Buscar

Biorremediação Micro

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
 
Diversidade microbiana utilizada na biorremediação de solos contaminados 
por petróleo e derivados 
Oliveira, Rosiane Martins*, Alves, Fabiana**
1
 
Trabalho apresentado ao Centro Universitário Metodista Izabela Hendrix, como requisito para 
obtenção de Título de Licenciatura em Ciências Biológicas. 
 
RESUMO: A Biorremediação é uma tecnologia segura e eficiente quando comparada aos 
processos físicos e químicos convencionais utilizados no tratamento de locais contaminados. 
O petróleo e seus derivados, quando no ambiente, ocasionam grande impacto ecológico, além 
de infringirem a legislação ambiental. No entanto, o petróleo é uma fonte com alto teor de 
carbono e, por isso, seus hidrocarbonetos são atacados por micro-organismos quando entra em 
contato com o ar e umidade. O objetivo do presente estudo foi inventariar os produtos 
orgânicos de origem petrolífera e os principais micro-organismos utilizados na 
biorremediação de solos contaminados por petróleo e derivados. Foi realizada uma revisão 
bibliográfica em trabalhos publicados entre os anos de 1998 e 2013. Em seguida, os dados 
foram tabulados e foram construídos quadros correlacionando o produto de origem petrolífera 
e os respectivos micro-organismos biorremediadores. Dentre os trabalhos analisados foi 
possível constatar que os principais gêneros de fungos e bactérias citados com capacidade de 
degradação dos derivados de petróleo foram: Aspergillus, Penicillium, Fusarium, e 
Pseudomonas, Sphingomonas, Mycobacterium, Microbacterium, Gordonia, respectivamente. 
De acordo com os dados obtidos foi possível verificar que a biodegradação do petróleo em 
ambientes naturais ou em laboratório, não pode ser realizada por uma única espécie 
microbiana, uma vez que os poluentes são constituídos por vários tipos de hidrocarbonetos e 
nenhum micro-organismo é capaz de degradar sozinho todos os componentes presentes no 
ambiente contaminado. O conhecimento da biodiversidade e da pesquisa de novos 
microrganismos tornam-se um dos focos principais da era biotecnológica e vem auxiliando 
positivamente nos programas relacionados à gestão de áreas contaminadas. 
 
Palavras chave: Hidrocarbonetos. Biodegradação. Contaminação ambiental. Qualidade dos 
solos. Micro-organismos. 
 
 
 
* Graduanda em Ciências Biológicas pelo Centro Universitário Metodista Izabela Hendrix – Belo 
Horizonte/MG. E-mail: rose.moliveira@hotmail.com 
** Professora do Centro Universitário Metodista Izabela Hendrix. Doutoranda em Fisiologia pelo Departamento 
de Fisiologia e Farmacologia da Universidade Federal de Minas Gerais – UFMG. Mestre em Ciência Animal, 
UFMG. 
2 
 
Microbial diversity used in the bioremediation of soils contaminated by 
petroleum and oil products 
 
ABSTRACT: The Bioremediation is a safe and efficient technology when compared to 
conventional physical and chemical processes used in the treatment of contaminated sites. Oil 
and its derivatives, when in the environment, cause great ecological impact, addition to 
violating environmental laws. However, oil is a source with a high carbon content and 
therefore its hydrocarbons are attacked by micro-organisms when it comes into contact with 
air and moisture.The main objective of this study was to inventory the organic products of 
petroleum origin and the main micro-organisms used in bioremediation of soils contaminated 
by oil and oil products.Was performed a literature review published between the years 1998 
and 2013. Then the data were tabulated and tables were constructed correlating the product of 
petroleum and its micro-organisms bioremediators. Among the works analyzed it was 
established that the main kind of fungi and bacteria cited capacity degradation of petroleum 
were: Aspergillus, Penicillium, Fusarium, and Pseudomonas, Sphingomonas, Mycobacterium, 
Microbacterium, Gordonia, respectively. According to the data obtained it was possible to 
verify that the biodegradation of oil in natural environments or in the laboratory can’t be 
performed by a single microbial species, since the pollutants are composed of various types of 
hydrocarbons and no micro-organism is capable degrade by yourself all components present 
in the contaminated environment. The biodiversity knowledge and research of new 
microorganisms becomes a major focus of biotechnological era and has helped in the 
programs positively related to the management of contaminated places. 
 
Keywords: Hydrocarbons. Biodegradation. Environmental contamination. Soil quality. 
Micro-organisms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 
 
INTRODUÇÃO 
 
A poluição tornou-se uma preocupação global devido à contaminação do ambiente 
com compostos indesejáveis e ao efeito negativo que esses poluentes causam não somente no 
ambiente, mas também na saúde humana (MARTINS & AZEVEDO, 2012). Atualmente, 
inúmeras pesquisas relacionadas à remediação de áreas atingidas por acidentes envolvendo 
produtos petroquímicos são realizadas com a finalidade de restaurar a qualidade dos solos 
(COSTA, 2011). 
O petróleo é um composto orgânico, formado por processos biogeoquímicos, 
constituído em sua maior parte por uma mistura complexa de hidrocarbonetos (USBERCO & 
SALVADOR, 2002). Melo et al. (2008) definiram que o petróleo é constituído por centenas 
de compostos orgânicos que podem ser divididos em hidrocarbonetos alifáticos (alcanos, 
alcenos e cíclicos), hidrocarbonetos aromáticos (mono e poli aromáticos), asfaltenos (fenóis, 
ácidos graxos, cetanos e esteres) e compostos polares que incluem as resinas (piridina, 
quinolinas, carbazóleo, amidas, tiofeno, entre outros). Usberco & Salvador (2002) 
acrescentaram que o petróleo (bruto ou derivado) também pode conter quantidades pequenas 
de nitrogênio, oxigênio, compostos de enxofre e íons metálicos, principalmente níquel e 
vanádio. A indústria de petróleo, em suas diversas atividades – produção, refino, transporte e 
comercialização, apresenta risco ambiental inerente que precisa ser constantemente 
gerenciado. Os vazamentos acidentais de petróleo e derivados em dutos, embarcações e 
unidades industriais, são exemplos desses impactos ao ambiente (COSTA, 2011). 
Diante desse cenário, a contaminação do solo e água por hidrocarbonetos derivados de 
petróleo, mesmo em pequenas concentrações podem constituir um grande perigo à saúde 
humana e ao meio ambiente (COSTA, 2011). A legislação brasileira exige que áreas 
contaminadas devam ser remediadas, para minimizar a interferência ambiental e restaurar os 
ecossistemas. Para isto, são necessários o diagnóstico, a análise e o monitoramento do 
impacto e medidas remediadoras (CETESB, 2010). A Resolução do CONAMA 273/2000, 
define que toda instalação e sistemas de armazenamento de derivados de petróleo configuram-
se como empreendimentos potencialmente ou parcialmente poluidores e geradores de 
acidentes ambientais, considerando que os vazamentos de derivados de petróleo e outros 
combustíveis podem causar contaminação de corpos d’água subterrâneos e superficiais, do 
solo e do ar. 
Diversas técnicas que envolvem métodos físicos e químicos podem ser empregadas 
para remover os contaminantes do solo ou reduzir a concentração destes poluentes como: 
4 
 
diluição, dispersão, sorção, bombeamento, incineração e biorremediação (COSTA, 2011). 
Porém, as técnicas relacionadas à biorremediação são consideradas de baixo custo em 
comparação com o de processos convencionais. As técnicas de biorremediação utilizam 
micro-organismos vivos, apresentam baixo consumo de energia e causam poucas mudanças 
nas características físicas, químicas e biológicas doambiente (TONINI et al., 2010). 
A biorremediação é uma opção que oferece a possibilidade de eliminar ou transformar 
diversos contaminantes em compostos menos prejudiciais usando a atividade biológica dos 
micro-organismos que possuem capacidade de decompor poluentes, como os hidrocarbonetos 
aromáticos policíclicos do petróleo, conhecidos como HAP’s (VIDALLI, 2002; MARIANO, 
2007). 
Conforme Desai & Desai (1993), bactérias e fungos são agentes transformadores 
eficazes, visto sua habilidade em degradar uma ampla diversidade de substâncias orgânicas. 
Mariano (2007) ressaltou que a estrutura química dos poluentes orgânicos tem uma profunda 
influência na habilidade dos micro-organismos metabolizarem estas moléculas, especialmente 
com respeito às taxas e extensão da biodegradação, sendo que alguns compostos orgânicos 
são rapidamente biodegradados enquanto outros são recalcitrantes. 
Várias vias metabólicas de degradação dos HAP’s já foram identificadas em diferentes 
microrganismos, porém as mais estudadas são do metabolismo aeróbico realizado pelas 
bactérias, pelos fungos lignolíticos e pelos fungos não-lignilíticos (JACQUES, 2007). A 
possibilidade de utilização integral das vias bioquímicas permite a algumas bactérias 
crescerem utilizando os HAP’s como única fonte de carbono e energia para o seu crescimento, 
resultando na degradação destes compostos e na sua eliminação do ambiente. O mesmo autor 
afirmou que foram isoladas bactérias do gênero Pseudomonas que degradaram em média 51% 
do antraceno presente no meio de cultura mineral. Para o caso dos fungos lignolíticos, estes 
oxidam a lignina extracelularmente pela ação de lignina peroxidases, peroxidases dependentes 
de manganês e lacases. Estas são enzimas não específicas que podem oxidar HAP’s 
As estratégias de biorremediação incluem: a utilização de microrganismos autóctones, 
ou seja, do próprio local, sem qualquer interferência de tecnologias ativas de remediação 
(biorremediação intrínseca ou natural); a adição de agentes estimulantes (bioestimulação) 
como: oxigênio e biossurfactantes; e a inoculação de consórcios microbianos enriquecidos 
(bioaumento) (BENTO et al., 2003). Os produtos finais de uma biorremediação efetiva são 
nitratos, sulfatos, fosfatos, formas amoniacais, água, gás carbônico e outros compostos 
inorgânicos resultantes do processo de mineralização. Estes compostos não apresentam 
5 
 
toxicidade e podem ser incorporados ao ambiente sem prejuízo aos organismos vivos 
(MARIANO, 2006). 
Segundo Melo et al. (2008), a biorremediação é um conjunto de processos de 
tratamento que utiliza organismos (bactérias, fungos, vegetais) para biodegradar, reduzir ou 
eliminar o risco de compostos orgânicos perigosos ao meio ambiente e à saúde humana. A 
capacidade dos micro-organismos em degradar petróleo e derivados, utilizando-os como fonte 
de carbono, esteve bem reportado na literatura pesquisada. Para ressaltar esta eficiência, uma 
dada população microbiana necessita de condições ambientais específicas para realizar a 
biodegradação do contaminante, pois, caso contrário, esta população entrará em latência até 
que as condições ideais sejam disponibilizadas. 
Biorremediação é a aceleração do processo de biodegradação e por isso pode estar 
limitada à disponibilidade de nutrientes, a umidade, a temperatura, ao pH, a concentração de 
minerais, ao potencial redox, a natureza do contaminante e as características físicas e 
químicas dos ambientes contaminados (ROSA & TRIGUIS, 2005). 
A biorremediação é baseada em três princípios básicos: a presença do micro-
organismo com capacidade metabólica, a disponibilidade do contaminante e as condições 
ambientais adequadas para o crescimento e atividade microbiana (MENEGHETTI, 2007). 
O sucesso desta técnica está relacionado diretamente a uma ampla compreensão das 
condições físicas, químicas, biológicas e de uma minuciosa avaliação da aplicabilidade das 
técnicas in situ e ex situ (SANTOS, et al., 2007). As técnicas de remediação in situ são 
aquelas em que não há necessidade de remoção do material, sendo a biorremediação realizada 
no próprio local contaminado. Isso evita custos e distúrbios ambientais associados ao 
movimento do material contaminado para o local de tratamento (JACQUES et al., 2005; 
MARIANO, 2006). 
Na tecnologia ex situ o material contaminado é retirado do local de origem e 
encaminhado para outro adequado, esta técnica é necessária para evitar o alastramento do 
contaminante e é muito utilizada em contaminações de cursos de água e lençóis freáticos 
(SANTOS et al., 2007). Esta técnica produz um resultado mais rápido, pois são mais fáceis de 
serem controladas e apresenta uma maior versatilidade para o tratamento de vários tipos de 
contaminantes (ABBAS, 2003). Entre as técnicas mais utilizadas nos processos ex situ 
encontram-se o Landfarming, a compostagem e os biorreatores. 
No momento em que um contaminante ou poluente atinge a superfície do solo, vários 
mecanismos estão envolvidos, dentre eles a adsorção, a fixação química, a precipitação, a 
oxidação, a troca iônica, a neutralização, ou o poluente pode ser arrastado pelas águas através 
6 
 
do escoamento superficial, ou lixiviado pelas águas de infiltração, passando para as camadas 
inferiores e atingindo as águas subterrâneas. Uma vez atingindo as águas subterrâneas, esse 
poluente será então carreado para outras regiões, através do fluxo dessas águas (CETESB, 
2009). 
A persistência de um contaminante no solo depende de suas propriedades físico-
químicas, das propriedades do solo, da interação com o solo e mudanças estruturais as quais 
determinam sua degradação (LAVORENTI, 1996). Sabaté et al. (2004) observaram que os 
solos possuem diferenças nas atividades metabólicas dos microrganismos naturais, afetadas 
pela sua estrutura, composição e características. 
Dessa forma, inúmeras pesquisas relacionadas à remediação biológica de áreas 
atingidas por derivados de petróleo são realizadas com a finalidade de restaurar a qualidade 
dos solos (LOVLEY, 2003). Percebe-se que a técnica de biorremediação revela-se como uma 
técnica eficiente, promissora e interessante devido, principalmente, aos baixos custos e por ser 
uma técnica com mínima intervenção, na maioria das vezes, na recuperação dos ambientes 
contaminados. 
Assim, o objetivo do presente estudo foi inventariar os produtos orgânicos de origem 
petrolífera e os principais micro-organismos utilizados na biorremediação de solos 
contaminados por petróleo e derivados. 
 
METODOLOGIA 
 
 Para inventariar os produtos orgânicos de origem petrolífera e os principais micro-
organismos foram utilizados 45 trabalhos, publicados em revistas brasileiras e estrangeiras no 
período entre os anos de 1998 e 2013. Esses trabalhos foram selecionados por meio de buscas 
nos bancos de dados Pubic Medline (PUBMED), Scientific Eletronic Library On Line 
(SCIELO), Google acadêmico, utilizando os seguintes descritores: descontaminação, petróleo, 
qualidade dos solos, micro-organismos. Em seguida, os dados foram tabulados em planilhas 
do programa Excel e foram construídos quadros correlacionando os respectivos micro-
organismos biorremediadores com suas capacidades de degradar os produtos de origem 
petrolífera. 
 
 
. 
 
7 
 
RESULTADOS 
 
A partir da análise dos trabalhos pesquisados foi possível inventariar alguns produtos 
orgânicos de origem petrolífera e relacionar os gêneros de micro-organismos com a 
capacidade de degradar compostos orgânicos poluentes derivados do petróleo (Quadro 1). 
Os trabalhos analisados indicam que os principais gêneros de fungos e bactérias que 
apresentam capacidade de degradação dos produtos orgânicos de origempetrolífera são: 
Aspergillus, Penicillium, Fusarium, e Pseudomonas, Sphingomonas, Mycobacterium, 
Microbacterium, Gordonia, respectivamente. 
 
Quadro 1: Relação dos produtos de origem petrolífera e respectivos micro-organismos biorremediadores em 
trabalhos publicados no período de 1998 a 2013. 
Produto Micro-organismo - Gênero Alvo de degradação Autores 
Hidrocarbonetos 
Aromáticos 
Policíclicos 
(HAP’s) 
Mucor, Gliocadium, 
Penicillium, Phialophora, 
Trichoderma, Scopulariopsis e 
Coniothyrium 
 
Cladosporium, Fusarium, 
Penicillium, Aspergillus e 
Pleorotus 
 
Phanerochaete 
Degradação do pireno 
 
 
 
 
Biodegradação de HAP’s 
Ravelet et al. 
(2000) 
 
 
Mollea et al. (2005) 
 
 
Mollea et al. (2005) 
Hidrocarbonetos 
 
Aspergillus, Penicillium, 
Paecilomyces e Fusarium 
 
Aspergillus, Penicillium, 
Fusarium, Amorphoteca, 
Neosartorya, Paecilomyces 
 
 Talaromyces e Graphium 
 
Paecilomyces 
Aspergillus, Cladosporium., 
Penicilium sp. e Phoma sp. 
 
Aspergillus sp. LEBM2 
 
Metabolizar hidrocarbonetos 
aromáticos 
 
Capazes de degradar compostos 
fenólicos 
 
Araújo et al (2002) 
 
 
Chaillan e et al. 
(2004) 
 
 
Conceição et al. 
(2005) 
 
 
Silvia et al. (2007) 
 
 
Passos et al. (2009) 
Hidrocarbonetos 
aromáticos 
BTEX (benzeno, 
tolueno, etilbezeno 
e xileno) 
Microbacterium. e 
Rhodococcus 
 
Cladophialophora e 
Ccladosporium 
 
Pseudomonas, Rhodococcus 
 
Capazes de catabolizar benzeno, 
tolueno, etilbezeno xilenos 
(BTEX). 
Kang et al. (2005); 
Nikolova e Nenov 
(2005) 
 
Nagarajan e Loh 
(2009) 
 
Teixeira e Bento 
(2007) 
Tolueno e Xileno 
 
Pseudomonas 
 
Degradação de tolueno e xileno Otenio et al. (2005) 
n- hexadecano Bacillus e Ochrobactrum 
Biodegradação de 
hidrocarbonetos de cadeias 
longas 
Costa (2006) 
8 
 
Atrazine + 
simazine 
Aspergillus, Penicillium e 
Trichoderma 
Apresentam maior velocidade 
de crescimento radial a partir de 
solo contaminado com Atrazine 
+ simazine 
Colla et al. (2008) 
Alcanos Rhodococcus 
Capazes de degradar alcanos 
normais (C10-36 alcanos) e 
alcanos ramificados (pristano, 
fitano) 
Makiko et al. 
(2010) 
 
De acordo com os dados obtidos foi possível verificar que a biodegradação do petróleo 
em ambientes naturais ou em laboratório, não pode ser realizada por uma única espécie 
microbiana, uma vez que os poluentes são constituídos por vários tipos de hidrocarbonetos e 
nenhum micro-organismo é capaz de degradar sozinho todos os componentes presentes no 
ambiente contaminado. 
Algumas generalizações podem ser feitas quanto à susceptibilidade dos 
hidrocarbonetos de petróleo ao ataque microbiano, quando analisado a composição do 
hidrocarboneto, derivado encontrado e biodegradabilidade (Quadro 2). 
 
Quadro 2: Estrutura química e biodegradabilidade. 
Biodegradabilidade Exemplo de constituintes 
Derivados nos quais os constituintes 
são usualmente encontrados 
Mais degradável n-butano, n-pentano, n-octano Gasolina 
 Nonano Óleo diesel 
 Metilbutano, dimetilpentenos, metiloctanos Gasolina 
 Benzeno, tolueno, etilbenzeno, xilenos Gasolina 
 Propilbenzenos Óleo diesel, querosene 
 Decanos Óleo diesel 
 Dodecanos Querosene 
 Tridecanos Óleos combustíveis para aquecimento 
 Tetradecanos Óleos lubrificantes 
 Naftalenos Óleo diesel 
 Fluorantenos Querosene 
 Pirenos Óleos combustíveis para aquecimento 
Menos degradável Acenaftenos Óleos lubrificantes 
Fonte: U.S. Environmental Protection Agency (1995). 
 
DISCUSSÃO 
 Os resultados obtidos neste estudo corroboram com os dados encontrados por Jacques 
et al. (2007) e Alexander (1999) que descrevem que a complexidade dos processos 
metabólicos leva à necessidade de consórcios microbianos de diferentes gêneros e espécies, 
cada um especializado em degradar uma ou várias frações do composto. A degradação de 
substâncias xenobióticas por micro-organismos presentes no solo depende da presença de 
várias enzimas que realizam metabolismo para seu crescimento, e dessa forma conseguem 
remediar os compostos químicos, reduzir as concentrações presentes no ambiente ou torná-los 
menos tóxicos. 
9 
 
Micro-organismos com habilidade de biodegradar hidrocarbonetos de petróleo podem 
ser encontrados em áreas poluídas ou até mesmo em áreas que não tiveram contato prévio 
com hidrocarbonetos. No entanto, é mais fácil encontrá-los em ambientes já impactados, pois 
os poluentes conferem auxilio na seleção de linhagens com habilidade em degradar esses 
compostos (MORAIS, 2005). 
A partir desta revisão, constatou-se que ambos, bactérias e fungos, são amplamente 
utilizados para a remediação de derivados de petróleo (Quadro 1), sendo difícil inferir e 
generalizar qual é mais utilizado. Segundo Silva et al. (2008), a maior parte do conhecimento 
sobre rotas metabólicas de degradação desses compostos encontra-se fundamentada em 
bactérias. No entanto, estudos têm mostrado que fungos atuam como decompositores de 
compostos aromáticos, assim como de compostos fenólicos (SILVA, 2008). Segundo Balba et 
al. (1998), as bactérias e leveduras apresentam-se como os principais responsáveis pela 
degradação dos hidrocarbonetos em ambientes aquáticos, enquanto que fungos e bactérias são 
dominantes no solo. 
Os principais gêneros de fungos citados pelos autores analisados neste estudo foram 
(Quadro 1): Cunnighamella, Phanerochaete, Fusarium, Candida, Penicillium, Pleorotus, 
Trametes, Aspergillus, Bjerkandera e Chrysosporium. Contudo, Jacques et al. (2007); 
Mutnuri et al. (2005) e Cerniglia (1997) relatam que as bactérias degradadoras de 
hidrocarbonetos são pertencentes, principalmente, aos gêneros (Quadro 1): Pseudomonas, 
Beijerinckia, Flavobacterium, Nocardia, Corynebacterium, Sphingomonas, Mycobacterium, 
Stenotrophomonas, Paracoccus, Burkholderia, Microbacterium, Gordonia, entre outros. 
Chaillan et al. (2004) isolaram 61 linhagens, sendo 31 bactérias, 26 fungos 
filamentosos e quatro leveduras de solos poluídos por petróleo na Indonésia. Foram 
identificadas cepas bacterianas pertencentes aos gêneros Gordonia, Brevibacterium, 
Aeromicrobium, Dietzia, Burkholderia e Mycobacterium, além de quatro espécies novas e 
ainda não descritas. Já os fungos foram identificados os gêneros Aspergillus, Penicillium, 
Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces e Graphium. As leveduras 
foram Candida sp, Pichia sp e Yarrowia sp. Todas as cepas foram cultivadas em uma solução, 
onde o petróleo era a única fonte de carbono e energia. As cepas foram avaliadas com relação 
ao potencial de biodegradação. Foi observada uma degradação máxima por Rhodococcus nos 
hidrocarbonetos saturados, sendo que o mesmo resultado foi citado por Makiko et al. (2006) 
(Quadro 1). No entanto, para o caso dos hidrocarbonetos aromáticos o mesmo autor 
apresentado uma menor degradação desses micro-organismos, ao contrário do encontrado 
neste estudo. 
10 
 
Silva et al. (2007), demonstraram que: Aspergillus flavus, Cladosporium sp., 
Penicilium sp. e Phoma sp. são resistentes às condições adversas e capazes de degradar 
compostos fenólicos a partir de águas residuárias de postos de gasolina. O gênero 
Paecilomyces já foi descrito associado a processos de biorremediação com sucesso na 
degradação de vários compostos tóxicos, em especial as espécies Paecilomyces variotti e 
Paecilomyces niveus. Passos et al. (2009) isolaram de um solo, contaminado por 
hidrocarbonetos derivados de petróleo, na região da Cidade do Rio Grande,RS, Brasil, uma 
linhagem de Aspergillus sp. LEBM2 e avaliaram a taxa de biodegradação de fenol em 
concentrações crescentes. Com os resultados, puderam concluir que Aspergillus sp. LEBM2 
tem alta tolerância ao fenol, podendo degradá-lo efetivamente até uma concentração de 989 ± 
15 mg L
-1
, podendo ser empregado em processos de bioaumentação. Atagana et al. (2006) ao 
avaliaram a capacidade dos gêneros Cladosporium, Fusarium, Penicillium, Aspergillus e 
Pleorotus isolados de solos contaminados com creosoto na degradação de HPA’s, constatou 
que os fungos constituem um grupo de micro-organismos atrativo e promissor para a 
investigação como agentes degradadores, uma vez que avaliações de fungos em escala de 
laboratório apresentam um potencial adequado para degradar HPA’s de alto peso molecular e 
outros compostos orgânicos recalcitrantes por meio de sistemas enzimáticos extracelulares. 
Colla et al. (2008), realizaram o isolamento de quinze fungos de solo contaminado 
com atrazina + simazina. Destes, foram identificados os seguintes gêneros: Aspergillus, 
Penicillium e Trichoderma, constatando que os dois primeiros gêneros apresentaram maior 
velocidade de crescimento radial a partir de solo contaminado com atrazine + simazine, o que 
indica que estes microrganismos apresentam potencial para serem utilizados em processos de 
biorremediação. Já Otenio et al. (2005), estudaram a atividade degradativa da espécie 
Pseudomonas putida CCMI 852, de componentes presentes na gasolina, o benzeno, tolueno e 
xileno (BTX) e se mostrou eficiente na degradação de tolueno e xileno exceto do benzeno. 
Esses resultados devem-se à adaptabilidade do gênero Pseudomonas a diversos substratos 
(OTENIO et al., 2005; SILVA et al., 2007; SINHA e MUKHERJEE, 2009 ). Os autores 
Araújo et al. (2002), realizaram o isolamento e identificação de fungos filamentosos com 
capacidade de degradação do petróleo. A partir de um solo contaminado com petróleo foram 
obtidas 80 linhagens, das quais 60 apresentaram capacidade para degradar hidrocarbonetos de 
petróleo. Dentre estas, foram identificados quatro gêneros fúngicos: Aspergillus, Penicillium, 
Paecilomyces e Fusarium. 
Mollea et al. (2005), utilizaram linhagens fúngicas puras na otimização da 
biodegradação de HPA’s. Os resultados mostraram que Phanerochaete chrysosporium 
11 
 
biodegradou os HPA’s até aproximadamente 600 mg/kg de solo. Entretanto Ravelete et al. 
(2000) identificaram várias espécies de fungos com capacidade para degradar pireno. Os 
isolados pertenciam aos gêneros Mucor, Gliocadium, Penicillium, Phialophora, Trichoderma, 
Scopulariopsis e Coniothyrium. 
Nikolova e Nenov (2005) estudaram o potencial de degradação de BTEX por fungos. 
Os fungos foram isolados de locais contaminados com gasolina e foram identificados como 
pertencentes aos gêneros Cladophialophora e Cladosporium. Na tentativa de inventar uma 
cultura mista de um consórcio estável, Cao et al. (2010) testaram o potencial de 
biodegradação de três culturas puras (Pseudomonas putida, Rhodococcus zopfii e 
Pseudomonas stutzeri) e também, combinadas. O objetivo foi verificar se as três espécies 
combinadas em uma cultura mista poderiam biodegradar mais eficazmente o BTEX. Estes 
pesquisadores detectaram no sistema de substrato misto uma hierarquia de biodegradação, 
sendo o tolueno o composto mais facilmente degradado, seguido pelo benzeno, etilbenzeno e 
o-xileno. 
Estudos realizados por Teixeira e Bento (2007) isolaram e caracterizaram 37 bactérias 
de solos contaminados com gasolina. Foi determinada a degradação do etanol e do BTEX na 
gasolina comercial, por meio de cromatografia gasosa, bem como a produção de surfactantes 
para cinco destes isolados. Estes foram identificados como Pseudomonas putida e 
Pseudomonas aeruginosa. 
Costa (2006), selecionou duas linhagens com maior potencial para degradar n-
hexadecano, as quais foram identificadas como Bacillus pumilus e Ochrobactrum anthropi. O 
n-hexadecano é um dos principais compostos do óleo diesel e é considerado um composto 
modelo para a biodegradação de hidrocarbonetos de cadeia longa. Kang et al., (2005), 
isolaram bactérias capazes de degradar hidrocarbonetos aromáticos do solo rizosférico de 
cana na Baía de Sunchon pela cultura de enriquecimento usando o benzeno, tolueno, 
etilbenzeno e xileno (BTEX) como única fonte de carbono. A identificação dos isolados com 
base no sequenciamento do gene 16S rRNA, que é uma subunidade ribossomal revelou duas 
linhagens capazes de catabolizar o BTEX, Microbacterium sp. e Rhodococcus sp. Entretanto, 
Makiko et al., (2006) isolaram bactérias degradadoras de alcanos, a partir de amostras de solo 
contaminado com petróleo. As bactérias do gênero Rhodococcus se mostraram capazes de 
degradar alcanos normais (C10-C36 alcanos) e alcanos ramificados (pristano, fitano). 
 
 
 
12 
 
CONSIDERAÇÕES FINAIS 
 
A pesquisa e o uso de micro-organismos selecionados naturalmente em áreas 
contaminadas por hidrocarbonetos representam uma estratégia importante, a fim de obter 
agentes para a biorremediação destas áreas. A remediação de áreas contaminadas é importante 
porque, além do efeito visual e protetor, é geralmente, uma exigência legal e um compromisso 
social que precisam ser executados. 
Conforme os resultados apresentados e discutidos neste artigo foi possível verificar 
que há uma grande diversidade de micro-organismos, contudo existe ainda poucos descritos 
na literatura com potencial de uso in situ para a solução ou atenuação dos problemas de 
contaminação de ambientes contaminados com petróleo e seus derivados. 
Para que a biorremediação traga resultados satisfatórios, é de fundamental importância 
o conhecimento dos princípios e das técnicas. Isso possibilita uma utilização e seleção correta 
do micro-organismo de acordo com as condições específicas de cada local e de cada 
contaminante presente. 
Finalmente, o conhecimento da biodiversidade e da pesquisa de novos microrganismos 
tornam-se um dos focos principais da era biotecnológica e vem auxiliando positivamente nos 
programas relacionados à gestão de áreas contaminadas. As pesquisas nacionais e 
internacionais já possibilitaram o isolamento e a identificação destes micro-organismos, assim 
como o conhecimento das vias bioquímicas, que confirmam a capacidade de metabolização 
destes compostos. 
 
AGRADECIMENTOS 
 
A professora D.Sc. Flávia C. de Paula e Silva pela orientação e pelos ensinamentos e a 
professora M.Sc. Fabiana Alves pela prontidão em aceitar meu convite para ser minha 
orientadora e conselhos para redação deste trabalho. 
 
 
 
 
13 
 
REFERÊNCIAS 
ABBAS, M. Z. M. A biorremediação como ferramenta para a minimização de 
problemas ambientais. Piracicaba: Universidade de São Paulo, Escola de Agricultura 
“Luiz de Queiroz”, 2003. 
 
ALEXANDER, M. Biodegradation and bioremediation. 2.ed. New York: Academic 
Press, 1999. 453p. 
 
ARAÚJO, F. S. M.; LEMOS, J. L. S. Isolamento e identificação de fungos 
degradadores de petróleo. In: JORNADA DE INICIAÇÃO CIENTÍFICA, 10,2002. 
Anais... [S. 1.]: CENTRO DE TECNOLOGIA MINERAL – CETEM/ MCT, 2002. 
 
ATAGANA, H. I.; HAYNES, R. J.; WALLIS, F. M. Fungal Bioremediation of creosote 
contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. 
Water, Air, and Soil Pollution, v. 172, p. 201-219, 2006. 
 
BENTO, F. M.; CAMARGO, F. A. O.; OKEKE, B. Bioremediation of soil 
contaminated by diesel oil. Brazilian Journal of Microbiology, São Paulo, v.34, 
supl.1, p. 65-68, Nov. 2003. 
 
CAO, B.; NAGARAJAN, K.; LOH, K. C. Biodegradation of aromatic compounds: 
current status and opportunities for biomolecular approaches.Revista em 
Agronegócios e Meio Ambiente. V.3, n.3, p. 291-310, set./dez. 2010. 
 
CETESB: Companhia de tecnologia de saneamento ambiental. Relação de áreas 
contaminadas, 2009. Disponível em: <http://www.cetesb.sp.gov.br/>. Acesso em: 10 
de mar. 2013. 
 
CETESB. Companhia de tecnologia de saneamento ambiental. Gerenciamento de 
áreas contaminadas: investigação para remediação no Estado de São Paulo. 
Dezembro de 2010.Disponível em: <http://www.cetesb.sp.gov.br/areas-
contaminadas/relacoes-de-areascontaminadas/15 publicacoes> Acesso em: 29 abr. 
2013. 
 
CHAILLAN, F.; LEFLECHE, A.; BURY, E.; GRIMONT, P.; SALIOT, A.; OUDOT, J. 
Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading 
microorganisms. Research in Microbiology, v. 155, p. 587-595, 2004. 
 
COLLA, L. M.; PRIMAZ, A. L.; LIMA, M.; BERTOLIN, T. E.; COSTA, J. A. V. 
Isolamento e seleção de fungos para biorremediação a partir de solo contaminado com 
herbicidas triazínicos. Ciência e Agrotecnologia, Lavras, v.32, n.3, p.809-813, maio-
junho, 2008. 
 
CONSELHO NACIONAL DO MEIO AMBIENTE - CONAMA. Disponível 
em:<www.conama.com.br>. Acesso em: 15 mar. 2013. 
 
CONCEIÇÃO, D. M.; ANGELIS, D. A.; BIDOIA, E. D.; ANGELIS, D. F. Fungos 
filamentosos isolados do Rio Atibais, SP e refinaria de petróleo biodegradadores de 
compostos fenólicos. Arquivos do Instituto Biológico, São Paulo, v. 72, n. 1, p. 99-
106, jan./mar. 2005. 
14 
 
 
COSTA, M. D. Notas de aula: Biorremediação de solos contaminados. MBI 650 
Microbiologia do solo. Universidade Federal de Viçosa. 2011. 
 
COSTA, S. P. Biodegradabilidade de n-hexadecano por bactérias livres e 
imobilizadas em quitosana. 2006. Dissertação (Mestrado em Biotecnologia de 
Produtos Bioativos) - Universidade Federal de Pernambuco, 2006. 
 
DESAI, J. D.; DESAI, A. J. Biosurfactants: production, properties, applications. Ed. 
NainKosaric, University of Western Ontario: London, Canada, cap. 3, 504 p., 1993. 
 
EMBRAPA. Aprendendo sobre o solo. Disponível em: 
<http://www.cnps.embrapa.br/search/mirims/mirim01/mirim01.html>. Acesso em: 17 
out. 2012. 
 
FURUKAWA, G. G.; SANTOS, R. M. Estudo da aplicação de material estruturante e 
Bioestímulo na biorremediação de solos contaminados por petróleo. Anais... I Jornada 
PCI – 2007. 
 
JACQUES, R. J.; BENTO, F. M.; ANTONIOLLI, Z. I.; CAMARGO, F. A. O. 
Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos. 
Ciência Rural. 2007, vol.37, n.4, p. 1192-1201. 
 
KANG, S.; OH, K. H.; KAHNG, H. Y. Physiological characterization of BTEX 
degrading bacteria Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2 isolated 
from reed rhizosphere of sunchon bay. Korean Journal of Microbiology and 
Biotechnology, v. 33, n. 3, p. 169-177, 2005. 
 
LAVORENTI, A. Comportamento dos herbicidas no meio ambiente. In: CENTRO 
NACIONAL DE PESQUISA DE MONITORAMENTO E AVALIAÇÃO DE 
IMPACTO AMBIENTAL. Anais do Workshop sobre Degradação. Jaguariúna, SP: 
Embrapa-CNPMA, 1996. v. 1. p. 81-115. 
 
LOVLEY, D. R. Cleaning up with Genomics: applying molecular biology to 
bioremediation. Nature Reviews – Microbiology. Vol. 1. October 2003. 
 
MAKIKO, K.; KAZUAKI, S.; SHUNJI, O.; SHIN, T.; AKIKO, M. Identification of 
alkane degrading bacteria in petroleum hydrocarbon-contaminated soil. Journal of 
Japan Society on Water Environment. V. 29, n. 1, p. 37-43, 2006. 
 
MARIANO, A. P.; ANGELIS, D. F.; BONOTTO, D. Monitoramento de indicadores 
geoquímicos e avaliação de biodegradação em área contaminada com óleo diesel. Eng. 
Sanit. Ambient. 2007, vol.12, n.3, pp. 296-304. 
 
MARIANO, A. P. Avaliação do potencial de biorremediação de solos e de águas 
subterrâneas contaminados com óleo diesel. 147 f. 2006. Tese (Doutorado em 
Geociências e Meio Ambiente) – Programa de Pós-Graduação em Geociências e Meio 
Ambiente, Universidade Estadual Paulista, Rio Claro, 2006. 
 
15 
 
MARTINS, P. F.; AZEVEDO, R. A. Perspectivas do uso de microrganismos na 
biorremediação. Disponível em: 
<http://www.genetica.esalq.usp.br/pub/seminar/PFMartins-200701-Resumo.pdf>. 
Acesso em: 16 out. 2012. 
 
MELO, I. S.; et al. Microbiologia Ambiental. 2. ed. rev. e ampl. – Jaguariúna, SP: 
EMBRAPA Meio Ambiente, 2008. 647 p. 
 
MENEGHETTI, L. R. R. Biorremediação na descontaminação de solo residual de 
basalto contaminado com óleo diesel e biodiesel. Passo Fundo: UPF, 2007. 
 
MOLLEA, C.; BOSCO, F.; RUGGERI, B. Fungal biodegradation of naphthalene: 
microcosms studies. Chemosphere, v. 60, n. 5, p. 636-643, 2005. 
 
MORAIS, E. Biodegradação de resíduos oleosos provenientes de refinaria de 
petróleoatravés do sistema de biopilhas. 2005. 73 f. Dissertação (Programa de Pós 
Graduação em Geociências e Meio Ambiente – Mestrado e Doutorado) - Instituto de 
Geociências e Ciências Exatas - Universidade Estadual Paulista, Rio Claro, 2005. 
 
NIKOLOVA, N.; NENOV, V. BTEX degradation by fungi. Water Science & 
Technology, v. 51, n. 11, p. 87-93, 2005. 
 
OTENIO, M. H.; SILVA, M. T. L.; MARQUES, M. L. O.; ROSEIRO, J. C.; BIDOIA, 
E. D.Benzene, Toluene and Xylene biodegradation by Pseudomonas putida CCMI 852. 
Brazilian Journal of Microbiology. n. 36, p. 258-261, 2005. 
 
PASSOS, C. T.; BURKERT, J. F. M.; KALIL, S. J.; BURKERT, C. A. V.; 
Biodegradação de fenol por uma nova linhagem de Aspergillus sp. Isolada de um 
solo contaminado do Sul do Brasil. Química Nova, vol.XY, n. 00 1-5. 
 
RAVELET, C.; KRIVOBOK, S.; SAGE, L. STEIMAN, R. Biodegradation of pyrene 
by sediment fungi. Chemosphere,v. 40, p. 557-563, 2000. 
 
ROSA, A. P.; TRIGUIS, J. A. Estudos experimentais da análise dos processos de 
biorremediação na mitigação do impacto ambiental. Rio de Janeiro: Universidade 
Estadual do Norte Fluminense (UENF), 2005. 
 
SABATÉ, J.; VIÑAS, M.; SOLANAS, A. M. Laboratory-scale bioremediation 
experiments on hydrocarbon contaminated soils. International Biodeterioration & 
Biodegradation, v. 54, n. 1, p. 19-25, 2004. 
 
SANTOS, R. M; RIZZO, A. C. L; SOBRAL, L. G.S. Remediação de solo 
contaminado por petróleo em biopilhas – escala piloto. Campinas: Centro de 
tecnologia mineral CETEM, 2007. 
 
SILVA, R. F.; ANTONIOLLI, Z. I.; ANDREAZZA, R.; JUNIO, C. O. M. Seleção de 
fungos ectomicorrízicos tolerante a cobre em meio de cultura. 2007, Disponível em: 
<http://w3.ufsm.br/ppgcs/congressos/CBCS_RECIFE/BIOLOGIA.pdf>. Acesso em: 6 
Abr. 2013. 
 
16 
 
SILVA, T. R.; VALDMAN, E.; VALDMAN, B.; LEITE, S. G. F. Salicylic acid 
degradation fromaqueous solutions using Pseudomonas fluorescens HK44: parameters 
studies and application tools. Brazilian Journal of Microbiology. n. 38, p. 39-44. 
2007. 
 
TEIXEIRA, A. S.; BENTO, F. M. Isolamento e caracterização de bactérias 
degradadoras de gasolina comercial. 2007. Dissertação (Mestrado em faculdade de 
Agronomia) - Universidade federal do Rio Grande do Sul, 2007. 
 
TONINI, R. M. C. W.; REZENDE, C. E.; GRAVITOL, A. D. Degradação e 
biorremediação de compostos do petróleo por bactérias: revisão. Oecologia 
Australis. 14(4): 1027-1035, 2010. 
 
UFSM. O solo no ambiente. Disponível em: 
<http://w3.ufsm.br/fisica_e_genese/Graduacao/Solos_Prod_Animal/Transparencias/fun
coes_spa_2006_1.pdf>. Acesso em: 17 out. 2012. 
 
USBERCO, J.; SALVADOR, E. Química - volume único. 5ª ed. reform.— São Paulo : 
Saraiva, 2002. 
 
VIDALLI, M. Bioremediation. An overview. Pure and Applied Chemistry. v.73, p. 
1163-1172. 2001. 
 
WETLER-TONINI, R. M. C. Biodegradação Bacteriana de Petróleo e seus Derivados. 
Rev. Virtual Quim., 2011, 3 (2), 78-87.

Continue navegando