Buscar

ANÁLISE DO POTENCIAL EÓLICO E ESTIMATIVA DA GERAÇÃO DE ENERGIA EMPREGANDO O “SOFTWARE” LIVRE ALWIN

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

ANÁLISE DO POTENCIAL EÓLICO E ESTIMATIVA DA 
GERAÇÃO DE ENERGIA EMPREGANDO O “SOFTWARE” 
LIVRE ALWIN 
Adriane Prisco Petry, Dra. 
Jussara M. Leite Mattuella, MSc 
Porto Alegre 
2007 
 
 
AGRADECIMENTOS 
Este documento contou com a revisão técnica da Empresa Intercâmbio Eletro Mecânico - IEM, 
empresa que desde 1993 representa (para todo o Brasil) os Dataloggers Ammonit, equipamento 
empregado nas medições de vento ora em processamento no Estado. A empresa tem a 
responsabilidade técnica de Hans D. Rahn. Este trabalho também contou com a colaboração do 
responsável, pela empresa, em treinamento dos softwares eólicos, Álvaro Lima Vieira. 
 
 
RESUMO 
Este texto apresenta a metodologia de análise do potencial eólico e de estimativa da energia 
gerada, empregando como ferramenta de auxílio computacional o programa ALWIN. O texto 
contém uma resumida introdução à análise de projetos eólicos, descrevendo a operação do 
programa em cada etapa. Dentre os recursos disponíveis no programa está o tratamento de dados 
coletados para obtenção dos parâmetros estatísticos relevantes de dados de vento. A partir das 
informações estatísticas resultantes da análise do vento em um dado local e da curva 
característica de turbinas eólicas, o programa avalia a provável energia elétrica obtida ao 
empregar determinado aerogerador. Ao inserir informações sobre o comportamento de diferentes 
máquinas é possível avaliar diversas alternativas, até chegar-se à solução técnico-econômica que 
é mais indicada para o local. O ALWIN constitui-se em direito autoral do Deutsches 
Windenergie-Institut e da Ammonit Gesellschaft für MesstechnikmbH. Tem seu acesso 
franqueado a partir do site http://www.ammonit.de/produkte/pu_alw_e.htm. 
Este programa vem ao encontro dos objetivos do estudo da energia eolica, ou seja, a implantação 
de um sistema eólico para conversão energética em complementação à rede convencional. Cabe 
salientar que para a determinação do recurso eólico de um sítio existem modelos mais 
sofisticados, entretanto, ate mesmo em caso de se tratar de um maior aproveitamento, o Programa 
ALWIN é empregado dado que oferece a possibilidade de uma avaliação preliminar do potencial 
de uma área. Neste texto apresentamos esta metodologia de avaliação, juntamente com conceitos 
relevantes para compreender a aplicação da metodologia. 
 
 
LISTA DE FIGURAS 
Figura 1: Janela de Parâmetros do Local (Site) ............................................................................... 9 
Figura 2: Janela de Alimentação dos Dados de Vento no Programa Alwin ................................. 10 
Figura 3: Distribuição de Freqüência - Histograma ...................................................................... 13 
Figura 4: Definição da Curva de Rayleigh .................................................................................... 14 
Figura 5: Distribuição de Weibull (MOSS et al., 2001) ................................................................ 17 
Figura 6: Estatística da Velocidade do Vento de Metro em Metro, Freqüência dos Dados 
Medidos, Freqüência de Rayleigh e Freqüência de Weibull .................................................. 18 
Figura 7: Estatística da Direção dos Ventos-Rosa dos Ventos ...................................................... 20 
Figura 8: Janela do Sistema Alwin Estatística de Direção dos Ventos - Rosa dos Ventos ........... 20 
Figura 9: Caracterização da Camada Limite Atmosférica (TWELE; GASCH, 2002) .................. 22 
Figura 10: Fluxo de Vento através de uma Turbina Eólica (HIRATA; ARAÚJO, 2000) ............ 25 
Figura 11: Janela do Sistema Alwin Evidenciando as Curvas de Potência das Turbinas de Vento
 ................................................................................................................................................ 30 
Figura 12: Possibilidades de Escolha/Adição de outras Opções de Turbinas Eólicas .................. 31 
Figura 13: Curva de Potência do Aerogerador .............................................................................. 33 
Figura 14: Inserção dos Dados Relativos „A Turbina E –70 no Programa ................................... 34 
Figura 15: Renomeando um Novo Catálogo ................................................................................. 34 
Figura 16: Criação de um Novo Catálogo ..................................................................................... 35 
Figura 17: Definição da Curva de Potência da Nova Máquina ..................................................... 36 
Figura 18: Cálculo da Potencia Média, Energia e o Fator de Capacidade pelos Métodos da Média, 
Distribuição de Rayleigh e Distribuição de Weibull .............................................................. 37 
Figura 19: Os Valores Numéricos que Respaldam o Gráfico da Figura 18 - Velocidade Média por 
Intervalos de 1m/S .................................................................................................................. 39 
Figura 20: Curso Diurno da Velocidade do Vento e Duração das Calmarias ............................... 40 
 
 
 
SUMÁRIO 
1 INTRODUÇÃO .......................................................................................................................... 6 
2 AVALIAÇÃO DO POTENCIAL EÓLICO ............................................................................. 8 
2.1 INFORMAÇÃO DOS DADOS DE MEDIÇÕES DE VENTO .............................................. 8 
2.2 ANÁLISE ESTATÍSTICA DOS DADOS DE VENTO ....................................................... 11 
2.2.1 Cálculo da Velocidade Média ..................................................................................... 11 
2.2.2 Construção do Histograma ......................................................................................... 11 
2.2.3 Definição das Curvas de Rayleigh e Weibull ............................................................. 13 
2.2.4 Determinação da Direção Predominante do Vento-Diagrama Rosa dos Ventos ... 18 
2.3 CORREÇÃO DA VELOCIDADE DO VENTO COM A ALTURA .................................... 21 
2.3.1 Camada Limite Atmosférica ....................................................................................... 21 
3 POTÊNCIA DE UM SISTEMA EÓLICO ............................................................................. 24 
3.1 POTÊNCIA .......................................................................................................................... 24 
3.2 ENERGIA GERADA ........................................................................................................... 26 
3.2.1 Fator de Capacidade-Fc .............................................................................................. 27 
3.2.2 Coeficiente de Potência-Cp ......................................................................................... 27 
3.3 CURVA DE POTÊNCIA DOS AEROGERARDORES ...................................................... 28 
3.3.1 Inserção de Novas Turbinas no ALWIN ................................................................... 32 
3.4 ESTIMATIVA DA ENERGIA GERADA ........................................................................... 36 
3.5 DETERMINAÇÃO DAS CALMARIAS ............................................................................. 40 
REFERÊNCIAS .......................................................................................................................... 42 
 
 
 
1 INTRODUÇÃO 
A evolução tecnológica aliada à necessidade de viabilizar fontes de energia renováveis 
para produção em larga escala, incentivada pelo desenvolvimento de um programa específico, 
tornou cada dia mais importante o estudo e o aproveitamento de potenciais eólicos. Para 
viabilizar economicamentee tecnicamente um empreendimento de produção de energia a partir 
da energia eólica, é fundamental uma avaliação correta do potencial eólico de uma localidade. 
Neste sentido, o programa ALWIN, representa uma moderna ferramenta para tratamento de 
dados e análise de potenciais eólicos, através da simulação do uso de diversas alternativas de 
turbinas é possível estimar a energia produzida pelas máquinas avaliadas até chegar-se à solução 
técnico-econômica mais adequada para o local. O Deutsches Windenergie-Institut e a Ammonit 
Gesellschaft für Messtechnik mbH detém a propriedade do direito autoral e uma versão de acesso 
livre pode ser obtida a partir do site http://www.ammonit.de/download/alwin_e.exe (Atualizado 
em 01/06). O programa possibilita a avaliação da energia disponível e a estimativa da produção 
de energia elétrica, através da correlação do potencial eólico destes locais, obtido a partir das 
medições de velocidade do vento, com os dados técnicos de turbinas eólicas, a curva de potência 
fornecida pelos fabricantes. Desta interação advém à estimativa da produção de energia passível 
de ser obtida no ponto considerado. A metodologia considera as perdas que ocorrem desde a 
medição até o funcionamento propriamente dito do aerogerador. 
A modelagem adotada pelo programa considera a diferença entre o comportamento de um 
anemômetro e o de um aerogerador, decorrente da diferença entre as massas e inércia dos dois 
equipamentos. Em virtude das características de cada equipamento, existem disparidades entre os 
dados medidos e o que realmente poderá ser aproveitado. Estas distorções são corrigidas pelo 
programa ALWIN, mediante uma modelagem matemática (equações) elaboradas por instituições 
dedicadas ao estudo da energia eólica. como o DEWI (na Alemanha) ou do RIS (na 
Dinamarca), além de outros. 
Além disto, deve ser lembrado que, ao se entrar na classe das centenas de Kilowatts e/ou 
dos Megawatts, a precisão na medição deve ser na casa de cinco dígitos após a vírgula. Nesta 
 
 
7 
categoria de projetos, um erro de medição de 3% compromete o estudo de viabilidade técnico-
financeira, podendo, até mesmo, inviabilizar o investimento. 
O objetivo deste documento é organizar conhecimentos e apresentar conceitos 
relacionados aos projetos de parques eólicos a partir da exploração dos recursos de tratamento de 
dados, análise e simulação e sistemas eólicos existentes no programa ALWIN, que possui uma 
versão de acesso livre. O programa ALWIN oferece os seguintes recursos: 
a) estimação do comprimento da rugosidade
1
 (Zo); 
b) cálculo dos parâmetros de Weibull; 
c) potencial eólico em qualquer local fictício através das velocidades médias e 
distribuições de Rayleigh ou Weibull; 
d) histograma da velocidade dos ventos e Rosa dos Ventos; 
e) curso diurno da velocidade do vento e estatística de calmarias (AMMONIT, 2005) 
Este documento também aborda conceitos inerentes ao estudo de prospecção eólica, 
sendo orientado para ser um texto introdutório, mas que viabilize uma aplicação prática como 
instrumento do estudo da tecnologia eólica. 
 
1
 Rugosidade do terreno é a influência da superfície deste e dos elementos que nela estão contidos sobre a velocidade do vento. A 
rugosidade de uma superfície de uma determinada área é determinada pelo tamanho e distribuição dos elementos que contém 
vegetação, áreas construídas e superfície do solo. A rugosidade de um terreno é normalmente parametrizada pela escala de 
comprimento chamada de comprimento de rugosidade “zo“, de tal forma que existe uma altura zo não igual a zero que é chamada 
comprimento de rugosidade (MATTUELLA, 2005) 
 
 
2 AVALIAÇÃO DO POTENCIAL EÓLICO 
Para o aproveitamento dos ventos como fonte de energia, uma previsão da velocidade do 
vento é de fundamental importância. É necessário avaliar a sua variação ao longo do dia, das 
estações do ano e com a altura, pois a caracterização do potencial eólico de um local configura-se 
em um dos principais passos em um projeto eólico. 
2.1 INFORMAÇÃO DOS DADOS DE MEDIÇÕES DE VENTO 
O primeiro passo para desenvolver a análise do potencial eólico através do programa em 
tela consiste na alimentação dos dados de velocidade dos ventos, seja por uma entrada manual ou 
pela importação de conjuntos de dados medidos dos dataloggers WICOM ou WINDSITER da 
AMMONIT. 
Na janela contida na Figura 1, alimentada manualmente, são indicados os parâmetros do 
site, tais como o nome do local da medição, data de início das mesmas, número de dias medidos, 
os quais objetivam a organização dos dados. A altitude do local, altura da Torre de Medição e 
temperatura média do período medido são de inserção obrigatória, dado que são considerados 
para a composição dos resultados. A maneira de acessar esta Janela, contida na figura 1 é através 
da rotina EDIT-SITE PARAMETERS. 
 
 
9 
 
Figura 1: Janela de parâmetros do local (Site) 
O Programa oferece a possibilidade de alimentação dos dados de vento advinda da leitura 
de dois anemômetros localizados em alturas diferentes. Esta sistemática deve-se ao fato de que 
uma das informações essenciais para o estudo de prospecção eólica é a definição do perfil de 
velocidades da Camada Limite Atmosférica.. Desta forma, para avaliar o perfil da Camada 
Limite Atmosférica emprega-se a medição em duas alturas diferentes (dois anemômetros), 
determinando dois pontos sobre a curva do perfil. 
O banco de dados da velocidade do vento pode alimentar automaticamente o programa, 
sendo, para tanto, necessário apenas acessá-los através do Programa ALWIN, na rotina FILE-
OPEN. Quando o banco contiver duas medições, o comprimento de rugosidade será calculado 
por dedução entre as medidas procedidas. pode-se verificar na figura 2, o banco de dados das 
medições de vento. 
 
 
10 
 
Figura 2: Janela de alimentação dos dados de vento no programa ALWIN 
O indicativo técnico-ideal de uma medida de vento com dois anemômetros, não restringe 
o aproveitamento do programa para situações de existência de um único equipamento. Também 
em caso de dispormos apenas da velocidade média, o programa possibilita uma curva aproximada 
que denomina-se curva de RAYLEICH. Neste caso, a alimentação do sistema será procedida de 
forma manual através da rotina EDIT-WIND SPEED, que abrirá a Janela contida na Figura 2. 
Para esta situação, faz-se necessária a informação do comprimento de rugosidade. 
A base de um prognóstico eólico é a medição de ventos pelo período mínimo de 13 
meses, tomando-se a média de 10 em 10 minutos (MOLLY,1990). A altura mínima definida 
teoricamente para leitura de dados de vento é de 10m. Entretanto, na prática, entendemos ser 
mais operacional proceder às medidas mais proximamente da altura prevista para a instalação dos 
equipamentos, de modo que a correção da velocidade medida para a altura definitiva não 
introduza um erro percentual. O anemômetro mais baixo deve ajustar-se em uma altura mínima 
 
 
11 
para que o vento não seja influenciado por obstáculos (árvores e casas). A distância entre dois 
anemômetros deve ter, pelo menos de 15 a 20m. Em um terreno plano e sem obstáculos, uma 
torre de medição com anemômetros calibrados a 10 e 30 m é suficiente. Em áreas mais 
complexas, o anemômetro inferior deverá ser colocado em uma posição mais elevada. Neste 
caso, na prática adota-se 20 e 40m ou 30 e 50m. Tem-se observado, nas medições empregadas no 
Estado pela Secretaria de Energia, Minas e Comunicações e a CEEE, o emprego de 25 e 50 m ou 
50m e 70m. Evidentemente, quanto maior for a base dos dados, mais chances a pesquisa tem de 
não estar se alicerçando em um ano atípico. 
Partindodos dados de vento informados passamos a análise estatística da amostra. 
2.2 ANÁLISE ESTATÍSTICA DOS DADOS DE VENTO 
2.2.1 Cálculo da Velocidade Média 
O cálculo da velocidade média diária, mensal e anual constitui-se em uma importante 
característica para a definição da condição técnica de uma área para aproveitamento de geração 
eólica e é definida pela equação 1. 
dttv
T
V
t
0
1
 
equação 1 
2.2.2 Construção do Histograma 
Após a medição e armazenagem formatada dos dados, é efetuado o tratamento estatístico 
destes, de forma a proceder-se à análise dos dados para estimativas do comportamento dos 
ventos, baseadas no período em que foram realizadas as medições. Do tratamento dos dados 
obtemos parâmetros estatísticos como a velocidade média e o desvio padrão, importantes para a 
definição do regime de ventos e, em conseqüência, do potencial eólico de um dado local. Para 
tanto, presume-se que o banco de dados se repita nos anos vindouros, por esta razão, torna-se 
 
 
12 
importante a confirmação de que este período-base não se constitui em uma amostra atípica 
(CRESESB, 2003). Em caso de uma única medição anual, a representatividade climatológica das 
distribuições estatísticas de ventos podem ser obtidas em estações anemométricas de aeroportos, 
os quais geralmente possuem séries com mais de 20 anos de abrangência. Esta estratégia foi 
empregada na confecção do Atlas Eólico do Rio Grande do Sul (2001). 
O histograma representa, graficamente, a freqüência de cada velocidade com base nos 
dados amostrais colhidos. É geralmente em forma de barras, as quais representam a ocorrência de 
um intervalo de velocidades em células e permite descrever o comportamento dos mesmos, 
quanto à sua tendência central, forma e dispersão. A faixa dinâmica (range) dos mesmos é 
dividida em um determinado número de células de mesmo "comprimento", de tal forma que a 
base significa o intervalo da classe. A "altura" de cada célula é dada pela contagem do número de 
dados contidos na faixa, e significa as freqüências ocorridas em cada classe (UNIVERSIDADE 
FEDERAL DO RIO GRANDE DO SUL, 2003). 
O histograma é uma função discreta e sua aplicação para modelagem do problema é 
pouco adequada para simular (ou estimar) a energia disponível e a energia gerada pelos possíveis 
equipamentos, é conveniente obter uma função contínua de distribuição das freqüências com que 
ocorrem cada faixa de velocidades do vento. As distribuições de freqüências geralmente 
empregadas para estudo de ventos são a Função de Rayleigh ou a Função de Weibull 
(CUSTÓDIO, 2002), pois como afirmam Twele e Gasch (2002) a leitura de um histograma anual 
de um local, livre de obstáculo leva a conclusão que a distribuição de freqüência relativa pode ser 
aproximada pelo formato contínuo da função de Rayleigh. 
O histograma é construído a partir da base de dados correspondente às distribuições das 
freqüências relativas da velocidade do vento durante um tempo “t” mínimo, resultante das 
medições colhidas “in loco”. Sua conformação é apresentada na figura 3. 
 
 
13 
 
Figura 3: Distribuição de freqüência - Histograma 
2.2.3 Definição das Curvas de Rayleigh e Weibull 
A função de Rayleigh calculada pelo programa ALWIN, apresentada na figura 4, é obtida 
a partir dos dados brutos das medições de vento. No caso de os dados estarem incompletos, o 
programa faz uma extrapolação dos resultados, é usado como opção em situações em que não se 
tem a série completa, normalmente em estudos preliminares onde não se conhece o 
comportamento detalhado do vento, sendo suficiente apenas o conhecimento da velocidade média 
para a determinação da distribuição de freqüência (CUSTÓDIO, 2002). O fator que restringe seu 
uso é a sua forma geral, que pode captar características regionais somente até determinado limite. 
O parâmetro “Vm” representa a velocidade média das medições do período. 
A previsão da produção nas especificações técnicas fornecidas pelos fabricantes é 
usualmente baseada na distribuição de Rayleigh (CUSTÓDIO, 2002). A forma da curva de 
Rayleigh é vista na figura 4. 
 
 
14 
 
Figura 4: Definição da curva de Rayleigh 
A distribuição de Weibull é uma generalização da distribuição de Rayleigh. Ela contém o 
fator forma c e o parâmetro de escala a, permitindo um ajuste de curva mais refinado para 
diferentes características de vento e pode ser usada para adaptar a distribuição para condições que 
não são suficientemente aproximadas pela distribuição de Rayleigh. 
Para as séries completas de dados coletados, a indicação técnica é a análise pelo cálculo 
de Weibull. A função Weibull é a distribuição contínua
2
 que usualmente mais se aproxima à 
distribuição discreta representada nos histogramas de velocidade, porque tem maior precisão na 
descrição das circunstâncias do vento é a empregada nos trabalhos de avaliação de potenciais 
eólicos. 
A função de Weibull leva em conta o desvio padrão dos dados coletados, este é um 
importante parâmetro estatístico, pois introduz uma informação acerca das incertezas com que 
podem ocorrer as velocidades previstas a partir dos dados coletados no período. 
A distribuição de Weibull obedece à equação 2: 
 
2 Uma distribuição é contínua quando a variável que está sendo medida é expressa em uma escala contínua, como no caso de uma 
característica dimensional.(www.ppgec.ufrgs.br) 
 
 
15 
cc
a
V
e
a
V
a
c
VF
1
)(
 
equação 2 
Os parâmetros apresentados no cálculo de Weibull, “a” e “c”, representam: 
“c”- parâmetro ou fator de forma da distribuição dos ventos, é adimensional; 
“a”-parâmetro ou fator de escala, dado em m/s. 
Obs com freqüência são empregados na literatura os símbolos k para ou fator de forma e c 
para fator de escala, neste texto adotamos c e a, conforme descrito acima para manter coerência 
com a nomenclatura apresentada no programa ALWIN. 
Em função do valor do parâmetro “c”, a função Weibull assume características especiais 
quando o parâmetro de forma “c”= 1, configura uma distribuição exponencial; 
“c” = 2, identifica uma distribuição de Rayleigh 
“c” = 3,5, traduz uma distribuição normal, próxima a uma distribuição de Gauss. 
O parâmetro “a”, fator de escala, define a escala da distribuição e está diretamente 
relacionado com a velocidade média. O parâmetro “c” é denominado de parâmetro de forma, 
define a forma da distribuição e está relacionado com o desvio padrão. 
Hirata e Araújo (2000) definem duas alternativas para a determinação dos parâmetros de 
Weibull: 
A alternativa 1, que segue, é a simples e permite estimar o valor do parâmetro da forma 
“c”, em função da velocidade média e do desvio padrão. 
Um valor aproximado de “c” e “a” pode ser obtido com as equações 3 e 4. 
A determinação do Parâmetro de forma “c” pode ser obtida pela equação 3: 
086.1
V
c
 equação 3 
 
 
16 
Com o valor de “c”, a escala “a” é obtida usando a equação 4: 
a
c
aV 01.090.0
1
1
 
equação 4 
A alternativa 2 ao procedimento anterior, pode ser obtida empregando as expressões que 
fornecem a velocidade média e o desvio padrão, segundo Hirata e Araújo (2000): 
A determinação do parâmetro de forma “c” é obtida pela equação 5, sendo Γ = 
distribuição Gama. 
A Distribuição Gama (Γ) é uma função matemática, também chamada de função integral 
exponencial, sendo muito empregada em estudos de vento, como função do fator de forma “c” da 
Função Weibull. 
c
cc
V 1
1
1
1
2
1 2
 equação 5 
Se valores mais precisos são requeridos, pode-se utilizar o método dos mínimos 
quadrados, a partir da equação 6. 
c
a
V
VF
exp1
1
 equação 6 
Tomando-se duas vezes o logaritmo de ambos os lados da equação acima, tem-se a 
equação 7: 
acVc
VF
lnln
1
1
ln
 equação 7 
que representa a reta da equação 8 
y = c x - c ln a equação 8 
 
 
17 
onde 
y = ln {-ln [1-F(V)]} equação 9 
 
x = ln V equação 10 
Com os dados devidamente tabulados, pode-se ajustá-los segundo uma reta dos mínimos 
quadrados. O coeficiente angular da reta fornece o valor do parâmetro de forma “c” e o valor de 
“a” pode ser determinado utilizando o valor de “y” quando x=0. 
Na janela contida na figura 5, estão as três representações das medidas de freqüência, o 
histograma da velocidade medida, com classes contendo velocidade dos ventos a cada 1 m/s e as 
duas curvas das funções continuas de Rayleigh e Weibull. Os retângulos em azul representam os 
dados medidos, a linha contínua é a curva de Weibull e a descontínua é a curva de Rayleigh. Os 
valores apresentados nos gráficos são coerentes com a altura da torre de medição informada. 
Ainda que a apresentação alcance somente até 24 m/s, os cálculos levam em conta os 
valores até 30 m/s da velocidade do vento medida, o programa automaticamente ajusta a escala 
do gráfico. 
 
Figura 5: Distribuição de Weibull (MOSS, 2001) 
 
 
18 
A coerência das funções estatísticas empregadas pelo programa são acompanhadas da 
tabela correspondente à estatística dos dados originais formada em intervalos de 1 m/s, sendo que 
a cada intervalo é indexado a freqüência dos dados medidos pelo método da média, a freqüência 
por Raylegh e por Weibull, obedecendo os moldes vistos na figura 6. 
 
Figura 6: Estatística da velocidade do vento de metro em metro, freqüência dos dados 
medidos, freqüência de Rayleigh e freqüência de Weibull 
2.2.4 Determinação da Direção Predominante do Vento-Diagrama Rosa dos 
Ventos 
A determinação da direção predominante do vento é importante para a definição da 
direção de posicionamento das máquinas, no caso de geração eólica. Para o caso de uma usina 
com vários aerogeradores, o estudo da distribuição dos mesmos constitui fator essencial em um 
projeto, tendo em vista que a localização dos mesmos devera ser tal que seja minimizado o 
comprometimento da captação energética individual. 
 
 
19 
A determinação da direção predominante no Programa ALWIN é dada pelo diagrama 
Rosa dos Ventos que é elaborado com "pétalas" radiais de modo a evidenciar as freqüências e às 
vezes a velocidade dos ventos que sopram sobre os 8 ou os 12 pontos cardeais, colaterais e sub-
colaterais. O comprimento de cada "pétala" mostra a ocorrência de ventos registrada em dado 
período de tempo, e as gradações sobre as pétalas mostram a freqüência da velocidade dos 
ventos. É uma importante ferramenta na determinação da direção predominante do vento, sendo 
esta obviamente a de indicação para o aproveitamento de geração eólica. O programa ALWIN faz 
uma distribuição estatística da velocidade do vento, setorizada, em um intervalo de tempo, 
classificando o vento em 12 setores com 30° de abertura cada, iniciando com 0° ao norte. 
Cada valor obtido através da Windvane
3
 (ou biruta) de vento é alocado ao respectivo 
setor, possibilitando também a obtenção da direção da velocidade média do vento e a freqüência 
da ocorrência. Em velocidades de vento inferiores a 0,5 m/s o dado direcional da Wind Vane não 
é válido e, portanto não é levado em consideração. 
A figura 7 contém dois gráficos: o da esquerda representa a estatística da distribuição de 
freqüência da direção do vento e o da direita, as médias e máximas da velocidade do vento. No 
gráfico da direita, os retângulos em rosa representam as velocidades do vento máximas e o azul, 
as médias. Neste exemplo, pode-se assumir que a direção do vento mais favorável para 
prospecção eólica seja a direção entre 75° e 95°. 
 
3 Vane:palheta indicadora da direção do vento. 
 
 
20 
 
Figura 7: Estatística da direção dos ventos-rosa dos ventos 
A conformação das funções apresentadas pelo programa são acompanhadas da tabela 
correspondente à estatística dos dados originais formada em intervalos 10°, sendo que a cada 
intervalo é indexado a freqüência dos dados medidos, a média e a máxima do intervalo, 
obedecendo os moldes vistos na figura 8. 
 
Figura 8: Janela do sistema ALWIN estatística de direção dos ventos - rosa dos ventos 
 
 
21 
Analisando as figuras 8, podemos avaliar que o percentual de freqüência máxima do 
vento ocorreu no setor Oeste com 25,3% e 21,4% das ocorrências de vento. 
2.3 CORREÇÃO DA VELOCIDADE DO VENTO COM A ALTURA 
Conforme o exposto, um dos fatores que mais determina a variação da velocidade do 
vento em um dado local é a altura, tendo em vista a existência de um perfil de velocidades não 
uniforme na chamada Camada Limite Atmosférica. 
2.3.1 Camada Limite Atmosférica 
A variação da velocidade do vento com a altura é uma conseqüência da ação da 
viscosidade a qual dá origem ao desenvolvimento da Camada Limite Atmosférica- C.L.A (ou 
Camada Limite Terrestre) (HIRATA; ARAUJO, 2000). C.L.A é exatamente o perfil da 
velocidade do vento obtida entre o vento perturbado pela rugosidade do terreno e pelo fluxo de 
calor na atmosfera e o vento geostrófico, não perturbado, conforme pode ser observado na figura 
9 (HIRATA; ARAUJO, 2000). Dentro da C.L.A através de dispersões, a energia é transferida de 
um fluxo de alta energia do vento geostrófico para as camadas inferiores, onde o escoamento do 
ar próximo a superfície é altamente turbulento, conforme observado na figura 9, sendo a 
velocidade diretamente sobre a terra, igual a zero. 
 
 
22 
 
Figura 9: Caracterização da camada limite atmosférica (TWELE; GASCH, 2002) 
A altura da camada limite depende de vários fatores, principalmente das propriedades do 
fluido, da maneira como as partículas de ar se movimentam, da distribuição espacial da 
rugosidade da superfície, da estratificação da temperatura do ar e da orografia do terreno 
(HIRATA; ARAUJO, 2000), variando entre dezenas a centenas de metros (TWELE; GASCH, 
2002). A C.L.A pode variar em torno do nível de 1000 metros de altura acima do solo 
(PETTERSSEN 1951
4
 apud CUSTÓDIO, 2002), dependendo do terreno e das condições 
atmosféricas. 
Desta forma, a correção da velocidade do vento considerando estes pressupostos, da altura 
medida, para a altura desejada de instalação do equipamento, pode ser feita de duas maneiras: 
pela Lei Logarítmica, a exemplo de como foi procedido no Atlas Eólico do Rio Grande do Sul 
(2001), ou pela Lei Potencial, empregada no Programa ALWIN. 
Podemos resumir as características das leis Logarítmica e Potencial (LOREDO-SOUZA, 
2006) como: Lei Logarítmica possui bom ajuste na camada próxima ao solo e ajuste pobre na 
parte superior da Camada Limite Atmosférica, enquanto a Lei Potencial possui ajuste pobre na 
camada próxima ao solo e bom ajuste na parte da Camada Limite Superior. 
 
4
 PETERSSEN, S. Introducción a la Meteorologá. 2.ed. Buenos Aires: Espasa-Calpe, 1951. 
 
 
 
23 
A definição da camada limite no ponto de medição pode ser procedida com o emprego do 
programa ALWIN. Sendo este dotado de um algoritmo que possibilita a interpretação da leitura 
de dois anemômetros situados na mesma torre em alturas diferentes, através destas é possível a 
construção do perfil da camada limite existente no ponto pela dedução do valor da rugosidade do 
entorno, configurada na restrição da velocidade do vento medida. 
De acordo com a Lei Logarítmica, a influência da altura na determinação do potencial 
eólico é determinadaatravés pelas equações 11 e 12 
zo
z
k
U
zV ln.*
 equação 11 
 
Onde: 
v(z) = Velocidade na altura z 
z = Altura desejada 
z0 = comprimento de rugosidade 
k = Constante de von Kárman, sendo, aproximadamente igual a 0,4 
U* =Velocidade de Fricção 
De acordo com a Lei Potencial, tem-se a equação 12: 
 
equação 12 
Onde: 
v(zr) = velocidade, na altura de referência zr 
v(z) = velocidade, na altura z 
zr = altura de referência 
z = altura desejada 
p = parâmetro diretamente associado à rugosidade da superfície. 
 
 
3 POTÊNCIA DE UM SISTEMA EÓLICO 
3.1 POTÊNCIA 
A potência, ou seja, a capacidade de um sistema eólico para a produção de energia é 
definida como trabalho realizado (ou energia gerada) por unidade de tempo (equação 13): 
tEPd /
 equação 13 
Onde: 
t –intervalo de tempo em que o vento passa através de uma superfície de área A, 
orientada perpendicularmente à direção. 
Sendo a massa de ar expressa por m = [A (V. t)], o produto da velocidade “V” pelo 
intervalo de tempo “ t” resulta em um comprimento L = V. t, que corresponde à distância 
percorrida por uma partícula de ar. O produto deste comprimento pela área “A” representa o 
volume de um cilindro da mesma área e de comprimento “L”, que atravessa a superfície, no 
mesmo intervalo de tempo. 
Considerando o exposto, a potência disponível toma a forma da equação 14: 
3..
2
1
VAPd
 equação 14 
Uma turbina eólica extrai energia cinética do ar que passa através da área interceptada 
pelas pás rotativas. Conforme se verifica no esquema da figura 10, os rotores das turbinas eólicas 
reduzem a velocidade do vento v1, sem perturbações, frontal ao rotor para uma velocidade de 
corrente de ar, v2, atrás do rotor. A diferença das velocidades do vento é uma medida para a 
energia cinética extraída, que faz girar o rotor e, no lado oposto do eixo, o gerador elétrico. 
Embora combinada com a eficiência do modelo, a área varrida pelo rotor circular ( r2) é 
um fator crucial na determinação da energia entregue pela turbina eólica. A energia cinética bruta 
 
 
25 
por unidade de tempo, potência do vento passando por uma área “A”, perpendicular ao seu vetor 
velocidade instantânea “V”, e teoricamente extraída por uma turbina, pode ser descrita pela 
equação 15. 
 
Figura 10: fluxo de vento através de uma turbina eólica (HIRATA; ARAÚJO, 2000) 
 
1 
3 
2 V A c P p 
 equação 15 
Onde: 
P = potência do vento (W); 
ρ = massa específica do ar (kg/m3) ou densidade do ar, que varia com a latitude e as 
condições atmosféricas, ρ ~1,2 kg/m3. 
cp = coeficiente de potência ou de performance, que tem relação com a energia 
cinética de saída, dependendo do modelo e da relação entre a velocidade do rotor e a 
velocidade do vento (LABORATÓRIO DE FONTES ALTERNATIVAS DE 
ENERGIA, 2003). É a eficiência total de uma máquina para uma dada velocidade de 
vento WindPro 2.3 Users Guide em 2004 
η = eficiência eletro mecânica; 
A = área da seção transversal do rotor (m2); 
V1 = velocidade não perturbada frontal ao rotor (m/s) 
Esta fórmula oferecerá o resultado da a potência em kW, de onde podemos obter a 
produção de energia integrando ao longo de uma hora em kWh. 
 
 
26 
Analisando-se a equação acima se constata que a potência varia linearmente com a massa 
específica do ar “ρ” , com a área da seção transversal e cresce com o cubo da velocidade. 
Entretanto, um rotor eólico de área “A” capta apenas uma parcela desta potência e a converte em 
potência mecânica que é disponibilizada através de seu eixo. Esta potência entregue pelo rotor é 
expressa na forma da equação 16. 
60
2 oo NTPo
 equação 16 
Onde: 
To é o torque do rotor; 
No é o número de rotações por minuto 
O rotor disponibiliza a potência “Po”, que é absorvida pela caixa de transmissão ou por 
um gerador (no caso de não possuir caixa de transmissão). A potência absorvida pela transmissão 
é igual a “Po”. 
Custódio (2002) ressalta que a proporcionalidade direta da potência com a massa 
específica leva a que, em diferentes altitudes e temperaturas, tenhamos diferentes potências de 
vento para a mesma velocidade. 
3.2 ENERGIA GERADA 
O cálculo da energia gerada por uma máquina segue o modelo abaixo: 
E=P x FC x Cf x t equação 17 
Onde: 
E-Energia Gerada; 
P-Potência da Máquina; 
t – Período de tempo 
 
 
27 
Fc-Fator de Capacidade 
Cf-Coeficiente de Eficiência da Instalação 5 
Este cálculo também é desenvolvido pelo programa em tela que, para tanto, identifica o 
fator de capacidade da máquina adotada para as condições postas, e, em função disto, a energia 
produzida. 
3.2.1 Fator de Capacidade-Fc 
O Fator de Capacidade-FC é o índice que expressa a qualidade de um projeto em termos 
de potencial eólico. O FC varia na razão direta do potencial eólico. Ele expressa também a 
eficiência da turbina eólica empregada. Para um mesmo projeto o FC pode ser diferente 
dependendo do modelo e da tecnologia de turbina empregada. Outro aspecto que está embutido 
no FC é a configuração do Parque Eólico (lay-out ou arranjo de máquinas). Quanto menor as 
perdas por interferência aerodinâmica entre as máquinas, maior a eficiência do Parque Eólico e 
maior será o coeficiente em tela. As perdas na transmissão elétrica ficam também refletidas neste 
índice, ou seja, quanto menor as perdas elétricas, maior o FC. 
O FC reflete as horas equivalentes de plena potência. Por exemplo, se um Parque Eólico 
de 10 MW tem um FC de 30 % isto significa que ele tem (8760 horas / ano x 0,30 = 2628 h 
equivalentes), ou seja, a produção seria a mesma se o parque eólico trabalhasse 2628 h durante o 
ano na potência nominal de 10 MW (YASBECK, 2004). 
3.2.2 Coeficiente de Potência-Cp 
O coeficiente de potência, ou Cp, é diretamente proporcional à potência nominal da 
turbina e inversamente proporcional ao cubo da velocidade do vento, à densidade do ar a à área 
do aerogerador. Reflete o rendimento da turbina eólica, ou seja, a relação entre a potência 
aproveitada pelo rotor da turbina e a potência em termos de energia cinética existente no vento. 
 
5 Em entrevista com Jens Peter MOLLY, durante estágio no DEWI INSTITUT, em janeiro de 2004, foi discutida a real eficiência 
de fazendas eólicas, tendo sido informada que as perdas na geração de energia são na ordem de: 3% para indisponibilidade técnica 
(97%) e 5% devido “sombras do vento” atrás dos turbinas eólicas (95%). Ainda, segundo a mesma fonte, as perdas totais variam 
de 5% a 10%. 
 
 
28 
Reflete, sobretudo o rendimento aerodinâmico das pás. Toda medição de curva de potência de 
uma turbina é acompanhada da medição do valor do Cp. 
A potência gerada por uma turbina eólica já considera o Cp, que é característico de cada 
máquina (dependendo do desenho aerodinâmico das pás e do rendimento mecânico e elétrico do 
trem de transmissão). 
Em condições ideais, o valor máximo teórico de cp é 16/27 = 0,593, ou, em outras 
palavras, 59,3% da energia contida no escoamento de ar pode ser extraída por uma turbina eólica 
(MOLLY,1990). Sob condições reais, o coeficiente de potência não alcança mais que cp= 0,5, 
porque ele inclui todas as perdas, devido à rugosidade do terreno e devido à aerodinâmica do 
aerogerador. No caso em que cp alcança seu máximo valor teórico, a velocidade do vento v2, à 
jusante do rotor, é apenas 1/3 da velocidade v1, a montante do mesmo (MOLLY, 1998) 
Segundo (MOLLY, 1990) o coeficiente de potência também é definido pela fórmula 18: 
noPxH
Energia
CP
 equação 18 
Onde: 
C.P.- Coeficiente de Potencia ou Fator de Capacidade; 
Energia-quantidade de energia passívelde ser obtida; 
H-período de horas considerado; 
Pno-Potência Nominal da Turbina considerada 
3.3 CURVA DE POTÊNCIA DOS AEROGERARDORES 
Denominamos curva de potência de uma turbina eólica ao gráfico que indica o valor 
potencia gerada por uma determinada turbina, em diferentes velocidades de vento, constante na 
figura 11. A curva de potência, é geralmente fornecida pelos fabricantes e certificada 
oficialmente por um Instituto capacitado. 
 
 
29 
As curvas de potência são obtidas através de medições de campo, onde um anemômetro e 
colocado em uma torre próxima a turbina (não na própria turbina ou muito próxima dela, pois o 
rotor da turbina altera as condições de vento e os dados fornecidos não corresponderiam aos 
dados medidos em um local onde a turbina ainda não foi instalada). 
Quando a velocidade do vento não estiver variando rapidamente, pode-se usar as 
medições da velocidade de vento do anemômetro e medir a potencia gerada pela turbina 
simultaneamente, traçando estes dois valores juntos em um gráfico, como o demonstrado na 
figura 11 (DANISH WIND INDUSTRY ASSOCIATION, 2005), obtemos a Curva de Potencia 
da maquina. 
No gráfico da Curva de Potência do programa ALWIN, que indica o valor desta (em 
Kilowatts ou até Megawatts), a potência é mostrada no eixo vertical (usualmente, em todos os 
gráficos de Curva de Potência) e a velocidade de vento no eixo horizontal, conforme figura 11. 
De acordo (ver equação) com World Energy Council (2005)
6
, as curvas de potência das 
turbinas eólicas dependem de: 
a) Condições atmosféricas: velocidade do vento, temperatura, umidade e pressão; 
b) Projeto do sistema, potência nominal, diâmetro do rotor e altura do “hub” (Eixo do 
aerogerador); 
c) Condições do local, turbulência. 
Entretanto, é preciso assumir que existem incertezas nas medições das curvas de potência. 
De acordo com a figura 11, com a máquina Demonstrativa de 450 kW, a curva de 
produção de energia apresenta seu pico de produção de energia aos 16,5 m/s. 
 
6 World Energy Council (WEC) é o mais destacada organização multi-energia global no mundo atualmente. O WEC possui 
membros em 90 países, incluindo a maioria dos grandes produtores e consumidores de energia. 
 
 
30 
 
Figura 11: Janela do sistema ALWIN evidenciando as curvas de potência das turbinas de 
vento 
O catálogo de turbinas associado ao programa contém, geralmente maquinas de 
demonstração, as chamadas DEMO, conforme pode ser visto na janela contida na figura 12, o 
WEC Catalog (WEC = Wind Energy Converter = Aerogerador). Os valores observados nesta 
figura advém da curva de potência da máquina, a qual geralmente é informada pelo fabricante do 
aerogerador. No caso desta figura, à velocidade de 3,5 m/s, o aerogerador escolhido pela seleção, 
fornece zero kW, à 3,5 m/s; fornece 0,68 kW à 4 m/s, etc... 
 
 
31 
 
Figura 12: Possibilidades de escolha/adição de outras opções de turbinas eólicas 
Os dados correspondentes à inserção de novas máquinas são fornecidos ao sistema pelo 
usuário através da entrada dos dados da curva de potência destas, informação do sistema de 
controle e altura da torre (do aerogerador) das mesmas no campo de entrada dos dados. Para tanto 
o usuário acessa “New catalog” no campo “WEC name” e insere o nome da máquina cujos dados 
serão fornecidos ao sistema, efetuando, em seguida o salvamento dos mesmos. Devem ser 
também informados a altura da máquina e o tipo de controle do equipamento. 
Dado que as forças de sustentação aerodinâmica aumentam com a segunda potência da 
velocidade do vento e a energia extraída da turbina com a terceira potência desta, se fazem 
necessários mecanismos de controle da velocidade do fluxo de ar nos aerogeradores. Em 
situações de ventos extremos poderia haver um sobrecarregamento elétrico e mecânico no 
sistema de transmissão, caso não houvesse a previsão de um controle de potência do rotor . 
Existem dois diferentes princípios de controle aerodinâmico para limitar a extração de 
potência à potência nominal do aerogerador. São chamados de controle estol (stall) e controle de 
passo (pitch) (CRESESB, 2003) 
 
 
 
32 
Aerogeradores com controle tipo “Stall”: são máquinas em que a velocidade do rotor do 
aerogerador é controlada pela eficiência do aerofólio das pás do mesmo. 
Aerogeradores com controle tipo “Pitch”: são máquinas em que a velocidade do rotor do 
aerogerador é controlada mediante giro das pás (No seu eixo longitudinal), este giro sendo 
ativado mediante sensor anemométrico (E sistema eletrônico de controle de “Pitch”) instalado em 
cima da nacelle do aerogerador. 
3.3.1 Inserção de Novas Turbinas no ALWIN 
Além das turbinas de demonstração (WKA 1, WKA 2 e WKA 3), e dos catálogos de 
turbinas disponíveis no site da Ammonit (2006), existe a possibilidade de inclusão de novas 
curvas de novos aerogeradores no software, mediante informações normalmente conseguidas nos 
sites dos fabricantes de aerogeradores. Na figura 13, as informações recebidas do fabricante 
relativamente à Curva de Potência da Máquina. 
Abaixo seguem os passos práticos: 
 
 
33 
 
Figura 13: Curva de potência do aerogerador 
1º: Tenha à mão os dados para inserir a curva de potência da turbina. 
A Velocidade deve ser em m/s, e a potência em Kilowatts, que são as escalas padrões do 
software. 
No exemplo a seguir, visto na figura 14, foi escolhida a turbina Enercon E-70; 
 
 
34 
 
Figura 14: Inserção dos dados relativos „a turbina E –70 no programa 
2º: Escolha um dos catálogos disponíveis no software, ou crie um, renomeando-o pelo 
Windows o nome do catálogo original (Tente manter o catálogo original, pois pode ser útil para 
você no futuro), na pasta do ALWIN (Utilize, por exemplo, o Windows Explorer para isso), 
conforme figura 15. 
 
Figura 15: Renomeando um novo catálogo 
 
 
35 
3º: Clique em “Edit”, numa das turbinas, e renomeie-a (No campo “WEC name”) para o 
nome do aerogerador que você escolheu. 
Insira também a altura da nacele da turbina (No campo “Hub height”), assim como o tipo 
de controle aerodinâmico do aerogerador (As opções de controle devem abrir conforme o 
catálogo escolhido. No exemplo exposto, a única opção disponível é o sistema “Pitch”. Confira 
em outros catálogos as outras opções e utilize a que melhor adequar ao seu caso), figura 16. 
 
Figura 16: Criação de um novo catálogo 
4º: No campo “Power curve”, modifique os valores de potência para os novos dados do 
novo aerogerador, tentando não mudar a tabulação do programa (Tabulação = espaços entre os 
dados). 
Após a inserção dos dados, clique em “Save” e a nova turbina será acrescentada à 
listagem desse catálogo; 
5º: Ao clicar em “OK”, a curva do novo aerogerador aparecerá no ALWIN. 
 
 
36 
 
Figura 17: Definição da curva de potência da nova máquina 
3.4 ESTIMATIVA DA ENERGIA GERADA 
A partir do cálculo dos parâmetros de Rayleigh ou da distribuição de Weibull, o programa 
tem condições de proceder a compatibilização dos dados da velocidade do vento com a curva de 
potência de vários aerogeradores. Desta forma, é possível conseguir um prognóstico da energia 
gerada, considerando altura da torre desejada e densidade do ar local, permitindo desenvolver 
uma analise comparativa do desempenho de diversas máquinas. O conhecimento da velocidade 
média do vento é fundamental para a estimativa da energia gerada. Primeiro porque os 
aerogeradores começam a gerar energia eletrica numa determinada velocidade de vento de 
partida (cut-in) e param de gerar equando a velocidade ultrapassa determinado valor (cut-out) 
estabelecido por questões de segurança,prevenindo a fadiga do material das torres e pás por 
vibraçoes excessivas. 
Uma vez que as medições eólicas, em sua maioria são efetuadas numa altura inferior à do 
eixo do gerador eólico, torna-se necessária uma previsão da velocidade para a altura de instalação 
da máquina. Conforme apresentado anteriormente. para fazer esta previsão considera-se, 
principalmente, a rugosidade do entorno do local de medição, alem da presença de obstáculos e 
da orografia do local. Deste modo, os dados medidos em uma altura são recalculados para a 
altura do aerogerador empregando a equação adequada para o perfil de velocidades da camada 
 
 
37 
limite atmosférica. Após este cálculo a média das freqüências das Classes de velocidade do vento 
será multiplicada pelos valores correspondentes de potências do conversor de energia eólica e 
então somada. O resultado é a potência média de saída da estação geradora, a qual quando 
multiplicada pela quantidade de horas do ano, nos dará a energia anual de saída, em MWh 
(usualmente). 
A energia, o desempenho médio de energia e o fator de capacidade são calculados, neste 
programa, de acordo com os padrões do International Energy Agency - IEA e International 
Energy Comition-IEC
7.
 
O cálculo da produção de energia é obtido pela tela a seguir contida na figura 18. Este 
cálculo é feito de acordo com os padrões IEA IEC acima descritos. Leva em consideração o tipo 
de controle da turbina e os efeitos das variações da densidade do ar no cálculo da produção de 
energia pelo uso de dados referentes à altitude e temperatura dos locais e as alturas das torres das 
turbinas. 
 
Figura 18: Cálculo da potencia média, energia e o fator de capacidade pelos métodos da 
média, distribuição de Rayleigh e distribuição de Weibull 
 
7 IEA: “International Energy Agency” = Agência de Energia Internacial e IEC: “International Energy Comition” = Comissão de 
Energia Internacional 
 
 
38 
Analisando-se a figura 19 podemos concluir que, neste caso, a potência média do 
aerogerador é de 146,4 kW, sendo que 450 kW a potência pico, o qual está gerando efetivamente 
108,9MWh. O fator de potência 28,1, significa que apenas 28,1 % da potência do aerogerador 
está sendo efetivamente aproveitada. 
Os indicadores observados na janela da figura passam a ser didaticamente identificados: 
Potência Média: (Average Power) significa: a potência media do aerogerador, de acordo 
com os dados medidos (média das velocidades de vento x curva de potência). 
Medida de energia: (Energy (meas.)) = Energia (da medição). Representa a geração da 
turbina de acordo com os dados de velocidade medidos. Caso os dados coletados sejam 
representativos (ou seja, um longo período de medição), servirão para que esta informação gerada 
pelo Alwin (previsão de geração) seja a mais próxima da realidade (lembrando que este software 
serve para análise de viabilidade na implantação de um aerogerador no local medido). 
Fator de capacidade (Capacity Factor) significa o % de aproveitamento do aerogerador 
(basicamente falando, seria a potência média / potência pico). Considerando-se o caso acima da 
figura W, em que foi escolhido um aerogerador de 500kw, o cálculo a partir das medições nos dá 
o indicador de 28,8% como representativo da média da potência do conversor ao longo do tempo 
que realmente está sendo aproveitada. O cálculo a partir da distribuição de Rayleigh sinaliza o 
mesmo indicador para 28,1% e o cálculo a partir de Weibull consolida o percentual em 28,1%, a 
qual é considerada a que mais se aproxima da realidade. 
“t”: equivale à área do intervalo de velocidade de vento usado, do gráfico da 
velocidade de vento x % de ocorrências (1º gráfico do Alwin). 
“T”: equivale à área total dos dados do gráfico da velocidade de vento x % de 
ocorrências (1º gráfico do Alwin). 
Basicamente seria o 1º gráfico do Alwin (velocidade) combinado com o 3º gráfico do 
Alwin (curva de potência do aerogerador). O resultado disto é o último gráfico do Alwin 
(Geração Prevista). 
 
 
39 
Os valores numéricos de cada uma das três classes de distribuição, ou seja, o cálculo a 
partir da média, a partir da distribuição de Rayleigh e a partir da distribuição de Weibull são 
oferecidos em tabela conjunta ao gráfico constante da figura 18, e obedece os moldes vistos na 
figura 19. 
As curvas de potência geradas e registradas no gráfico no programa ALWIN são 
complementadas por uma tabela de velocidade de vento versus dados de geração de eletricidade, 
nos moldes da figura 19. O cálculo da energia gerada e efetuada assumindo os dados do 
conversor escolhido. 
 
Figura 19: Os valores numéricos que respaldam o gráfico da figura 18 - Velocidade 
média por intervalos de 1m/s 
 
 
40 
3.5 DETERMINAÇÃO DAS CALMARIAS 
Considerando que a energia eólica é uma fonte variável, não controlável, a investigação 
de períodos de calmarias e a freqüência de duração, embora não representando problema para a 
máquina, constituem-se em dados importantes na composição das variáveis no estudo de um 
projeto eólico, dado que oferecem períodos inaceitáveis de produção de energia que poderão 
inviabilizar o empreendimento. As variações rápidas de potencia associadas a calmarias e 
turbulências do vento associam-se também como importantes informações de um estudo eólico. 
A figura 20 oferece o diagrama contendo a estatística das calmarias durante o período 
medido. 
 
Figura 20: Curso diurno da velocidade do vento e duração das Calmarias 
O gráfico da esquerda mostra a velocidade do vento em um dia típico (“Diurnal Pattern” 
= Padrão Diário), com a média do dia (na cor azul) e desvio padrão (na cor salmão), ao longo das 
24 horas. O da direita mostra uma análise das calmarias (Calm Analysis). Considera duas 
 
 
41 
freqüências de ocorrências: até 3 m/s (Na cor azul) e até 5 m/s (Na cor salmão) com o tempo de 
duração das ocorrências dos mesmos, em minutos. 
Convém salientar que as ocorrências de calmaria até 3m/s estão inclusas nas ocorrências 
até 5m/s. 
Quanto maiores forem as ocorrências de calmarias, pior considerado será esse local para 
propósitos de geração eólica, mesmo que a média de velocidade de vento seja boa. Caso a média 
de velocidade fosse considerada dentro do ideal, essa análise de calmarias indicaria uma 
ocorrência forte de ventos tipo “rajada”, algo comum de ocorrer acima das encostas de 
despenhadeiros (Para melhor exemplificar: acima dos paredões do Itaimbezinho, ou nas paredes 
de pedra de Torres. Nem sempre o local mais alto é o melhor para aerogeradores). 
Por conseqüência, quanto menor forem os períodos de calmaria, melhor será o local. 
 
 
REFERÊNCIAS 
AMMONIT GESELLSCHAFT FÜR MESSTECHNIKMBH (AMMONIT). Disponível em: 
<http: //www.ammonit.de/produkte/pu_alw_e.htm>. Acesso em: 02 nov. 2005. 
AMMONIT GESELLSCHAFT FÜR MESSTECHNIKMBH (AMMONIT). Disponível em: 
<http://www.ammonit.de/download/wec_cats.exe>. Acesso em: 03 abr. 2006 
ATLAS ÉOLICO DO RIO GRANDE DO SUL. Disponível em: <http:// 
www.semc.rs.gov.br/atlas/vmax.htm >. Acesso em: 05 out. 2001. 
CENTRO DE REFERÊNCIA PARA ENERGIA SOLAR E EÓLICA (CRESESB). Disponível 
em: <http://www.cresesb.cepel.br/tutorial/eolica/apstenergiaeolica.htm>. Acesso em: 09 abr. 
2003. 
CUSTÓDIO, Ronaldo dos Santos. Parâmetros de Projeto de Fazendas Eólicas e Aplicação 
Específica no Rio Grande do Sul. 2002. Dissertação (Mestrado em Engenharia Elétrica) – 
Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2002. 
DANISH WIND INDUSTRY ASSOCIATION. Dinamarca, 2005. Disponível em: 
<http://www.windpower.org/>.Acesso em: 09 abr. 2005. 
HIRATA, Miguel; ARAUJO, Maria ReginaO.P. de. Introdução ao Aproveitamento de 
Energia Eolica. Rio de Janeiro: UFRJ, 2000. 
LABORATÓRIO DE FONTES ALTERNATIVAS DE ENERGIA. Disponível em: 
<http://www.solar.coppe.ufrj.br>. Acesso em: 07 jun. 2003. 
LOREDO-SOUZA, Acir Mércio. Aerodinâmica das Construções. [mar. 2006]. Entrevistadora: 
Jussara Mattuella. Porto Alegre: [s.n.], 2006. 
MATTUELLA, Jussara M. Leite. Fontes Energéticas Sustentáveis: um estudo sobre a 
viabilidade do aproveitamento da energia eólica em três localidades no RS, 2005. Dissertação 
(Mestrado em Engenharia) – Programa de Pós-Graduação em Engenharia Civil, Universidade 
Federal do Rio Grande do Sul, Porto Alegre, 2005. 
MOLLY, Jeans Peter. Windenergie in Theorie und Praxis. Deutchland:Verlage f. Müller, 
1990. 
MOLLY, Jeans Peter. MEASNET: Networkof European measuring institutes. DEWI Magazin, 
n.12¸ p. 75-79. 1998. 
 
 
43 
MOSS, Hamilton. Panorama das Fontes Renováveis no Brasil. In: CONGRESSO BRASIL – 
ALEMANHA, 1., 2001, Fortaleza. Anais... Fortaleza: [s.n.], 2001. Disponível em: 
<http://www.cresesb.cepel.br/Publicacoes/informe6.htm>. Acesso em: 05 mai. 2003. 
TWELE, J.; R. GASCH, R. Wind Power Plants: Fundamentals, Design, Construction and 
Operation. Germany: Solarpraxis 2002. 
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (UFRGS). Engenharia de 
Produção. Porto Alegre: UFRGS, 2003. Disponível em: <http://www.ppgep.ufrgs.br>. Acesso 
em: 12 mai. 2003. 
WORLD ENERGY COUNCIL. Londres, 2005. Disponível em: 
<http://www.worldenergy.org/wec-geis/default.asp>. Acesso em: 05 mai. 2005. 
YASBECK, Paulo Gustavo. Projetos de Energia Eólica. [10 nov. 2004]. Entrevistadora: Jussara 
Mattuella. [S.l.:s.n.], 2004. Entrevista concedida pelo Gerente Delegado de Projetos de Geração 
de Energia Eólica Innovent Ltda.

Continue navegando