de contração por 
resfriamento durante a solidificação ou por esforços que atuam na crosta 
terrestre. Sua observação, geralmente, é possível de se fazer apenas no 
campo. 
d) Compacta: caracteriza-se por uma homogeneidade aparente. 
3 – Textura: É a organização interna da rocha, referente ao arranjo, tamanho e 
forma das partículas que a constituem. 
Nas amostras a serem analisadas nessa prática,algumas das seguintes texturas 
poderão ser observadas: 
a) Quanto à cristalinidade, podem ser: 
- Vítrea: quando a rocha não apresenta minerais, mas apenas material em 
estado amorfo (vidro); 
- Cristalina: quando a rocha é completamente formada por minerais; 
- Vítrea-cristalina: quando apresenta minerais e material em estado amorfo 
(vítreo). 
b) Quanto ao tamanho dos minerais 
Existem três tipos de granulação que obedecem a um critério aproximado de 
divisão: 
- Granulação grosseira: os minerais tem um tamanho médio de 5mm; 
- Granulação média: o tamanho médio dos minerais varia entre 1mm à 5mm; 
- Granulação fina: quando os minerais se apresentam com dimensões médias 
inferiores à 1mm. 
 4 – Composição Mineralógica: 
a) Deverá ser indicado o número de espécies minerais aparentes nas 
amostras; 
b) Verificar a possibilidade de reconhecimento de algumas espécies minerais, 
tais como: mica, feldspato e quartzo; 
c) Dos minerais visíveis, citar: cor, brilho, clivagem, etc. 
5 – Quanto a Gênese: 
a) Intrusiva ou plutônica: rocha formada a grande profundidade, onde o 
resfriamento é mais lento, gerando minerais de granulação maior. Ex: 
granito. 
36 
 
b) Hipo-abissais: formada a pequena profundidade, onde o resfriamento é 
mais rápido, gerando minerais de granulação menor. Ex: diabásio. 
c) Extrusiva ou vulcânica: rocha que se formou por resfriamento rápido na 
superfície da terra, portanto, de granulação fina ou vítrea. Ex: basalto. 
6 – Porcentagem em sílica (quartzo): 
a) Rochas ácidas: rochas com teor de sílica superior à 65%. Ex: granito; 
b) Rochas intermediárias: teor compreendido entre 65% à 52%. Ex: 
sienito,diorito,etc. 
c) Rochas básicas: com teor abaixo de 52%. Ex: basalto, diabásio. 
Embora a porcentagem de sílica seja obtida através de análises químicas 
das rochas, é possível ter-se uma ideia de seu teor analisando a 
porcentagem do mineral quartzo na rocha, pois o mesmo representa sílica 
livre. 
 
 Rochas Ígneas mais empregadas na Engenharia Civil 
 Granitos: utilizados geralmente como brita, lajes polidas, blocos, etc. Possuem 
grande resistência a esforços compressivos, chegando a suportar 2700 kg/cm². 
 Em granitos de uma mesma espécie, a resistência aumenta com a diminuição do 
tamanho dos minerais. 
 Basaltos e Diabásios: utilizados principalmente como brita; são empregadas, 
secundariamente, em ornamentação. Os diabásios de textura grossa, quando polidos, 
apresentam um aspecto original devido à disposição dos cristais de feldspato. Sua 
resistência à compressão é de ordem de 1900 kg/cm². 
 As rochas, em geral, quando utilizadas como material de construção, necessitam 
de um exame prévio detalhado, principalmente no que se diz respeito a fenômenos de 
alteração, que muitas vezes são perceptíveis somente ao microscópio. Um mineral 
mesmo fracamente alterado, pode os valores da resistência de uma rocha mudarem 
completamente. 
 
 
 
37 
 
ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38 
 
 2 - Rochas Sedimentares 
1.Introdução 
São denominados sedimentos as deposições de materiais resultantes da 
decomposição, desagregação e retrabalhamento de quaisquer rochas pré-existentes. 
A rocha sedimentar é o estágio final de um conjunto de processos, a saber: 
1-Intemperismo da(s) rocha(s) geradora(s); 
2-Transportes do material intemperizado, que na maioria das vezes ocorre em ambientes 
aquosos, mas pode também ser vento ou gelo; 
3- Deposição, que é acumulação do material intemperizado em locais favoráveis; 
4-Litificação, que corresponde a uma série de processos de compactação e cimentação, 
através dos quais o sedimento original inconsolidado se transforma num agregado mais 
coerente. 
 Portanto a origem das rochas sedimentares difere fundamentalmente das rochas 
magmáticas, pois enquanto estas são de gênese interna, ou seja, formadas por material 
originário do interior da Terra, as sedimentares são de origem externa, sendo formadas ou 
nas bacias sedimentares (lagos e mares) ou mesmo sobre a superfície terrestre. 
 2.Características a serem observadas nas amostras 
 2.1. Cor 
 A cor depende não somente do tamanho das partículas que a compõe como 
também da pigmentação dessas partículas. 
 Em rochas de mesma composição mineralógica e de maneira geral, quanto 
maior as partículas componente, mais clara é a rocha e vice-versa. 
 A cor das rochas sedimentares normalmente se relaciona à oxidação de íons 
de ferro (caso existam) e a presença ou não de carbono ou resíduos carbonosos. Assim 
quando há baixa oxidação dos íons de ferro a cor varia do azul ao verde; quando é alta a 
oxidação, ela pode ser amarela, laranja, castanha ou vermelha. 
 2.2. Estruturas 
 Veremos as principais estruturas originadas concomitantemente com a formação 
da rocha: 
a) Estrutura maciça: caracteriza-se pela homogeneidade aparente apresenta pela 
rocha. 
 
39 
 
b) Estratificação plano - paralela: as rochas sedimentares, em geral, se 
apresentam em camadas ou estratos superpostos, horizontais; cada estrato 
representa condições de deposição mais ou menos constantes. 
c) Estratificação cruzada: podem apresentar estratos cruzados, devido à 
decomposição dos sedimentos em ambientes de água corrente (deltas ou borda 
de bacia de sedimentação), pelo vento, como no caso das dunas. 
 
 
 
 
 2.3. Textura 
 No caso de rochas sedimentares, está intimamente ligada a natureza do 
sedimento, podendo ser: 
 a)Clástica ou Mecânica: é aquela representada por rochas sedimentares que 
foram formadas pela acumulação de fragmentos de rochas ou minerais. Essa textura é 
facilmente identificada emrochas com granulação visíveis, como: conglomerado, arenitos 
e mesmo em silitos, mas em argilitos, que também pode ser de origem mecânica, essa 
textura é dificilmente identificável, mesmo ao microscópio, devido ao pequeníssimo 
tamanho das partículas. 
 b)Não Clástica: são apresentados pelas rochas sedimentares de origem químicas 
e orgânicas. Assim, as organógenas apresentam, frequentemente, fragmentos de 
organismos, macro ou microscópico. Todavia, as de origem química mostram grãos 
minerais justapostos ou imbricados, formados por precipitação de soluções. 
 2.4. Composição 
 Deverá ser indicado o número de minerais na amostra, caso existam, e identificá-
los se possível. 
 Indicar as formas dos grãos observados, como exemplo: grãos arredondados, 
angulosos, quebrados, alongados, achatados. Caso seja possível, identificar as partículas 
de minerais ou de rochas que entram na composição da rocha sedimentar analisada. 
 Observar se aparece a matéria orgânica como: fragmentos de conchas, restos de 
plantas, etc. 
40 
 
 2.5. Cimento 
 O material que une as partículas sedimentares, dando coesão à rocha, constitui o 
seu cimento. As substâncias mais freqüentes encontradascomo cimento são: 
 Argilas - alumínio - silicatos hidratados; 
 Calcário - (carbonatos) - calcita; dolomita; 
 Hidróxidos Fe (OH)2.nh2O; óxidos de ferro Fe2O3.nH2O; 
 Sílica - SiO2 e anidrita CaSO2; 
 
 Para verificar se o cimento é calcário, basta pingar algumas gotas de ácido sobre a 
rocha, e notar se há desprendimento de CO2. 
 3. Classificação 
 Quanto à origem as rochas sedimentares podem ser classificadas em: mecânicas, 
orgânicas e químicas. 
 
 3.1. Mecânicas 
 a) Rudáceas - como exemplo citamos os conglomerados, nos quais predominam 
partículas maiores que 2mm. 
 b)Arenosas - como osarenitos,ondepredominam partículas entre 2mm e 
0,062mm. 
 c) Siltosas - comoos siltitos, onde predominam partículas entre 0,062mm e 
0,0004. 
 d) Argilosas - como os argilitos e os folhelhos, formados por partículas menores 
que 0,0004mm. 
 
 3.2. Orgânicas 
 a)Calcárias - coquinas, corais e travertinos. 
 b) Silicosas - diatomitas e alguns sílex. 
 c) Carbonosas - turfas, carvões e folhelhos oleosos. 
 
 3.3. Químicas 
 a) Calcárias - calcita, dolomita e estalactites. 
 b) Ferruginosas-alguns minérios de ferro em camadas. 
 c) Salinas – nas formas de cloretos (halita e silvita); de nitratos, sulfatos e boratos. 
41 
 
4. Rochas sedimentares mais empregadas na Engenharia Civil 
 As rochas sedimentares têm importância econômica insofismável, pois nelas é 
encontrada parcela considerável de riqueza mineral existente, a saber, carvão, petróleo, 
gás mineral, muitos minérios metálicos e particularmente, matérias primas essenciais a 
indústria de construção como pedras de revestimentos, areia, cascalho, argila, etc. 
Devemos ressaltar também que as maiores reservas de água subterrânea, possíveis de 
serem aproveitadas, são encontradas em rochas sedimentares. 
 Podemos considerar, para fins de aplicação, duas classes de rochas sedimentares: 
a rocha em si, como material corrente e o sedimento formador destas rochas. 
 a) Coerentes ou Rochas Sedimentares 
 Arenitos - rocha formada por grãos de quartzo cimentados por um material qualquer 
(sílica, carbonato, óxidos de Fe, etc.). Os arenitos que possuem cimento silicosos 
apresentam grande resistência à abrasão e ao ataque químico, sendo normalmente 
utilizados em pisos (na forma de lajes ou blocos) e em revestimentos de fachadas. 
Argilitos e Siltitos - são empregados também no calçamento, como é o caso do 
“Varvito de Itu” (rocha estratificada com alternância de silte e argila), sendo fácil a 
obtenção de lajes segundo os planos de estratificação. 
Calcários Sedimentares-dos vários tipos que existem, o travertino é de grande 
procura para o revestimento de fachada. Trata-se de um calcário compacto, contendo 
inúmeras cavidades, razão pela qual o lado de uma grande solidez, grande leveza e 
aptidão para segurar argamassa devido sua textura celular. 
Gipsita - sulfato de cálcio hidratado, rocha de origem química formada pela 
precipitação de sulfato de cálcio. É usado na forma de gesso em construção, 
principalmenteem serviços de estuque. Tem grande emprego na fabricação de cimento 
Portland. 
b) Incoerentes – sem cimentação 
 Torna-se quase desnecessário discorrer sobre a aplicação desses sedimentos na 
Engenharia Civil, tal o volume de frequência com que são utilizados. 
 Cascalho - encontrado e extraído principalmente dos leitos dos rios ou de 
depósitos deixado por eles, devido a mudança de posição que frequentemente ocorre em 
seus cursos. 
42 
 
 Areia - as mais empregadas são aquelas que fazem parte de depósitos eólicos 
ou retirada de leitos de rios. As areias nas praias contêm teor em sal, fator que limita o 
seu emprego em construção. 
 Argilas - quanto à sua gênese podem ser consideradas de dois tipos: primárias 
formadas “in situ” pela decomposição química, principalmente de feldspatos; secundárias, 
aquelas que depois de formadas são transportadas geralmente pela água para um lugar 
qualquer, vindo a formar um depósito sedimentar. Estas são frequentemente coloridas por 
óxidos de ferro e apresentam maior plasticidade que as outras. 
 
 ANOTAÇÕES DE AULA 
43 
 
44 
 
Rocha Provável:
Amostra nº Amostra nº Amostra nº Amostra nº
Texturas:
Fragmentos e/ou 
Minerais
Matéria Orgânica:
Cimento:
Classificação:
C
o
m
p
o
s
i
ç
ã
o
Observações:
Cor:
Estruturas:
Relatório - Identificação de Rochas Sedimentares 
Nome:_____________________________________________________________________________ RA________________ 
Curso:__________________________________________ Turma__________________ Período_______________________ 
 
 
 
 
 
 
 
 
 
 
 
45 
 
 
46 
 
3 - Rochas Metamórficas 
1.Introdução 
 As rochas metamórficas são formadas pela transformação de rochas pré-existentes 
por ação do calor, temperatura e de fluídos. 
 Metamorfismo é um processo de transformação que afeta tanto composição 
mineralógica, a estrutura, como textura das rochas ígneas, sedimentares e mesmo 
metamórficas. As condições físicas e químicas em que tais transformações acontecem 
são diferentes tanto daquelas em que a rocha original se formou, como das existentes na 
superfície terrestre. As transformações em altas temperaturas provocam fusões totais ou 
parciais das rochas, não são admitidas como processo de metamorfismo. 
 Assim podemos considerar as rochas metamórficas como produto de 
transformação de rochas pré-existentes, em condições físico-químicas intermediáriasem 
relação as quais dão origem as rochas ígneas e sedimentares. Como consequência, há 
muitas rochas metamórficas que apresentam características ou de sedimentaresou de 
ígneas, sendo mais difícil o seu reconhecimento e sua classificação numa análise 
exclusivamente macroscópica. 
 Basicamente, dois são os processos principais de metamorfismo possíveis de 
serem distinguidos: deslocamento mecânico e recristalização química. Quase todas as 
rochas evidenciam a influência conjunta desses dois processos, sendo que as diferenças 
entre tais rochas residem na maior intensidade de atuação de um ou outro processo. 
 Dependendo das condições (físicas e/ ou químicas) predominantes admitimos a 
existência de quatro tipos de processos de metamorfismos: cataclásticos, termal, 
dinamotermal e plutônico. 
 O metamorfismo Cataclástico provoca fraturamento nas rochas devido a ação 
predominante de pressões dirigidas (deslocamento mecânico). Evidentemente, há uma 
variação razoável na dimensão dos fragmentos resultantes, de acordo com a intensidade 
de metamorfismo atuante. 
 No metamorfismo Termal, em que há predominância de temperaturas elevadas, 
ocorre a transformação de rochas encaixantes na parte próxima ao contato com a rocha 
ígnea intrusiva (magma), que propicia alterações na composição da rocha encaixante. 
Nesse tipo de metamorfismo, são mais acentuados os fenômenos de recristalização. 
 No metamorfismo Dinamotermal, em que predominam pressão dirigidas e 
temperaturas elevadas (dois fatores condicionantes de grande modificações nas rochas), 
47 
 
formam-se novas estruturas e novos minerais. Ocorre principalmente nas regiões de 
desdobramento e formação de montanhas. 
 No metamorfismo Plutônico, em que pressões hidrostática e alta temperatura são 
predominantes, as rochas tornam-se plásticas e há numerosas mudanças mineralógicas. 
Os minerais formados nessas condições de pressão e temperatura apresentam alto peso 
específico e formas equidimensionais. 
 As variedades de rochas metamórficas mais frequentes se enquadram nos tipos de 
metamorfismo dinamotermal e plutônico. 
2. Características a serem observadas nas amostras 
a) Estrutura 
Além da possibilidade de apresentarem fraturas (normalmente observáveis em 
afloramentos), essas rochas podem mostrar as seguintes estruturas: 
 1.Foliação (xistosidade) - é caracterizada por uma orientação resultante do 
desenvolvimento mais ou menos paralelo e contínuo de minerais micáceos, alongados ou 
prismáticos. 
 2.Lineação - é a denominação dada à foliação (ou xistosidade) descontínua de uma 
rocha metamórfica de granulação maior, que contém quartzo, feldspato e minerais 
micáceos orientados (gnaisse). Nela hácomo faixas de minerais planares orientados 
separados por minerais não orientados. 
 Estrutura semelhante, denominada bandeada, pode ocorrer em rochas 
metamórficas compostas exclusivamente por quartzo e pequena porcentagem de 
minerais micáceos (quartzitos). 
 3.Granulada - poucos minerais lamelares ou alongados, e muito maior porcentagem 
de minerais granulares. (mármores). 
 4.Cataclástica - caracterizada por fragmentos angulosos da rocha original 
cimentados por massa fina do mesmo material. Quando o processo metamórfico é muito 
intenso, há uma redução e fragmentos muito finos, dando origem ao “milonito”, rocha 
dura, com granulação microscópica. 
 5.Textura 
a)Granoblástica - quando os grãos se apresentam mais ou menos equidimensionais, 
sendo comum em rochas granuladas. 
48 
 
b)Lepidoblástica - é caracterizada por minerais placóides em arranjos mais ou menos 
paralelos. 
c)Porfiroblástica - quando há cristais maiores que se sobressaem numa matriz mais fina. 
Observação: Estas texturas não se aplicam às rochas resultantes do 
metamorfismo cataclástico. 
b) Composição Mineralógica 
 
1. Deverá ser indicado o número de minerais possíveis de serem observados nas 
amostras. 
2. Observar a forma dos minerais. 
3. Verificar a possibilidade de reconhecimento de algumas espécies minerais mais 
comuns. 
c) Classificação 
 
1. Rochas de metamorfismo cataclástico 
- Cataclasito 
- Milonitos 
2. Rochas de metamorfismo termal 
- Hornfels 
- Mármores 
- Quartzitos 
3. Rochas de metamorfismo dinamotermal 
- Ardosia 
- Filitos 
- Xistos 
- Gnaisses 
- Itacolomitos 
4. Rochas de metamorfismo plutônico 
- Granulitos 
- Charnockitos 
- Eclogitos 
 Chamamos a atenção para o fato de que podem ser encontrados termos de 
transição entre rochas metamórficas típicas e rochas ígneas ou sedimentares, conforme a 
intensidade dos processos metamórficos que estas tenham sofrido. Por outro lado, 
49 
 
encontramos também termos de transição entre um grupo e outro de rochas metamórficas 
como, por exemplo: entre micaxistos; entre filitos e ardósias. 
d) Rochas metamórficas mais empregadas na Engenharia Civil 
 1.Gnaisse: É uma das rochas mais comumente empregadas em construção com 
largo emprego em pavimentação na forma de paralelepípedos ou mesmo sub-base de 
rodovias; é usada também em leitos de ferrovias. 
É frenquentemente utilizada como pedra britada, quando o teor em mica é baixo. 
Aceita polímero, permitindo obtenção de material de fino acabamento em forma de lajes. 
 2.Quartizitos: Muito utilizado em lajes, aparelhadas manualmente ou serradas, tanto 
em fachadas como em pisos, polido ou não. O uso para tais fins tem sido muito grande, 
não só pela beleza que apresentam como também pela extraordinária resistência aos 
desgastes físico químico. 
 Largo uso tem-se feito ultimamente de um quartizito micáceo proveniente de Minas 
Gerais, chamado Itacolomito; permite a obtenção de placas muito finas (centimétricas) e 
muito regulares; comercialmente é conhecida como pedra mineira. 
 3.Mármore: É de conhecimento geral a utilização dos mais variados tipos de 
mármores, tanto em revestimentos interiores e exteriores, quanto em pisos e ornamentos. 
Deve-se considerar que os mármores coloridos e sulcados de veias, geralmente não dão 
pavimentos duráveis e econômicos, principalmente quando expostos ao tempo; 
apresentam melhores resultados quando aplicados em revestimentos de paredes. Para 
uso em pisos, deve-se escolher um tipo de mármore que tenha granulação fina e 
compacta. 
 ANOTAÇÕES DE AULA 
 
50 
 
 
51 
 
Relatório - Identificação de Rochas Metamórficas 
Nome:_____________________________________________________________________________ RA________________ 
Curso:__________________________________________ Turma__________________ Período_______________________ 
 
Rocha Provável:
Minerais
Formas
Identificados
Classificação:
Estruturas:
Texturas:
Observações: Amostra nº Amostra nº Amostra nº Amostra nº
Cor:
52 
 
 ANOTAÇÕES DE AULA 
53 
 
54 
 
Tabela Simplificada para Identificação de Minerais Anexo I 
 
 
51 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52 
 
1.Caracterização dos Maciços Rochosos 
 
1.1. Introdução 
Do ponto de vista da engenharia, para o aproveitamento das rochas, não podemos 
analisa-las de forma isolada, mas sim como um todo que denominamos de “MACIÇO 
ROCHOSO”. 
O maciço rochoso é o conjunto de blocos de rocha justapostos e articulados. O 
material que forma os blocos constitui a Matriz do Maciço Rochoso e as superfícies 
que os limitam as Descontinuidades. 
Os maciços rochosos são essencialmente heterogêneos e descontínuos e sua 
complexidade resulta da evolução geológica que foram submetidos 
Deve-se ter bem claro que um maciço rochoso pode reagir de maneira diferenciada, 
conforme as solicitações que lhe são impostas. Estas, por sua vez, dependem do tipo, 
das dimensões e do comportamento do maciço. 
Assim, para termos uma previsão do comportamento do maciço, devem-se avaliar 
suas características em função da obra a ser implantada. Tal procedimento denomina-se 
Caracterização Geológico-geotécnica do “Maciço Rochoso”. 
De modo geral, as características mais visadas no estudo do comportamento dos 
meios rochosos relacionam-se à deformabilidade, à resistência, à permeabilidade 
(principalmente em obras hidráulicas e de escavação) e ao estado de tensões naturais 
(obras subterrâneas profundas). 
Tais características compreendem as feições geologias e os parâmetros geotécnicos 
obtidos através da caracterização geológico-geotécnica do maciço rochoso e os índices e 
propriedades físicas determinadas por meio de ensaios in situ e laboratoriais. 
 
 
 
 
4.2. Litologia 
53 
 
A Litologia diz respeito aos tipos de rochas, que recebem denominações 
específicas e são identificados a partir de um sistema de classificação apoiado em 
conceitos de Petrografia. Este segmento da Geologia estuda as rochas por meio da sua 
composição mineral, cor, textura, tamanho dos grãos, estruturas e outras feições 
importantes que possibilitam individualiza-las. 
Uma classificação litológica ou petrográfica para aplicação em Engenharia deve 
apoiar-se em conceitos petrográficos de uso corrente na Geologia, porém, deve ser 
simplificada e objetiva, evitando-se nomenclaturas complexas, cujo emprego não 
proporcione resultados práticos. 
A presença de certos minerais pode conferir cor típica aos litotipos e sempre deve 
constar da descrição litológica. 
Esta descrição chamada litologia é o que foi visto, de forma simplificada, no 
início do nosso curso em sala de aula e laboratório. 
Para realizarmos a litologia do maciço rochoso será necessário a execução de 
investigações diretas dos mesmos. Estas investigações que possibilitam a coleta de 
amostras das rochas é denominada sondagem rotativa e será objeto de nossos estudos, 
pouco mais adiante, em um capítulo especial. 
 
4.3. Alteração 
Pode-se definir alteração como sendo o conjunto de modificações 
físico-químicas a que as rochas se encontram submetidas, que conduz á desagregação 
de suas características mecânicas. 
Os principais tipos de alteração que afetam as rochas são a alteração deutérica, ou 
primária, e a alteração meteórica ou intempérica. A primeira ocorre em ambiente 
endógeno na dependência de fenômenos magmáticos, enquanto que o segundo ocorre 
na dependência da hidrosferae atmosfera, em ambiente exógeno. 
Em regiões de clima tropical, caso do Brasil, a ação intempérica 
predominantemente química, pode afetar os maciços rochosos a profundidades 
consideráveis. 
 
54 
 
 
 
 
 
4.4. Coerência 
A coerência é definida com base em propriedades de tenacidade, dureza e 
friabilidade das rochas. É caracterizada táctil-visualmente, através da apreciação da 
resistência que a rocha oferece ao impacto do martelo e ao risco com lâminas de aço. 
Os critérios para definição da coerência das rochas, bem como as denominações e 
siglas constam na tabela a seguir. 
 
 
 
 
 
4.5. Descontinuidade 
 Constitui em uma série de blocos do mesmo maciço rochoso separado por um ou 
mais sistemas de diaclases (falhas ou fraturas) que fazem com que o meio rochoso seja 
descontinuo. 
 Sob a designação descontinuidade engloba-se qualquer feição geológica que 
interrompa a continuidade física de dado meio rochoso, a exemplo das superfícies de 
foliação, acabamento, fraturas, juntas-falhas, etc. Em termos práticos pode-se designar 
por descontinuidade qualquer superfície natural em que a resistência do maciço à tração 
é nula ou muito baixa. 
 O espaçamento corresponde a distancia entre duas descontinuidades adjacentes 
de uma mesma família. 
 Em termos práticos consideram-se a distancia entre quaisquer duas 
descontinuidades contíguas. O espaçamento pode ser expresso por meio da adoção de 
intervalos de variação numérica, conforme exemplificado na tabela a seguir. 
55 
 
 
 
 A rugosidade corresponde a ondulações nas superfícies das descontinuidades, 
influencia especialmente a resistência ao cisalhamento, sobretudo quando se trata de 
descontinuidades não preenchidas, conferindo um incremento ao ângulo de atrito, até um 
nível de tensões a partir do qual se verifica a sua ruptura. 
56 
 
 
4.6. Propriedades de Interesse à Engenharia 
São as propriedades que afetam o maciço rochoso e por consequência determinam à 
forma, que nós engenheiros, devemos tratar o uso do maciço como elemento construtivo. 
 
4.6.1. Propriedades Mecânicas 
 
4.6.1.1. Resistência ao Cisalhamento 
 Está diretamente ligada à descontinuidade maciço rochoso. 
 É o escorregamento do maciço num plano de fraqueza no meio rochoso. Rompe 
através de suas próprias descontinuidades. 
 
 
 
 
Parâmetros que definem a resistência ao cisalhamento: 
 - Coeficiente de atrito; 
 - Coesão; 
 - Envoltórias de resistência. 
 
Coeficiente de atrito: Quanto mais rugosidade apresenta o maciço maior a sua 
resistência ao cisalhamento. 
57 
 
O 
coeficiente de atrito depende dos dois tipos de rocha que estão em contato. 
 
Para que ocorra fratura será necessário que vença a resistência, ou seja, a força 
que une os minerais que compõem a rocha. No caso das rochas sedimentares esta força 
é atribuída ao cimento que une os grãos. 
 
Coesão: É a ligação entre dois minerais, é onde o plano parcial de ruptura tende a se 
partir, porém devido à existência da “COESÃO” não ocorre a ruptura, não se parte. 
A Coesão e o Coeficiente de Atrito determinam a resistência da rocha ao 
cisalhamento. 
 
4.6.1.2. Deformabilidade 
 É o equivalente ao módulo de elasticidade de meios homogêneos contínuos, ou 
seja, é a relação entre a tensão (força aplicada ao maciço) e a deformação que se obtém 
no meio. 
 É a “medição” de quanto o maciço rochoso se deforma em relação as 
tensões que são aplicadas nele. 
 Existem dois tipos de deformação: 
 Deformação Elástica: é a deformação que quando se retira a pressão volta ao 
estado de origem. 
 
 Deformação Plástica: é a deformação que se torna permanente, mesmo que se 
retire a pressão, não se volta mais ao estado de origem. 
58 
 
 
Nas rochas, e nos maciços rochosos (rochas + planos de fratura), nunca 
ocorrem apenas deformações elásticas, mas também estarão sempre presentes as 
deformações plásticas (permanentes). 
Quando ocorrem mais deformações plásticas do que elásticas, ocorre a 
plastificação e estamos próximos da ruptura. 
É também função do tipo da rocha e de suas descontinuidades. 
Quando a rocha é BRANDA (fraca) sofre maiores deformações. 
Exemplo: Xistos, Filitos, Argilitos. 
Observação: o maciço rochoso composto por rochas duras também pode se deformar 
e romper. 
 
 
4.6.1.3. Tensões Internas e Residuais 
 São as tensões de origem tectônicas que ficam bloqueadas no interior do maciço 
rochoso. 
As rochas mais próximas à superfície terrestre não sofrem este tipo de tensão, pois 
estas são dissipadas por meio das juntas de alívio. 
 
59 
 
4.6.1.4. Desagregabilidade 
 É a característica que algumas rochas têm de tornarem-se um material quebradiço. 
 Esta característica esta intimamente ligada à constituição mineralógica da rocha. 
 Exemplo: Alguns tipos de Basalto apresentam desagregabilidade, pois possuem, 
entre seus minerais algumas argilas expansivas (Montimorilonitas = partículas verdes), 
que ao absorverem a água expandem-se aumentando seu volume em até 40 vezes, 
exercendo pressões para ocuparem os espaços vazios, comprimindo os outros minerais 
provocando novas fissuras. 
 
 ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60 
 
4.6.2 ENSAIOS PARA A DETERMINAÇÃO DAS PROPRIEDADES MECÂNICAS 
 
- Resistência à compressão simples ou uniaxial (kgf/cm²); 
- Resistência à compressão puntiforme (kgf/cm²); 
- Resistência à tração ou compressão diametral (kgf/cm²); 
Observação: Estes ensaios serão executados em aulas de laboratório 
 
4.6.2.1 Resistência à Compressão Simples ou Uniaxial 
Utilizamos corpos de prova cilíndricos ou testemunhos de sondagens rotativas 
(C.P.). 
 CP 
 
 l l = comprimento 
 d = diâmetro 
 
 
 
d 
 
 P 
 
 Prato de Prensa 
CP RC = kgf/cm² 
 
 P 
 
 
 
 
 
l/d = 2,5 = +/- 10% 
Rc = Carga de Ruptura (P) 
 Área do CP (π . d² / 4) 
61 
 
4.6.2..2 Resistência à Compressão Puntiforme 
 
 
 
 
Is = P 
 d² 
 
 
onde: 
d = distância entre as esferas; 
Is = índice de resistência à compressão puntiforme; 
P = carga de ruptura; 
 
 
Obs. Quando for utilizado o corpo de prova cilíndrico, devemos considerar? 
- l/d = 1,1 +/- 5% (quando ensaiado ao longo do comprimento); 
- l/d ≥ 1,4 (quando ensaiado ao longo do diâmetro). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62 
 
4.6.3..3 Resistência à Compressão Diametral (Resistência à tração – Ensaio Lobo 
Carneiro) 
 
 
 
 
Rt = 2 x P 
 π x d x l 
 
onde: 
- P = carga de ruptura; 
- d = diâmetro; 
- l = comprimento; 
 
Obs. Para avaliar o valor aproximado da resistência à compressão simples (Rc). Podemos 
utilizar a relação desenvolvida pelo IPT: 
 
Rc = 16 x Is 
onde: 
- Is = índice de resistência à compressão puntiforme 
 
4.6.3 PROPRIEDADES FÍSICAS: 
São as propriedades que estão ligadas intimamente a constituição das rochas, as 
caracterizam, tais como: 
 
63 
 
PESO 
VOLUME 
CAPACIDADE DE ABSORÇÃO 
Estas propriedades são determinadas através de ensaios realizados em laboratório ou 
através de fórmulas que os inter-relacionam. 
 
4.6.3.1 – Determinação dos Índices físicos: 
São coletadas amostras no campo, por meio de investigações diretas, e tomadas 6 
amostras de rocha com diâmetro aparente de aproximadamente 2 a 3”, em seu estado 
natural, para determinarmos: 
- PESO NATURAL – (ou Peso D): O fragmentoé pesado em seu estado natural (neste 
estado ele pode conter água entre as partículas sólidas). 
- PESO SECO – (ou Peso A): O fragmento é pesado após a secagem em estufa, com 
temperatura de 100 a 110°C, por um período mínimo de 24 horas. 
- PESO SATURADO – (ou Peso B): O fragmento é pesado após a sua imersão em água 
por um período mínimo de 48 horas. 
 
Com os valores acima (obtidos em laboratório) podemos calcular, através das fórmulas 
abaixo apresentadas, os Índices Físicos ou as Propriedades Físicas do Maciço Rochoso. 
 
a) Peso Específico Aparente Seco (γs): 
 
γs = PesodosSólidos γs = A g 
 Volume Total B – C cm³ 
 
 
b) Peso Específico Aparente Saturado (γsat): 
 
γsat = B g 
 B – C cm³ 
 
c) Peso Específico Aparente Natural (γnat): 
 
γnat = D g 
 B – C cm³ 
 
d) Porosidade Aparente (n): 
 
n = VolumedeVazios . 100 n = B - A . 100(%) 
 Volume Total B – C 
 
64 
 
e) Absorção de Água (ab): 
 
ab = Pesodeáguaabsorvida . 100 ab = B - A . 100(%) 
 PesodosSólidos A 
 
 
 
 
Observação: A capacidade de absorção de d´água é de extrema importância para a 
engenharia, pois a água que infiltra nas fraturas exerce pressões que a romper o maciço 
saem arrebatando tudo. 
 
 
ANOTAÇÕES DE AULA 
 
 
 
 
 
 
 
 
 
EXERCÍCIOS DE GEOLOGIA 
 
1- Duas amostras de rocha do tipo Basalto foram submetidas a um ensaio de 
resistência à compressão simples, como mostra a tabela abaixo: 
CP DIÂMETRO (cm) COMPRIMENTO 
(cm) 
CARGA DE 
RUPTURA (kgf) 
01 3,0 8,2 12500 
02 2,5 6,8 13100 
 
Pede-se: calculas a resistência à compressão simples para as amostras que satisfazerem 
a relação comprimento/diâmetro. 
 
 
2- Três amostras irregulares de rocha do tipo Granito foram ensaiadas à 
compressão puntiforme, como mostra a tabela abaixo: 
 
AMOSTRA d (cm) CARGA DE RUPTURA 
(kgf) 
01 4,2 1280 
02 4,8 1250 
03 5,1 1230 
 
 
65 
 
Pede-se: 
a) Calcular a resistência à compressão puntiforme; 
b) Calcular o valor aproximado da resistência à compressão simples; 
 
d = distância entre as esferas 
utilizar a relação: Rc = 16 x Is, onde: 
- Rc = resistência à compressão simples; 
- Is = índice de resistência à compressão puntiforme. 
 
3- Duas amostras de rocha foram ensaiadas à resistência à compressão diametral 
como mostra o quadro abaixo: 
 
 
 
 
 
Pede-se: calcular à resistência à compressão diametral para as amostras que satisfazem 
a relação comprimento/diâmetro. 
 
 
 
 
4- Cinco amostras de uma mesma rocha foram pesadas conforme a tabela abaixo: 
CP PESO SECO (g) PESO 
SATURADO (g) 
PESO 
SUBMERSO (g) 
01 287 299,6 197,5 
02 269,3 272,4 179,2 
03 263,9 266,4 175,3 
04 238,6 241,1 158,3 
05 330,0 333,5 219,2 
 
 
Sabendo-se que: 
- absorção de água é a relação entre o peso da água absorvida e o peso dos 
sólidos; 
CP DIÂMETRO (cm) COMPRIMENTO 
(cm) 
CARGA DE 
RUPTURA (kgf) 
01 3,0 8,2 6580 
02 2,5 6,8 5750 
66 
 
- porosidade aparente é a relação entre o peso de água absorvida e o volume da 
amostra; 
- o peso específico aparente seco é a relação entre o peso dos sólidos e o volume 
da amostra; 
 
Pede-se: Calcular os valores destas propriedades para cada uma das amostras. 
 
TECNOLOGIA DAS ROCHAS 
ROTEIRO: 
Com as amostras virando de 5,0 à 8,0 cm, ensaiá-las na prensa hidráulica, não 
esquecendo de anotar d (distância entre as esferas metálicas) e após cada ruptura 
marcar a carga (lida no manômetro). 
 
Não se esquecer de zerar o manômetro após cada ruptura. 
Ensaiar 05 amostras, dando o valor Is médio. 
Depois de escolher 05 amostras com diâmetro de 5,0 à 8,0 cm, numerá-las, tiras o peso 
natural, colocar numa latinha e levar à estufa por 24 horas no mínimo (Não esquecer de 
identificar a lata) 
Depois de 24 horas, pesar novamente anotando o peso seco. Encher a latinha com água 
e deixar saturas as amostras por 48 horas no mínimo. Pesar novamente anotando o peso 
saturado. 
Depois pesar as amostras submersas anotando cada peso submerso, montando-se assim 
a tabela da página 03. 
Na descrição litográfica (pág. 05), deve-se descrever a amostra ensaiada de acordo com 
os relatórios feitos no 1° módulo, seguindo o roteiro dado na folha. 
D = distância entre as esferas ; F = variação do êmbolo 
Onde: f1= 0,30 cm 
 f2 = 2,78 cm 
 f3 = 5,05 cm 
 f4 = 6,81 cm 
Tara da cestinha = g para peso submerso 
1ª Parte: 
Propriedades índices: 
67 
 
 
Amostra 1 Amostra 2 Amostra 3 Amostra 4 Amostra 5 
Peso Natural (g) 
Peso Saturado (g) 
Peso Submerso 
(g) 
Peso Seco (g) 
Peso Especifíco 
Aparente Seco 
(g/cm³ - s) 
Peso Especifíco 
Saturado (g/cm³ - 
s) 
Peso Específico 
Natural (g/cm³ - s) 
Absorção de água 
(% - Ab) 
Porosidade 
Aparente (% - n) 
 
 
2ª Parte: 
Resistência à compressão puntiforme 
 
IS = Carga de Ruptura (kgf/cm²) 
 d² 
 
68 
 
 
 
Amostra 
nº d (cm) d2 (cm) 
Carga de 
Ruptura 
(Kgf) 
Is 
(kgf/cm²) 
1 
2 
3 
4 
5 
 
Is médio = kgf/cm² 
Observação: As amostras a serem ensaiadas deverão ter dimensões aproximadas de 5,0 
à 8,0 cm diâmetro aparente. 
3ª Parte: 
Descrição Litológica: 
 
a) Cor da Rocha: 
 
 
b) Estrutura: 
 
69 
 
 
 
c) Textura: 
 
 
 
d) Composição mineralógica: 
 
 
 
e) Classificação: 
 
 
 
f) Nome mais provável: 
 
 
 
g) Observações gerais: 
 
CENTRO DE CIÊNCIAS EXATAS, AMBIENTAIS E DE 
TECNOLOGIAS 
FACULDADE DE ENGENHARIA CIVIL 
GEOLOGIA – Capítulo 6 - SOLOS 
- Solo: 
Camada de material, em constante evolução, formada por meio da alteração das rochas e 
de processos pedogenéticos, comandados por agentes físicos, químicos e biológicos. 
Principais Categorias de Solo: 
Solo Residual: Formado “in situ”, diretamente da alteração da rocha subjacente 
(Magmáticas, Sedimentares, Metamórficas). 
Solos Transportado: Formado por material, inconsolidado ou em partículas, é 
transportado e depositado num lugar diferente de sua origem. 
 
 
 
70 
 
FORMAÇÃO DOS SOLOS 
1 – SOLO RESIDUAL 
É o resíduo final da decomposição da rocha, ficando somente vestígio de quartzo quando 
a rocha o possui em sua constituição. 
É o solo que permaneceu no mesmo local que estava à rocha do qual ele se originou, 
permaneceu “in situ”; para que ocorra este tipo de solo, é necessário que a velocidade de 
decomposição da rocha seja maior que a velocidade da remoção das partículas pelos 
agentes externos. 
Exemplo de solos residuais: 
- Basalto decomposição Terra roxa (argila vermelha); 
- Calcário decomposição Argila branca, cinza, clara; 
- Granito decomposição Areia fina silte argilosa micácea 
 
2 – SOLO TRANSPORTADO 
É o material (solos) proveniente do transporte de solo residual + solo saprolítico + 
matéria orgânica. Pela ação dos agentes geológicos ou agente de dinâmica interna 
(transporte), para os locais de deposição ou seja, as Bacias de Sedimentos. 
 
2.1 Tipos de Solos Transportados: 
 
a) Solo de aluvião ou aluvionar: Solo heterogêneo, fraco, formado por camadas de 
sedimentos, é o material depositado

Continue navegando