Buscar

Chapt_09_2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 47 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

99 Vector Calculus
DO NOT USE THIS PAGE
504
9.13 Surface Integrals
EXERCISES 9.13
Surface Integrals
1. Letting z = 0, we have 2x + 3y = 12. Using f(x, y) = z = 3 − 1
2
x − 3
4
y we have fx = −12 ,
fy = −34 , 1 + f
2
x + f
2
y =
29
16
. Then
A =
∫ 6
0
∫ 4−2x/3
0
√
29/16 dy dx =
√
29
4
∫ 6
0
(
4− 2
3
x
)
dx =
√
29
4
(
4x− 1
3
x2
) ∣∣∣∣6
0
=
√
29
4
(24− 12) = 3
√
29 .
2. We see from the graph in Problem 1 that the plane is entirely above the region bounded by
r = sin 2θ in the first octant. Using f(x, y) = z = 3− 1
2
x− 3
4
y we have fx = −12 , fy = −
3
4
,
1 + f2x + f
2
y =
29
16
. Then
A =
∫ π/2
0
∫ sin 2θ
0
√
29/16 r dr dθ =
√
29
4
∫ π/2
0
1
2
r2
∣∣∣∣sin 2θ
0
dθ =
√
29
8
∫ π/2
0
sin2 2θ dθ
=
√
29
8
(
1
2
θ − 1
8
sin 4θ
) ∣∣∣∣π/2
0
=
√
29π
32
.
3. Using f(x, y) = z =
√
16− x2 we see that for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 5, z > 0.
Thus, the surface is entirely above the region. Now fx = − x√
16− x2 , fy = 0,
1 + f2x + f
2
y = 1 +
x2
16− x2 =
16
16− x2 and
A =
∫ 5
0
∫ 2
0
4√
16− x2 dx dy = 4
∫ 5
0
sin−1
x
4
∣∣∣∣2
0
dy = 4
∫ 5
0
π
6
dy =
10π
3
.
4. The region in the xy-plane beneath the surface is bounded by the graph of x2 + y2 = 2.
Using f(x, y) = z = x2 + y2 we have fx = 2x, fy = 2y, 1 + f2x + f
2
y = 1 + 4(x
2 + y2).
Then,
A =
∫ 2π
0
∫ √2
0
√
1 + 4r2 r dr dθ =
∫ 2π
0
1
12
(1 + 4r2)3/2
∣∣∣∣
√
2
0
dθ =
1
12
∫ 2π
0
(27− 1)dθ = 13π
3
.
5. Letting z = 0 we have x2 + y2 = 4. Using f(x, y) = z = 4 − (x2 + y2) we have fx = −2x,
fy = −2y, 1 + f2x + f2y = 1 + 4(x2 + y2). Then
A =
∫ 2π
0
∫ 2
0
√
1 + 4r2 r dr dθ =
∫ 2π
0
1
3
(1 + 4r2)3/2
∣∣∣∣2
0
dθ
=
1
12
∫ 2π
0
(173/2 − 1)dθ = π
6
(173/2 − 1).
505
9.13 Surface Integrals
6. The surfaces x2 + y2 + z2 = 2 and z2 = x2 + y2 intersect on the cylinder 2x2 + 2y2 = 2
or x2 + y2 = 1. There are portions of the sphere within the cone both above and
below the xy-plane. Using f(x, y) =
√
2− x2 − y2 we have fx = − x√
2− x2 − y2 ,
fy = − y√
2− x2 − y2 , 1 + f
2
x + f
2
y =
2
2− x2 − y2 . Then
A = 2
[∫ 2π
0
∫ 1
0
√
2√
2− r2 r dr dθ
]
= 2
√
2
∫ 2π
0
−
√
2− r2
∣∣∣1
0
dθ
= 2
√
2
∫ 2π
0
(
√
2− 1)dθ = 4π
√
2(
√
2− 1).
7. Using f(x, y) = z =
√
25− x2 − y2 we have fx = − x√
25− x2 − y2 ,
fy = − y√
25− x2 − y2 , 1 + f
2
x + f
2
y =
25
25− x2 − y2 . Then
A =
∫ 5
0
∫ √25−y2/2
0
5√
25− x2 − y2 dx dy = 5
∫ 5
0
sin−1
x√
25− y2
∣∣∣∣
√
25−y2/2
0
dy
= 5
∫ 5
0
π
6
dy =
25π
6
.
8. In the first octant, the graph of z = x2 − y2 intersects the xy-plane in the line y = x. The
surface is in the firt octant for x > y. Using f(x, y) = z = x2 − y2 we have fx = 2x,
fy = −2y, 1 + f2x + f2y = 1 + 4x2 + 4y2. Then
A =
∫ π/4
0
∫ 2
0
√
1 + 4r2 r dr dθ =
∫ π/4
0
1
12
(1 + 4r2)3/2
∣∣∣∣2
0
dθ
=
1
12
∫ π/4
0
(173/2 − 1)dθ = π
48
(173/2 − 1).
9. There are portions of the sphere within the cylinder both above and below the xy-plane.
Using f(x, y) = z =
√
a2 − x2 − y2 we have fx = − x√
12 − x2 − y2 , fy = −
y√
a2 − x2 − y2 ,
1 + f2x + f
2
y =
a2
a2 − x2 − y2 . Then, using symmetry,
A = 2
[
2
∫ π/2
0
∫ a sin θ
0
a√
a2 − r2 r dr dθ
]
= 4a
∫ π/2
0
−
√
a2 − r2
∣∣∣a sin θ
0
dθ
= 4a
∫ π/2
0
(a− a
√
1− sin2 θ )dθ = 4a2
∫ π/2
0
(1− cos θ)dθ
= 4a2(θ − sin θ)
∣∣∣π/2
0
= 4a2
(π
2
− 1
)
= 2a2(π − 2).
10. There are portions of the cone within the cylinder both above and below the xy-plane. Using
f(x, y) = 12
√
x2 + y2 , we have fx =
x
2
√
x2 + y2
, fy =
y
2
√
x2 + y2
, 1 + f2x + f
2
y =
5
4 .
Then, using symmetry,
506
9.13 Surface Integrals
A = 2
[
2
∫ π/2
0
∫ 2 cos θ
0
√
5
4
r dr dθ
]
= 2
√
5
∫ π/2
0
1
2
r2
∣∣∣∣2 cos θ
0
dθ
= 4
√
5
∫ π/2
0
cos2 θ dθ = 4
√
5
(
1
2
θ +
1
4
sin 2θ
) ∣∣∣∣π/2
0
=
√
5π.
11. There are portions of the surface in each octant with areas equal to the area of the portion
in the first octant. Using f(x, y) = z =
√
a2 − y2 we have fx = 0, fy = y√
a2 − y2 ,
1 + f2x + f
2
y =
a2
a2 − y2 . Then
A = 8
∫ a
0
∫ √a2−y2
0
a√
a2 − y2 dx dy = 8a
∫ a
0
x√
a2 − y2
∣∣∣∣
√
a2−y2
0
dy = 8a
∫ a
0
dy = 8a2.
12. From Example 1, the area of the portion of the hemisphere within x2 + y2 = b2 is 2πa(a − √a2 − b2 ). Thus,
the area of the sphere is A = 2 lim
b→a
2πa(a−
√
a2 − b2 ) = 2(2πa2) = 4πa2.
13. The projection of the surface onto the xz-plane is shown in the graph. Using f(x, z) =
y =
√
a2 − x2 − z2 we have fx = − x√
a2 − x2 − z2 ,
fz = − z√
a2 − x2 − z2 , 1 + f
2
x + f
2
z =
a2
a2 − x2 − z2 . Then
A =
∫ 2π
0
∫ √a2−c21
√
a2−c22
a√
a2 − r2 r dr dθ = a
∫ 2π
0
−
√
a2 − r2
∣∣∣∣
√
a2−c21
√
a2−c22
dθ
= a
∫ 2π
0
(c2 − c1) dθ = 2πa(c2 − c1).
14. The surface area of the cylinder x2 + z2 = a2 from y = c1 to y = c2 is the area of a cylinder of radius a and
height c2 − c1. This is 2πa(c2 − c1).
15. zx = −2x, zy = 0; dS =
√
1 + 4x2 dA∫∫
S
x dS =
∫ 4
0
∫ √2
0
x
√
1 + 4x2 dx dy =
∫ 4
0
1
12
(1 + 4x2)3/2
∣∣∣∣
√
2
0
dy
=
∫ 4
0
13
6
dy =
26
3
16. See Problem 15.∫∫
S
xy(9− 4z) dS =
∫∫
S
xy(1 + 4x2) dS =
∫ 4
0
∫ √2
0
xy(1 + 4x2)3/2 dx dy
=
∫ 4
0
y
20
(1 + 4x2)5/2
∣∣∣∣
√
2
0
dy =
∫ 4
0
242
20
y dy =
121
10
∫ 4
0
y dy =
121
10
(
1
2
y2
) ∣∣∣∣4
0
=
484
5
507
9.13 Surface Integrals
17. zx =
x√
x2 + y2
, zy =
y√
x2 + y2
; dS =
√
2 dA.
Using polar coordinates,∫∫
S
xz3 dS =
∫∫
R
x(x2 + y2)3/2
√
2 dA =
√
2
∫ 2π
0
∫ 1
0
(r cos θ)r3/2r dr dθ
=
√
2
∫ 2π
0
∫ 1
0
r7/2 cos θ dr dθ =
√
2
∫ 2π
0
2
9
r9/2 cos θ
∣∣∣∣1
0
dθ
=
√
2
∫ 2π
0
2
9
cos θ dθ =
2
√
2
9
sin θ
∣∣∣∣2π
0
= 0.
18. zx =
x√
x2 + y2
, zy =
y√
x2 + y2
; dS =
√
2 dA.
Using polar coordinates,∫∫
S
(x + y + z) dS =
∫∫
R
(x + y +
√
x2 + y2 )
√
2 dA
=
√
2
∫ 2π
0
∫ 4
1
(r cos θ + r sin θ + r)r dr dθ
=
√
2
∫ 2π
0
∫ 4
1
r2(1 + cos θ + sin θ) dr dθ =
√
2
∫ 2π
0
1
3
r3(1 + cos θ + sin θ)
∣∣∣∣4
1
dθ
=
63
√
2
3
∫ 2π
0
(1 + cos θ + sin θ) dθ = 21
√
2(θ + sin θ − cos θ)
∣∣∣2π
0
= 42
√
2π.
19. z =
√
36− x2 − y2 , zx = − x√
36− x2 − y2 , zy = −
y√
36− x2 − y2 ;
dS =
√
1 +
x2
36− x2 − y2 +
y2
36− x2 − y2 dA =
6√
36− x2 − y2 dA.
Using polar coordinates,∫∫
S
(x2 + y2)z dS =
∫∫
R
(x2 + y2)
√
36− x2 − y2 6√
36− x2 − y2 dA
= 6
∫ 2π
0
∫ 6
0
r2r dr dθ = 6
∫ 2π
0
1
4
r4
∣∣∣∣6
0
dθ = 6
∫ 2π
0
324 dθ = 972π.
20. zx = 1, zy = 0; dS =
√
2 dA∫∫
S
z2 dS =
∫ 1
−1
∫ 1−x2
0
(x + 1)2
√
2 dy dx =
√
2
∫ 1
−1
y(x + 1)2
∣∣∣1−x2
0
dx
=
√
2
∫ 1
−1
(1− x2)(x + 1)2 dx =
√
2
∫ 1
−1
(1 + 2x− 2x3 − x4) dx
=
√
2
(
x + x2 − 1
2
x4 − 1
5
x5
) ∣∣∣∣1
−1
=
8
√
2
5
508
9.13 Surface Integrals
21. zx = −x, zy = −y; dS =
√
1 + x2 + y2 dA∫∫
S
xy dS =
∫ 1
0
∫ 1
0
xy
√
1 + x2 + y2 dx dy =
∫ 1
0
1
3
y(1 + x2 + y2)3/2
∣∣∣∣1
0
dy
=
∫ 1
0
[
1
3
y(2 + y2)3/2 − 1
3
y(1 + y2)3/2
]
dy
=
[1
15
(2 + y2)5/2 − 1
15
(1 + y2)5/2
] ∣∣∣∣1
0
=
1
15
(35/2 − 27/2 + 1)
22. z =
1
2
+
1
2
x2 +
1
2
y2, zx = x, zy = y; dS =
√
1 + x2 + y2 dA
Using polar coordinates,∫∫
S
2z dS =
∫∫
R
(1 + x2 + y2)
√
1 + x2 + y2 dA
=
∫ π/2
π/3
∫ 1
0
(1 + r2)
√
1 + r2 r dr dθ
=
∫ π/2
π/3
∫ 1
0
(1 + r2)3/2r dr dθ =
∫ π/2
π/3
1
5
(1 + r2)5/2
∣∣∣∣1
0
dθ =
1
5
∫ π/2
π/3
(25/2 − 1) dθ
=
4
√
2− 1
5
(π
2
− π
3
)
=
(4
√
2− 1)π
30
.
23. yx = 2x, yz = 0; dS =
√
1 + 4x2 dA∫∫
S
24
√
y z dS =
∫ 3
0
∫ 2
0
24xz
√
1 + 4x2 dx dz =
∫ 3
0
2z(1 + 4x2)3/2
∣∣∣2
0
dz
= 2(173/2 − 1)
∫ 3
0
z dz = 2(173/2 − 1)
(
1
2
z2
) ∣∣∣∣3
0
= 9(173/2 − 1)
24. xy = −2y, xz = −2z; dS =
√
1 + 4y2 + 4z2 dA
Using polar coordinates,∫∫
S
(1 + 4y2 + 4z2)1/2 dS =
∫ π/2
0
∫ 2
1
(1 + 4r2)r dr dθ
=
∫ π/2
0
1
16
(1 + 4r2)2
∣∣∣2
1
dθ =
1
16
∫ π/2
0
12 dθ =
3π
8
.
25. Write the equation of the surface as y =
1
2
(6−x−3z). Then yx = −12 , yz = −
3
2
; dS =
√
1 + 1/4 + 9/4 =
√
14
2
.∫∫
S
(3z2 + 4yz) dS =
∫ 2
0
∫ 6−3z
0
[
3z2 + 4z
1
2
(6− x− 3z)
] √
14
2
dx dz
=
√
14
2
∫ 2
0
[3z2x− z(6− x− 3z)2]
∣∣∣6−3z
0
dz
=
√
14
2
∫ 2
0
(
[3z2(6− 3z)− 0]− [0− z(6− 3z)2]) dz
=
√
14
2
∫ 2
0
(36z − 18z2) dz =
√
14
2
(18z2 − 6z3)
∣∣∣2
0
=
√
14
2
(72− 48) = 12
√
14
509
9.13 Surface Integrals
26. Write the equation of the surface as x = 6 − 2y − 3z. Then xy = −2, xz = −3; dS =
√
1 + 4 + 9 =
√
14 .∫∫
S
(3z2 + 4yz) dS =
∫ 2
0
∫ 3−3z/2
0
(3z2 + 4yz)
√
14 dy dz =
√
14
∫ 2
0
(3yz + 2y2z)
∣∣∣3−3z/2
0
dz
=
√
14
∫ 2
0
[
9z
(
1− z
2
)
+ 18z
(
1− z
2
)2]
dz =
√
14
∫ 2
0
(
27z − 45
2
z2 +
9
2
z3
)
dz
=
√
14
(
27
2
z2 − 15
2
z3 +
9
8
z4
) ∣∣∣∣2
0
=
√
14(54− 60 + 18) = 2
√
14
27. The density is ρ = kx2. The surface is z = 1−x−y. Then zx = −1, zy = −1; dS =
√
3 dA.
m =
∫∫
S
kx2 dS = k
∫ 1
0
∫ 1−x
0
x2
√
3 dy dx =
√
3 k
∫ 1
0
1
3
x3
∣∣∣∣1−x
0
dx
=
√
3
3
k
∫ 1
0
(1− x)3 dx =
√
3
3
k
[
−1
4
(1− x)4
] ∣∣∣∣1
0
=
√
3
12
k
28. zx = − x√
4− x2 − y2 , zy = −
y√
4− x2 − y2 ;
dS =
√
1 +
x2
4− x2 − y2 +
y2
4− x2 − y2 dA =
2√
4− x2 − y2 dA.
Using symmetry and polar coordinates,
m = 4
∫∫
S
|xy| dS = 4
∫ π/2
0
∫ 2
0
(r2 cos θ sin θ)
2√
4− r2 r dr dθ
= 4
∫ π/2
0
∫ 2
0
r2(4− r2)−1/2 sin 2θ(r dr) dθ u = 4− r2, du = −2r dr, r2 = 4− u
= 4
∫ π/2
0
∫ 0
4
(4− u)u−1/2 sin 2θ
(
−1
2
du
)
dθ = −2
∫ π/2
0
∫ 0
4
(4u−1/2 − u1/2) sin 2θ du dθ
= −2
∫ π/2
0
(
8u1/2 − 2
3
u3/2
) ∣∣∣∣0
4
sin 2θ dθ = −2
∫ π/2
0
(
−32
3
sin 2θ
)
dθ =
64
3
(
−1
2
cos 2θ
) ∣∣∣∣π/2
0
=
64
3
.
29. The surface is g(x, y, z) = y2 + z2 − 4 = 0. ∇g = 2yj + 2zk,
|∇g| = 2
√
y2 + z2 ; n =
yj + zk√
y2 + z2
;
F · n = 2yz√
y2 + z2
+
yz√
y2 + z2
=
3yz√
y2 + z2
; z =
√
4− y2 , zx = 0,
zy = − y√
4− y2 ; dS =
√
1 +
y2
4− y2 dA =
2√
4− y2 dA
Flux =
∫∫
S
F · n dS =
∫∫
R
3yz√
y2 + z2
2√
4− y2 dA =
∫∫
R
3y
√
4− y2√
y2 + 4− y2
2√
4− y2 dA
=
∫ 3
0
∫ 2
0
3y dy dx =
∫ 3
0
3
2
y2
∣∣∣∣2
0
dx =
∫ 3
0
6 dx = 18
510
9.13 Surface Integrals
30. The surface is g(x, y, z) = x2 + y2 + z − 5 = 0. ∇g = 2xi + 2yj + k,
|∇g| =
√
1 + 4x2 + 4y2 ; n =
2xi + 2yj + k√
1 + 4x2 + 4y2
; F · n = z√
1 + 4x2 + 4y2
;
zx = −2x, zy = −2y, dS =
√
1 + 4x2 + 4y2 dA. Using polar coordinates,
Flux =
∫∫
S
F · n dS =
∫∫
R
z√
1 + 4x2 + 4y2
√
1 + 4x2 + 4y2 dA =
∫∫
R
(5− x2 − y2) dA
=
∫ 2π
0
∫ 2
0
(5− r2)r dr dθ =
∫ 2π
0
(
5
2
r2 − 1
4
r4
) ∣∣∣∣2
0
dθ =
∫ 2π
0
6 dθ = 12π.
31. From Problem 30, n =
2xi + 2yj + k√
1 + 4x2 + 4y2
. Then F · n = 2x
2 + 2y2 + z√
1 + 4x2 + 4y2
. Also, from Problem 30,
dS =
√
1 + 4x2 + 4y2 dA. Using polar coordinates,
Flux =
∫∫
S
F · n dS =
∫∫
R
2x2 + 2y2 + z√
1 + 4x2 + 4y2
√
1 + 4x2 + 4y2 dA =
∫∫
R
(2x2 + 2y2 + 5− x2 − y2) dA
=
∫ 2π
0
∫ 2
0
(r2 + 5)r dr dθ =
∫ 2π
0
(
1
4
r4 +
5
2
r2
) ∣∣∣∣2
0
dθ =
∫ 2π
0
14 dθ = 28π.
32. The surface is g(x, y, z) = z − x− 3 = 0. ∇g = −i + k, |∇g| = √2 ; n = −i + k√
2
;
F · n = 1√
2
x3y +
1√
2
xy3; zx = 1, zy = 0, dS =
√
2 dA. Using polar coordinates,
Flux =
∫∫
S
F · n dS =
∫∫
R
1√
2
(x3y + xy3)
√
2 dA =
∫∫
R
xy(x2 + y2) dA
=
∫ π/2
0
∫ 2 cos θ
0
(r2 cos θ sin θ)r2r dr dθ =
∫ π/2
0
∫ 2 cos θ
0
r5 cos θ sin θ dr dθ
=
∫ π/2
0
1
6
r6 cos θ sin θ
∣∣∣∣2 cos θ
0
dθ =
1
6
∫ π/2
0
64 cos7 θ sin θ dθ =
32
3
(
−1
8
cos8 θ
) ∣∣∣∣π/2
0
=
4
3
.
33. The surface is g(x, y, z) = x2 + y2 + z − 4. ∇g = 2xi + 2yj + k,
|∇g| =
√
4x2 + 4y2 + 1 ; n =
2xi + 2yj + k√
4x2 + 4y2 + 1
; F · n = x
3 + y3 + z√
4x2 + 4y2 + 1
;
zx = −2x, zy = −2y, dS =
√
1 + 4x2 + 4y2 dA. Using polar coordinates,
Flux =
∫∫
S
F · n dS =
∫∫
R
(x3 + y3 + z) dA =
∫∫
R
(4− x2 − y2 + x3 + y3) dA
=
∫ 2π
0
∫ 2
0
(4− r2 + r3 cos3 θ + r3 sin3 θ) r dr dθ
=
∫ 2π
0
(
2r2 − 1
4
r4 +
1
5
r5 cos3 θ +
1
5
r5 sin3 θ
) ∣∣∣∣2
0
dθ
=
∫ 2π
0
(
4 +
32
5
cos3 θ +
32
5
sin3 θ
)
dθ = 4θ
∣∣∣2π
0
+ 0 + 0 = 8π.
511
9.13 Surface Integrals
34. The surface is g(x, y, z) = x+ y+ z−6. ∇g = i+ j+k, |∇g| = √3 ; n = (i+ j+k)/√3 ;
F · n = (ey + ex + 18y)/√3 ; zx = −1, zy = −1, dS =
√
1 + 1 + 1 dA =
√
3 dA.
Flux =
∫∫
S
F · n dS =
∫∫
r
(ey + ex + 18y) dA =
∫ 6
0
∫ 6−x
0
(ey + ex + 18y) dy dx
=
∫ 6
0
(ey + yex + 9y2)
∣∣∣6−x
0
dx =
∫ 6
0
[e6−x + (6− x)ex + 9(6− x)2 − 1] dx
= [−e6−x + 6ex − xex + ex − 3(6− x)3 − x]
∣∣∣6
0
= (−1 + 6e6 − 6e6 + e6 − 6)− (−e6 + 6 + 1− 648) = 2e6 + 634 ≈ 1440.86
35. For S1: g(x, y, z) = x2 + y2 − z, ∇g = 2xi + 2yj − k, |∇g| =
√
4x2 + 4y2 + 1 ; n1 =
2xi + 2yj− k√
4x2 + 4y2 + 1
;
F · n1 = 2xy
2 + 2x2y − 5z√
4x2 + 4y2 + 1
; zx = 2x, zy = 2y, dS1 =
√
1 + 4x2 + 4y2 dA. For S2: g(x, y, z) = z − 1,
∇g = k, |∇g| = 1; n2 = k; F ·n2 = 5z; zx = 0, zy = 0, dS2 = dA. Using polar coordinates and R: x2 +y2 ≤ 1
we have
Flux =
∫∫
S1
F · n1 dS1 +
∫∫
S2
F · n2 dS2 =
∫∫
R
(2xy2 + 2x2y − 5z) dA +
∫∫
R
5z dA
=
∫∫
R
[2xy2 + 2x2y − 5(x2 + y2) + 5(1)] dA
=
∫ 2π
0
∫ 1
0
(2r3 cos θ sin2 θ + 2r3 cos2 θ sin θ − 5r2 + 5)r dr dθ
=
∫ 2π
0
(
2
5
r5 cos θ sin2 θ +
2
5
r5 cos2 θ sin θ − 5
4
r4 +
5
2
r2
) ∣∣∣∣1
0
dθ
=
∫ 2π
0
[
2
5
(cos θ sin2 θ + cos2 θ sin θ) +
5
4
]
dθ =
2
5
(
1
3
sin3 θ − 1
3
cos3 θ
) ∣∣∣∣2π
0
+
5
4
θ
∣∣∣∣2π
0
=
2
5
[
−1
3
−
(
−1
3
)]
+
5
2
π =
5
2
π.
36. For S1: g(x, y, z) = x2 + y2 + z − 4, ∇g = 2xi + 2yj + k, |∇g| =
√
4x2 + 4y2 + 1 ;
n1 =
2xi + 2yj + k√
4x2 + 4y2 + 1
; F · n1 = 6z2/
√
4x2 + 4y2 + 1 ; zx = −2x, zy = −2y,
dS1 =
√
1 + 4x2 + 4y2 dA. For S2: g(x, y, z) = x2 + y2 − z, ∇g = 2xi + 2yj− k,
|∇g| =
√
4x2 + 4y2 + 1 ; n2 =
2xi + 2yj− k√
4x2 + y2 + 1
; F · n2 = −6z2/
√
4x2 + 4y2 + 1 ; zx = 2x, zy = 2y,
dS2 =
√
1 + 4x2 + 4y2 dA. Using polar coordinates and R: x2 + y2 ≤ 2 we have
Flux =
∫∫
S1
F · n1 dS1 +
∫∫
S1
F · n2 dS2 =∫∫
R
6z2 dA +
∫∫
−6z2 dA
=
∫∫
R
[6(4− x2 − y2)2 − 6(x2 + y2)2] dA = 6
∫ 2π
0
∫ √2
0
[(4− r2)2 − r4] r dr dθ
= 6
∫ 2π
0
[
−1
6
(4− r2)3 − 1
6
r6
] ∣∣∣∣
√
2
0
dθ = −
∫ 2π
0
[(23 − 43) + (
√
2 )6] dθ =
∫ 2π
0
48 dθ = 96π.
512
9.13 Surface Integrals
37. The surface is g(x, y, z) = x2 + y2 + z2 − a2 = 0. ∇g = 2xi + 2yj + 2zk,
|∇g| = 2
√
x2 + y2 + z2 ; n =
xi + yj + zk√
x2 + y2 + z2
;
F · n = −(2xi + 2yj + 2zk) · xi + yj + zk√
x2 + y2 + z2
= −2x
2 + 2y2 + 2z2√
x2 + y2 + z2
= −2
√
x2 + y2 + z2 = −2a.
Flux =
∫∫
S
−2a dS = −2a× area = −2a(4πa2) = −8πa3
38. n1 = k, n2 = −i, n3 = j, n4 = −k, n5 = i, n6 = −j; F · n1 = z = 1, F · n2 = −x = 0, F · n3 = y = 1,
F · n4 = −z = 0, F · n5 = x = 1, F · n6 = −y = 0; Flux =
∫∫
S1
1 dS +
∫∫
S3
1 dS +
∫∫
S5
1 dS = 3
39. Refering to the solution to Problem 37, we find n =
xi + yj + zk√
x2 + y2 + z2
and dS =
a√
a2 − x2 − y2 dA.
Now
F · n = kq r|r|3 ·
r
|r| =
kq
|r|4 |r|
2 =
kq
|r|2 =
kq
x2 + y2 + z2
=
kq
a2
and
Flux =
∫∫
S
F · n dS =
∫∫
S
kq
a2
dS =
kq
a2
× area = kq
a2
(4πa2) = 4πkq.
40. We are given σ = kz. Now zx − x√
16− x2 − y2 , zy = −
y√
16− x2 − y2 ;
dS =
√
1 +
x2
16− x2 − y2 +
y2
16− x2 − y2 dA =
4√
16− x2 − y2 dA
Using polar coordinates,
Q =
∫∫
S
kz dS = k
∫∫
R
√
16− x2 − y2 4√
16− x2 − y2 dA = 4k
∫ 2π
0
∫ 3
0
r dr dθ
= 4k
∫ 2π
0
1
2
r2
∣∣∣∣3
0
dθ = 4k
∫ 2π
0
9
2
dθ = 36πk.
41. The surface is z = 6− 2x− 3y. Then zx = −2, zy = −3, dS =
√
1 + 4 + 9 =
√
14 dA.
The area of the surface is
A(s) =
∫∫
S
dS =
∫ 3
0
∫ 2−2x/3
0
√
14 dy dx =
√
14
∫ 3
0
(
2− 2
3
x
)
dx
=
√
14
(
2x− 1
3
x2
) ∣∣∣∣3
0
= 3
√
14 .
x¯ =
1
3
√
14
∫∫
S
x dS =
1
3
√
14
∫ 3
0
∫ 2−2x/3
0
√
14x dy dx =
1
3
∫ 3
0
xy
∣∣∣∣2−2x/3
0
dx
=
1
3
∫ 3
0
(
2x− 2
3
x2
)
dx =
1
3
(
x2 − 2
9
x3
) ∣∣∣∣3
0
= 1
y¯ =
1
3
√
14
∫∫
S
y dS =
1
3
√
14
∫ 3
0
∫ 2−2x/3
0
√
14 y dy dx =
1
3
∫ 3
0
1
2
y2
∣∣∣∣2−2x/3
0
dx
=
1
6
∫ 3
0
(
2− 2
3
x
)2
dx =
1
6
[
−1
2
(
2− 2
3
x
)3] ∣∣∣∣3
0
=
2
3
513
z¯ =
1
3
√
14
∫∫
S
z dS =
1
3
√
14
∫ 3
0
∫ 2−2x/3
0
(6− 2x− 3y)
√
14 dy dx
=
1
3
∫ 3
0
(
6y − 2xy − 3
2
y2
) ∣∣∣∣2−2x/3
0
dx =
1
3
∫ 3
0
(
6− 4x + 2
3
x2
)
dx =
1
3
(
6x− 2x2 + 2
9
x3
) ∣∣∣∣3
0
= 2
The centroid is (1, 2/3, 2).
42. The area of the hemisphere is A(s) = 2πa2. By symmetry, x¯ = y¯ = 0.
zx = − x√
a2 − x2 − y2 , zy = −
y√
a2 − x2 − y2 ;
dS =
√
1 +
x2
a2 − x2 − y2 +
y2
a2 − x2 − y2 dA =
a√
a2 − x2 − y2 dA
Using polar coordinates,
z =
∫∫
S
z dS
2πa2
=
1
2πa2
∫∫
R
√
a2 − x2 − y2 a√
a2 − x2 − y2 dA =
1
2πa
∫ 2π
0
∫ a
0
r dr dθ
=
1
2πa
∫ 2π
0
1
2
r2
∣∣∣∣a
0
dθ =
1
2πa
∫ 2π
0
1
2
s2 dθ =
a
2
.
The centroid is (0, 0, a/2).
43. The surface is g(x, y, z) = z − f(x, y) = 0. ∇g = −fxi− fyj + k, |∇g| =
√
f2x + f2y + 1 ;
n =
−fxi− fyj + k√
1 + f2x + f2y
; F · n = −Pfx −Qfy + R√
1 + f2x + f2y
; dS =
√
1 + f2x + f2y dA
∫∫
S
F · n dS =
∫∫
R
−Pfx −Qfy + R√
1 + f2x + f2y
√
1 + f2x + f2y dA =
∫∫
R
(−Pfx −Qfy + R) dA
9.13 Surface Integrals
EXERCISES 9.14
Stokes’ Theorem
1. Surface Integral: curl F = −10k. Letting g(x, y, z) = z− 1, we have ∇g = k and n = k. Then∫∫
S
(curl F) · n dS =
∫∫
S
(−10) dS = −10× (area of S) = −10(4π) = −40π.
Line Integral: Parameterize the curve C by x = 2 cos t, y = 2 sin t, z = 1, for 0 ≤ t ≤ 2π. Then∮ˇ
C
F · dr =
∮ˇ
C
5y dx− 5x dy + 3 dz =
∫ 2π
0
[10 sin t(−2 sin t)− 10 cos t(2 cos t)] dt
=
∫ 2π
0
(−20 sin2 t− 20 cos2 t) dt =
∫ 2π
0
−20 dt = −40π.
514
9.14 Stokes’ Theorem
2. Surface Integral: curl F = 4i− 2j− 3k. Letting g(x, y, z) = x2 + y2 + z − 16,
∇g = 2xi + 2yj + k, and n = (2xi + 2yj + k)/
√
4x2 + 4y2 + 1 . Thus,∫∫
S
(curl F) · n dS =
∫∫
S
8x− 4y − 3√
4x2 + 4y2 + 1
dS.
Letting the surface be z = 16− x2 − y2, we have zx = −2x, zy = −2y, and
dS =
√
1 + 4x2 + 4y2 dA. Then, using polar coordinates,∫∫
S
(curl F) · n dS =
∫∫
R
(8x− 4y − 3) dA =
∫ 2π
0
∫ 4
0
(8r cos θ − 4r sin θ − 3) r dr dθ
=
∫ 2π
0
(
8
3
r3 cos θ − 4
3
r3 sin θ − 3
2
r2
) ∣∣∣∣4
0
dθ =
∫ 2π
0
(
512
3
cos θ − 256
3
sin θ − 24
)
dθ
=
(
512
3
sin θ +
256
3
cos θ − 24θ
) ∣∣∣∣2π
0
= −48π.
Line Integral: Parameterize the curve C by x = 4 cos t, y = 4 sin t, z = 0, for 0 ≤ t ≤ 2π. Then,∮ˇ
C
F · dr =
∮ˇ
C
2z dx− 3x dy + 4y dz =
∫ 2π
0
[−12 cos t(4 cos t)] dt
=
∫ 2π
0
−48 cos2 t dt = (−24t− 12 sin 2t)
∣∣∣2π
0
= −48π.
3. Surface Integral: curl F = i + j + k. Letting g(x, y, z) = 2x + y + 2z − 6, we have
∇g = 2i+ j+2k and n = (2i+ j+2k)/3. Then
∫∫
S
(curl F) ·n dS =
∫∫
S
5
3
dS. Letting
the surface be z = 3− 12y − x we have zx = −1, zy = − 12 , and
dS =
√
1 + (−1)2 + (− 12 )2 dA = 32 dA. Then∫∫
S
(curl F) · n dS =
∫∫
R
5
3
(
3
2
)
dA =
5
2
× (area of R) = 5
2
(9) =
45
2
.
Line Integral: C1: z = 3−x, 0 ≤ x ≤ 3, y = 0; C2: y = 6−2x, 3 ≥ x ≥ 0, z = 0; C3: z = 3−y/2, 6 ≥ y ≥ 0,
x = 0.∮ˇ
C
z dx + x dy + y dz =
∫∫
C1
z dx +
∫
C2
x dy +
∫
C3
y dz
=
∫ 3
0
(3− x) dx +
∫ 0
3
x(−2 dx) +
∫ 0
6
y(−dy/2)
=
(
3x− 1
2
x2
) ∣∣∣∣3
0
−x2
∣∣∣∣0
3
−1
4
y2
∣∣∣∣0
6
=
9
2
− (0− 9)− 1
4
(0− 36) = 45
2
4. Surface Integral: curl F = 0 and
∫∫
S
(curl F) · n dS = 0.
Line Integral: the curve is x = cos t, y = sin t, z = 0, 0 ≤ t ≤ 2π.∮ˇ
C
x dx + y dy + z dz =
∫ 2π
0
[cos t(− sin t) + sin t(cos t)]dt = 0.
515
9.14 Stokes’ Theorem
5. curl F = 2i + j. A unit vector normal to the plane is n = (i + j + k)/
√
3 . Taking the
equation of the plane to be z = 1− x− y, we have zx = zy = −1. Thus,
dS =
√
1 + 1 + 1 dA =
√
3 dA and∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
S
√
3 dS =
√
3
∫∫
R
√
3 dA
= 3× (area of R) = 3(1/2) = 3/2.
6. curl F = −2xzi + z2k. A unit vector normal to the plane is n = (j + k)/
√
2 . From z = 1− y, we have zx = 0
and zy = −1. Thus, dS =
√
1 + 1 dA =
√
2 dA and
∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
1√
2
z2
√
2 dA =
∫∫
R
(1− y)2 dA
=
∫ 2
0
∫ 1
0
(1− y)2 dy dx =
∫ 2
0
−1
3
(1− y)3
∣∣∣∣1
0
dx =
∫ 2
0
1
3
dx =
2
3
.
7. curl F = −2yi− zj− xk. A unit vector normal to the plane is n = (j + k)/√2 . From z = 1− y we have zx = 0
and zy = −1. Then dS =
√
1 + 1 dA =
√
2 dA and
∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
[
− 1√
2
(z + x)
]√
2 dA =
∫∫
R
(y − x− 1) dA
=
∫ 2
0
∫ 1
0
(y − x− 1) dy dx =
∫ 2
0
(
1
2
y2 − xy − y
) ∣∣∣∣1
0
dx =
∫ 2
0
(
−x− 1
2
)
dx
=
(
−1
2
x2 − 1
2
x
) ∣∣∣∣2
0
= −3.
8. curl F = 2i + 2j + 3k. Letting g(x, y, z) = x + 2y + z − 4, we have ∇g = i + 2j + k
and n = (i + 2j + k)/
√
6 . From z = 4 − x − 2y we have zx = −1 and zy = −2. Then
dS =
√
6 dA and∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
1√
6
(9)
√
6 dA =
∫∫
R
9 dA = 9(4) = 36.
9. curl F = (−3x2− 3y2)k. A unit vector normal to the plane is n = (i+ j+k)/√3 . From
z = 1− x− y, we have zx = zy = −1 and dS =
√
3 dA. Then,using polar coordinates,∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
(−
√
3x2 −
√
3 y2)
√
3 dA
= 3
∫∫
R
(−x2 − y2) dA = 3
∫ 2π
0
∫ 1
0
(−r2)r dr dθ
= 3
∫ 2π
0
−1
4
r4
∣∣∣∣1
0
dθ = 3
∫ 2π
0
−1
4
dθ = −3π
2
.
10. curl F = 2xyzi− y2zj + (1− x2)k. A unit vector normal to the surface is n = 2yj + k√
4y2 + 1
. From z = 9− y2 we
have zx = 0, zy = −2y and dS =
√
1 + 4y2 dA. Then
516
9.14 Stokes’ Theorem
∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
(−2y3z + 1− x2) dA =
∫ 3
0
∫ y/2
0
[−2y3(9− y2) + 1− x2] dx dy
=
∫ 3
0
(
−18y3x + 2y5x + x− 1
3
x3
) ∣∣∣∣y/2
0
dy =
∫ 3
0
(
−9y4 + y6 + 1
2
y − 1
24
y3
)
dy
=
(
−9
5
y5 +
1
7
y7 +
1
4
y2 − 1
96
y4
) ∣∣∣∣3
0
≈ 123.57.
11. curl F = 3x2y2k. A unit vector normal to the surface is
n =
8xi + 2yj + 2zk√
64x2 + 4y2 + 4z2
=
4xi + yj + zk√
16x2 + y2 + z2
.
From zx = − 4x√
4− 4x2 − y2 , zy = −
y√
4− 4x2 − y2 we obtain dS = 2
√
1 + 3x2
4− 4x2 − y2 dA. Then
∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
R
3x2y2z√
16x2 + y2 + z2
(
2
√
1 + 3x2
4− 4x2 − y2
)
dA
=
∫∫
R
3x2y2 dA Using symmetry
= 12
∫ 1
0
∫ 2√1−x2
0
x2y2 dy dx = 12
∫ 1
0
(
1
3
x2y3
) ∣∣∣∣2
√
1−x2
0
dx
= 32
∫ 1
0
x2(1− x2)3/2dx x = sin t, dx = cos t dt
= 32
∫ π/2
0
sin2 t cos4 t dt = π.
12. curl F = i + j + k. Taking the surface S bounded by C to be the portion of the plane
x + y + z = 0 inside C, we have n = (i + j + k)/
√
3 and dS =
√
3 dA.∮ˇ
C
F · dr =
∫∫
S
(curl F) · n dS =
∫∫
S
√
3 dS =
√
3
∫∫
R
√
3 dA = 3× (area of R)
The region R is obtained by eliminating z from the equations of the plane and the sphere.
This gives x2 + xy + y2 = 12 . Rotating axes, we see that R is enclosed by the ellipse
X2/(1/3) + Y 2/1 = 1 in a rotated coordinate system. Thus,∮ˇ
C
F · dr = 3× (area of R) = 3
(
π
1√
3
1
)
=
√
3π.
13. Parameterize C by x = 4 cos t, y = 2 sin t, z = 4, for 0 ≤ t ≤ 2π. Then∫∫
S
(curl F) · n dS =
∮ˇ
C
F · dr =
∮ˇ
C
6yz dx + 5x dy + yzex
2
dz
=
∫ 2π
0
[6(2 sin t)(4)(−4 sin t) + 5(4 cos t)(2 cos t) + 0] dt
= 8
∫ 2π
0
(−24 sin2 t + 5 cos2 t) dt = 8
∫ 2π
0
(5− 29 sin2 t) dt = −152π.
517
9.14 Stokes’ Theorem
14. Parameterize C by x = 5 cos t, y = 5 sin t, z = 4, for 0 ≤ t ≤ 2π. Then,∫∫
S
(curl F) · n dS =
∮ˇ
C
F · r =
∮ˇ
C
y dx + (y − x) dy + z2 dz
=
∫ 2π
0
[(5 sin t)(−5 sin t) + (5 sin t− 5 cos t)(5 cos t)] dt
=
∫ 2π
0
(25 sin t cos t− 25) dt =
(
25
2
sin2 t− 25t
) ∣∣∣∣2π
0
= −50π.
15. Parameterize C by C1: x = 0, z = 0, 2 ≥ y ≥ 0; C2: z = x, y = 0, 0 ≤ x ≤ 2;
C3: x = 2, z = 2, 0 ≤ y ≤ 2; C4: z = x, y = 2, 2 ≥ x ≥ 0. Then∫∫
S
(curl F) · n dS =
∮ˇ
C
F · r =
∮ˇ
C
3x2 dx + 8x3y dy + 3x2y dz
=
∫
C1
0 dx + 0 dy + 0 dz +
∫
C2
3x2 dx +
∫
C3
64 dy +
∫
C4
3x2 dx + 6x2 dx
=
∫ 2
0
3x2 dx +
∫ 2
0
64 dy +
∫ 0
2
9x2 dx = x3
∣∣∣2
0
+ 64y
∣∣∣2
0
+ 3x3
∣∣∣0
2
= 112.
16. Parameterize C by x = cos t, y = sin t, z = sin t, 0 ≤ t ≤ 2π. Then∫∫
S
(curl F) · n dS =
∮ˇ
C
F · r =
∮ˇ
C
2xy2z dx + 2x2yz dy + (x2y2 − 6x) dz
=
∫ 2π
0
[2 cos t sin2 t sin t(− sin t) + 2 cos2 t sin t sin t cos t
+ (cos2 t sin2 t− 6 cos t) cos t] dt
=
∫ 2π
0
(−2 cos t sin4 t + 3 cos3 t sin2 t− 6 cos2 t) dt = −6π.
17. We take the surface to be z = 0. Then n = k and dS = dA. Since curl F =
1
1 + y2
i + 2zex
2
j + y2k,∮ˇ
C
z2ex
2
dx + xy dy + tan−1 y dz =
∫∫
S
(curl F) · n dS =
∫∫
S
y2 dS =
∫∫
R
y2 dA
=
∫ 2π
0
∫ 3
0
r2 sin2 θ r dr dθ =
∫ 2π
0
1
4
r4 sin2 θ
∣∣∣∣3
0
dθ
=
81
4
∫ 2π
0
sin2 θ dθ =
81π
4
.
18. (a) curl F = xzi− yzj. A unit vector normal to the surface is n = 2xi + 2yj + k√
4x2 + 4y2 + 1
and
dS =
√
1 + 4x2 + 4y2 dA. Then, using x = cos t, y = sin t, 0 ≤ t ≤ 2π, we have∫∫
S
(curl F) · n dS =
∫∫
R
(2x2z − 2y2z) dA =
∫∫
R
(2x2 − 2y2)(1− x2 − y2) dA
=
∫∫
R
(2x2 − 2y2 − 2x4 + 2y4) dA
=
∫ 2π
0
∫ 1
0
(2r2 cos2 θ − 2r2 sin2 θ − 2r4 cos4 θ + 2r4 cos4 θ) r dr dθ
= 2
∫ 2π
0
∫ 1
0
[r3 cos 2θ − r5(cos2 θ − sin2 θ)(cos2 θ + sin2 θ)] dr dθ
518
9.15 Triple Integrals
= 2
∫ 2π
0
∫ 1
0
(r3 cos 2θ − r5 cos 2θ) dr dθ = 2
∫ 2π
0
cos 2θ
(
1
4
r4 − 1
6
r6
) ∣∣∣∣1
0
dθ
=
1
6
∫ 2π
0
cos 2θ dθ = 0.
(b) We take the surface to be z = 0. Then n = k, curl F · n = curl F · k = 0 and
∫∫
S
(curl F) · n dS = 0.
(c) By Stokes’ Theorem, using z = 0, we have∫∫
S
(curl F) · n dS =
∮ˇ
C
F · dr =
∮ˇ
C
xyz dz =
∮ˇ
C
xy(0) dz = 0.
EXERCISES 9.15
Triple Integrals
1.
∫ 4
2
∫ 2
−2
∫ 1
−1
(x + y + z)dx dy dz =
∫ 4
2
∫ 2
−2
(
1
2
x2 + xy + xz
) ∣∣∣∣1
−1
dy dz
=
∫ 4
2
∫ 2
−2
(2y + 2z) dy dz =
∫ 4
2
(y2 + 2yz)
∣∣∣2
−2
dz =
∫ 4
2
8z dz = 4z2
∣∣∣4
2
= 48
2.
∫ 3
1
∫ x
1
∫ xy
2
24xy dz dy dx =
∫ 3
1
∫ x
1
24xyz
∣∣∣xy
2
dy dx =
∫ 3
1
∫ x
1
(24x2y2 − 48xy)dy dx
=
∫ 3
1
(8x2y3 − 24xy2)
∣∣∣x
1
dx =
∫ 3
1
(8x5 − 24x3 − 8x2 + 24x) dx
=
(
4
3
x6 − 6x4 − 8
3
x3 + 12x2
) ∣∣∣∣3
1
= 522− 14
3
=
1552
3
3.
∫ 6
0
∫ 6−x
0
∫ 6−x−z
0
dy dz dx =
∫ 6
0
∫ 6−x
0
(6− x− z)dz dx =
∫ 6
0
(
6z − xz − 1
2
z2
) ∣∣∣∣6−x
0
dx
=
∫ 6
0
[
6(6− x)− x(6− x)− 1
2
(6− x)2
]
dx =
∫ 6
0
(
18− 6x + 1
2
x2
)
dx
=
(
18x− 3x2 + 1
6
x3
) ∣∣∣∣6
0
= 36
4.
∫ 1
0
∫ 1−x
0
∫ √y
0
4x2z3 dz dy dx =
∫ 1
0
∫ 1−x
0
x2z4
∣∣∣√y
0
dy dx =
∫ 1
0
∫ 1−x
0
x2y2 dy dx
=
∫ 1
0
1
3
x2y3
∣∣∣∣1−x
0
dx =
1
3
∫ 1
0
x2(1− x)3 dx = 1
3
∫ 1
0
(x2 − 3x3 + 3x4 − x5)dx
=
1
3
(
1
3
x3 − 3
4
x4 +
3
5
x5 − 1
6
x6
) ∣∣∣∣1
0
=
1
180
519
9.15 Triple Integrals
5.
∫ π/2
0
∫ y2
0
∫ y
0
cos
x
y
dz dx dy =
∫ π/2
0
∫ y2
0
y cos
x
y
dx dy =
∫ π/2
0
y2 sin
x
y
∣∣∣∣y2
0
dy
=
∫ π/2
0
y2 sin y dy Integration by parts
= (−y2 cos y + 2 cos y + 2y sin y)
∣∣∣π/2
0
= π − 2
6.
∫ √2
0
∫ 2
√
y
∫ ex2
0
x dz dx dy =
∫ √2
0
∫ 2
√
y
xex
2
dx dy =
∫ √2
0
1
2
ex
2
∣∣∣∣2√
y
dy =
1
2
∫ √2
0
(e4 − ey)dy
=
1
2
(ye4 − ey)
∣∣∣√2
0
=
1
2
[(e4
√
2− e
√
2 )− (−1)] = 1
2
(1 + e4
√
2− e
√
2 )
7.
∫ 1
0
∫ 1
0
∫ 2−x2−y2
0
xyez dz dx dy =
∫ 1
0
∫ 1
0
xyez
∣∣∣2−x2−y2
0
dx dy =
∫ 1
0
∫ 1
0
(xye2−x
2−y2 − xy)dx dy
=
∫ 1
0
(
−1
2
ye2−x
2−y2 − 1
2
x2y
) ∣∣∣∣1
0
dy =
∫ 1
0
(
−1
2
ye1−y
2 − 1
2
y +
1
2
ye2−y
2
)
dy
=
(
1
4
e1−y
2 − 1
4
y2 − 1
4
e2−y
2
) ∣∣∣∣1
0
=
(
1
4
− 1
4
− 1
4
e
)
−
(
1
4
e− 1
4
e2
)
=
1
4
e2 − 1
2
e
8.
∫ 4
0
∫ 1/2
0
∫ x2
0
1√
x2 − y2 dy dx dz =
∫ 4
0
∫ 1/2
0
sin−1
y
x
∣∣∣∣x2
0
dx dz =
∫ 4
0
∫ 1/2
0
sin−1 x dx dz
Integration by parts
=
∫ 4
0
(x sin−1 x +
√
1− x2 )
∣∣∣1/2
0
dz =
∫ 4
0
(
1
2
π
6
+
√
3
2
− 1
)
dz =
π
3
+ 2
√
3− 4
9.
∫∫∫
D
z dV =
∫ 5
0
∫ 3
1
∫ y+2
y
z dx dy dz =
∫ 5
0
∫ 3
1
xz
∣∣∣y+2
y
dy dz =
∫ 5
0
∫ 3
1
2z dy dz
=
∫ 5
0
2yz
∣∣∣3
1
dz =
∫ 5
0
4z dz = 2z2
∣∣∣5
0
= 50
10. Using symmetry,∫∫∫D
(x2 + y2) dV = 2
∫ 2
0
∫ 4
x2
∫ 4−y
0
(x2 + y2) dz dy dx = 2
∫ 2
0
∫ 4
x2
(x2 + y2)z
∣∣∣4−y
0
dy dx
= 2
∫ 2
0
∫ 4
x2
(4x2 − x2y + 4y2 − y3) dy dx
= 2
∫ 2
0
(
4x2y − 1
2
x2y2 +
4
3
y3 − 1
4
y4
) ∣∣∣∣4
x2
dx
= 2
∫ 2
0
[(
8x2 +
64
3
)
−
(
4x4 +
5
6
x6 − 1
4
x8
)]
dx
= 2
(
8
3
x3 +
64
3
x− 4
5
x5 − 5
42
x7 +
1
36
x9
) ∣∣∣∣2
0
=
23,552
315
.
520
9.15 Triple Integrals
11. The other five integrals are
∫ 4
0
∫ 2−x/2
0
∫ 4
x+2y
F (x, y, z) dz dy dx,∫ 4
0
∫ z
0
∫ (z−x)/2
0
F (x, y, z) dy dx dz,
∫ 4
0
∫ 4
x
∫ (z−x)/2
0
F (x, y, z) dy dz dx,∫ 4
0
∫ z/2
0
∫ z−2y
0
F (x, y, z) dx dy dz,
∫ 2
0
∫ 4
2y
∫ z−2y
0
F (x, y, z) dx dz dy.
12. The other five integrals are
∫ 3
0
∫ √36−4y2/3
0
∫ 3
1
F (x, y, z) dz dx dy,
∫ 3
1
∫ 2
0
∫ √36−9x2/2
0
F (x, y, z) dy dx dz,
∫ 3
1
∫ 3
0
∫ √36−4y2/3
0
F (x, y, z) dx dy dz,
∫ 3
0
∫ 3
1
∫ √36−4y2/3
0
F (x, y, z) dx dz dy,
∫ 2
0
∫ 3
1
∫ √36−9x2/2
0
F (x, y, z) dy dz dx.
13. (a) V =
∫ 2
0
∫ 8
x3
∫ 4
0
dz dy dx (b) V =
∫ 8
0
∫ 4
0
∫ y1/3
0
dx dz dy (c) V =
∫ 4
0
∫ 2
0
∫ 8
x2
dy dx dz
14. Solving z =
√
x and x + z = 2, we obtain x = 1, z = 1. (a) V =
∫ 3
0
∫ 1
0
∫ 2−z
z2
dx dz dy
(b) V =
∫ 1
0
∫ 2−z
z2
∫ 3
0
dy dx dz (c) V =
∫ 3
0
∫ 1
0
∫ √x
0
dz dx dy +
∫ 3
0
∫ 2
1
∫ 2−x
0
dz dx dy
15. 16. The region in the first
octant is shown.
17. 18.
19. 20.
521
9.15 Triple Integrals
21. Solving x = y2 and 4− x = y2, we obtain x = 2, y = ±√2 . Using symmetry,
V = 2
∫ 3
0
∫ √2
0
∫ 4−y2
y2
dx dy dz = 2
∫ 3
0
∫ √2
0
(4− 2y2)dy dz
= 2
∫ 3
0
(
4y − 2
3
y3
) ∣∣∣∣
√
2
0
dz = 2
∫ 3
0
8
√
2
3
dz = 16
√
2 .
22. V =
∫ 2
0
∫ √4−x2
0
∫ x+y
0
dz dy dx =
∫ 2
0
∫ √4−x2
0
z
∣∣∣x+y
0
dy dx
=
∫ 2
0
∫ √4−x2
0
(x + y) dy dx =
∫ 2
0
(
xy +
1
2
y2
) ∣∣∣∣
√
4−x2
0
dx
=
∫ 2
0
[
x
√
4− x2 + 1
2
(4− x2)
]
dx =
[
−1
3
(4− x2)3/2 + 2x− 1
6
x3
] ∣∣∣∣2
0
=
(
4− 4
3
)
−
(
−8
3
)
=
16
3
23. Adding the two equations, we obtain 2y = 8. Thus, the paraboloids intersect
in the plane y = 4. Their intersection is a circle of radius 2. Using symmetry,
V = 4
∫ 2
0
∫ √4−x2
0
∫ 8−x2−z2
x2+z2
dy dz dx = 4
∫ 2
0
∫ √4−x2
0
(8− 2x2 − 2z2) dz dx
= 4
∫ 2
0
[
2(4− x2)z − 2
3
z3
] ∣∣∣∣
√
4−x2
0
dx = 4
∫ 2
0
4
3
(4− x2)3/2dx Trig substitution
=
16
3
[
−x
8
(2x2 − 20)
√
4− x2 + 6 sin−1 x
2
] ∣∣∣∣2
0
= 16π.
24. Solving x = 2, y = x, and z = x2 + y2, we obtain the point (2, 2, 8).
V =
∫ 2
0
∫ x
0
∫ x2+y2
0
dz dy dx =
∫ 2
0
∫ x
0
(x2 + y2) dy dx =
∫ 2
0
(
x2y +
1
3
y3
) ∣∣∣∣x
0
dx
=
∫ 2
0
4
3
x3 dx =
1
3
x4
∣∣∣∣2
0
=
16
3
.
25. We are given ρ(x, y, z) = kz.
m =
∫ 8
0
∫ 4
0
∫ y1/3
0
kz dx dz dy = k
∫ 8
0
∫ 4
0
xz
∣∣∣y1/3
0
dz dy = k
∫ 8
0
∫ 4
0
y1/3z dz dy
= k
∫ 8
0
1
2
y1/3z2
∣∣∣∣4
0
dy = 8k
∫ 8
0
y1/3dy = 8k
(
3
4
y4/3
) ∣∣∣∣8
0
= 96k
Mxy =
∫ 8
0
∫ 4
0
∫ y1/3
0
kz2 dx dz dy = k
∫ 8
0
∫ 4
0
xz2
∣∣∣y1/3
0
dz dy = k
∫ 8
0
∫ 4
0
y1/3z2 dz dy
= k
∫ 8
0
1
3
y1/3z3
∣∣∣∣4
0
dy =
64
3
k
∫ 8
0
y1/3dy =
64
3
k
(
3
4
y4/3
) ∣∣∣∣8
0
= 256k
522
9.15 Triple Integrals
Mxz =
∫ 8
0
∫ 4
0
∫ y1/3
0
kyz dx dz dy = k
∫ 8
0
∫ 4
0
xyz
∣∣∣y1/3
0
dz dy = k
∫ 8
0
∫ 4
0
y4/3z dz dy
= k
∫ 8
0
1
2
y4/3z2
∣∣∣∣4
0
dy = 8k
∫ 8
0
y4/3dy = 8k
(
3
7
y7/3
) ∣∣∣∣8
0
=
3072
7
k
Myz =
∫ 8
0
∫ 4
0
∫ y1/3
0
kxz dx dz dy = k
∫ 8
0
∫ 4
0
1
2
x2z
∣∣∣∣y1/3
0
dz dy =
1
2
k
∫ 8
0
∫ 4
0
y2/3z dz dy
=
1
2
k
∫ 8
0
1
2
y2/3z2
∣∣∣∣4
0
dy = 4k
∫ 8
0
y2/3dy = 4k
(
3
5
y5/3
) ∣∣∣∣8
0
=
384
5
k
x¯ = Myz/m =
384k/5
96k
= 4/5; y¯ = Mxz/m =
3072k/7
96k
= 32/7; z¯ = Mxy/m =
256k
96k
= 8/3
The center of mass is (4/5, 32/7, 8/3).
26. We use the form of the integral in Problem 14(b) of this section. Without loss of generality, we take ρ = 1.
m =
∫ 1
0
∫ 2−z
z2
∫ 3
0
dy dx dz =
∫ 1
0
∫ 2−z
z2
3 dx dz = 3
∫ 1
0
(2− z − z2) dz = 3
(
2z − 1
2
z2 − 1
3
z3
) ∣∣∣∣1
0
=
7
2
Mxy =
∫ 1
0
∫ 2−z
z2
∫ 3
0
z dy dx dz =
∫ 1
0
∫ 2−z
z2
yz
∣∣∣3
0
dx dz =
∫ 1
0
∫ 2−z
z2
3z dx dz
= 3
∫ 1
0
xz
∣∣∣2−z
z2
dz = 3
∫ 1
0
(2z − z2 − z3) dz = 3
(
z2 − 1
3
z3 − 1
4
z4
) ∣∣∣∣1
0
=
5
4
Mxz =
∫ 1
0
∫ 2−z
z2
∫ 3
0
y dy dx dz =
∫ 1
0
∫ 2−z
z2
1
2
y2
∣∣∣∣3
0
dx dz =
9
2
∫ 1
0
∫ 2−z
z2
dx dz
=
9
2
∫ 1
0
(2− z − z2) dz = 9
2
(
2z − 1
2
z2 − 1
3
z3
) ∣∣∣∣1
0
=
21
4
Myz =
∫ 1
0
∫ 2−z
z2
∫ 3
0
x dy dx dz =
∫ 1
0
∫ 2−z
z2
xy
∣∣∣3
0
dx dz =
∫ 1
0
∫ 2−x
z2
3x dx dz
= 3
∫ 1
0
1
2
x2
∣∣∣∣2−z
z2
dz =
3
2
∫ 1
0
(4− 4z + z2 − z4) dz = 3
2
(
4z − 2z2 + 1
3
z3 − 1
5
z5
) ∣∣∣∣1
0
=
16
5
x¯ = Myz/m =
16/5
7/2
= 32/35, y¯ = Mxz/m =
21/4
7/2
= 3/2, z¯ = Mxy/m =
5/4
7/2
= 5/14.
The centroid is (32/35, 3/2, 5/14).
27. The density is ρ(x, y, z) = ky. Since both the region and the density function are symmetric
with respect to the xy-and yz-planes, x¯ = z¯ = 0. Using symmetry,
m = 4
∫ 3
0
∫ 2
0
∫ √4−x2
0
ky dz dx dy = 4k
∫ 3
0
∫ 2
0
yz
∣∣∣√4−x2
0
dx dy = 4k
∫ 3
0
∫ 2
0
y
√
4− x2 dx dy
= 4k
∫ 3
0
y
(x
2
√
4− x2 + 2 sin−1 x
2
) ∣∣∣∣2
0
dy = 4k
∫ 3
0
πy dy = 4πk
(
1
2
y2
) ∣∣∣∣3
0
= 18πk
Mxz = 4
∫ 3
0
∫ 2
0
∫ √4−x2
0
ky2 dz dx dy = 4k
∫ 3
0
∫ 2
0
y2z
∣∣∣√4−x2
0
dx dy = 4k
∫ 3
0
∫ 2
0
y2
√
4− x2 dx dy
= 4k
∫ 3
0
y2
(x
2
√
4− x2 + 2 sin−1 x
2
) ∣∣∣∣2
0
dy = 4k
∫ 3
0
πy2 dy = 4πk
(
1
3
y3
) ∣∣∣∣3
0
= 36πk.
y¯ = Mxz/m =
36πk
18πk
= 2. The center of mass is (0, 2, 0).
523
9.15 Triple Integrals
28. The density is ρ(x, y, z) = kz.
m =
∫ 1
0
∫ x
x2
∫ y+2
0
kz dz dy dx = k
∫ 1
0
∫ x
x2
1
2
z2
∣∣∣∣y+2
0
dy dx
=
1
2
k
∫ 1
0
∫ x
x2
(y + 2)2dy dx =
1
2
k
∫ 1
0
1
3
(y + 2)3
∣∣∣∣x
x2
dx
=
1
6
k
∫ 1
0
[(x + 2)3 − (x2 + 2)3] dx = 1
6
k
∫ 1
0
[(x + 2)3 − (x6 + 6x4 + 12x2 + 8)]dx
=
1
6
k
[
1
4
(x + 2)4 − 1
7
x7 − 6
5
x5 − 4x3 − 8x
] ∣∣∣∣1
0
=
407
840
k
Mxy =
∫ 1
0
∫ x
x2
∫ y+2
0
kz2 dz dy dx = k
∫ 1
0
∫ x
x2
1
3
z3
∣∣∣∣y+2
0
dy dx =
1
3
k
∫ 1
0
∫ x
x2
(y + 2)3dy dx
=
1
3
k
∫ 1
0
1
4
(y + 2)4
∣∣∣∣x
x2
dx =
1
12
k
∫ 1
0
[(x + 2)4 − (x2 + 2)4] dx
=
1
12
k
∫ 1
0
[(x + 2)4 − (x8 + 8x6 + 24x4 + 32x2 + 16)] dx
=
1
12
k
[
1
5
(x + 2)5 − 1
9
x9 − 8
7
x7 − 24
5
− 32
3
x3 − 16x
] ∣∣∣∣1
0
=
1493
1890
k
Mxz =
∫ 1
0
∫ x
x2
∫ y+2
0
kyz dz dy dx = k
∫ 1
0
∫ x
x2
1
2
yz2
∣∣∣∣y+2
0
dy dx =
1
2
k
∫ 1
0
∫ x
x2
y(y + 2)2 dy dx
=
1
2
k
∫ 1
0
∫ x
x2
(y3 + 4y2 + 4y) dy dx =
1
2
k
∫ 1
0
(
1
4
y4+
4
3
y3 + 2y2
) ∣∣∣∣x
x2
dx
=
1
2
k
∫ 1
0
(
−1
4
x8 − 4
3
x6 − 74x4 + 4
3
x3 + 2x2
)
dx
=
1
2
k
(
− 1
36
x9 − 4
21
x7 − 7
20
x5 +
1
3
x4 +
2
3
x3
) ∣∣∣∣1
0
=
68
315
k
Myz =
∫ 1
0
∫ x
x2
∫ y+2
0
kxz dz dy dx = k
∫ 1
0
∫ x
x2
1
2
xz2
∣∣∣∣y+2
0
dy dx =
1
2
k
∫ 1
0
∫ x
x2
x(y + 2)2 dy dx
=
1
2
k
∫ 1
0
1
3
x(y + 2)3
∣∣∣∣x
x2
dx =
1
6
k
∫ 1
0
[x(x + 2)3 − x(x2 + 2)3] dx
=
1
6
k
∫ 1
0
[x4 + 6x3 + 12x2 + 8x− x(x2 + 2)3] dx
=
1
6
k
[
1
5
x5 +
3
2
x4 + 4x3 + 4x2 − 1
8
(x2 + 2)4
] ∣∣∣∣1
0
=
21
80
k
x¯ = Myz/m =
21k/80
407k/840
= 441/814, y¯ = Mxz/m =
68k/315
407k/840
= 544/1221,
z¯ = Mxy/m =
1493k/1890
407k/840
= 5972/3663. The center of mass is (441/814, 544/1221, 5972/3663).
524
9.15 Triple Integrals
29. m =
∫ 1
−1
∫ √1−x2
−√1−x2
∫ 8−y
2+2y
(x + y + 4) dz dy dx
30. Both the region and the density function are symmetric with respect to the xz- and
yz-planes. Thus, m = 4
∫ 2
−1
∫ √1+z2
0
∫ √1+z2−y2
0
z2 dx dy dz.
31. We are given ρ(x, y, z) = kz.
Iy =
∫ 8
0
∫ 4
0
∫ y1/3
0
kz(x2 + z2)dx dz dy = k
∫ 8
0
∫ 4
0
(
1
3
x3z + xz3
) ∣∣∣∣y1/3
0
dz dy
= k
∫ 8
0
∫ 4
0
(
1
3
yz + y1/3z3
)
dz dy = k
∫ 8
0
(
1
6
yz2 +
1
4
y1/3z4
) ∣∣∣∣4
0
dy
= k
∫ 8
0
(
8
3
y + 64y1/3
)
dy = k
(
4
3
y2 + 48y4/3
) ∣∣∣∣8
0
=
2560
3
k
From Problem 25, m = 96k. Thus, Rg =
√
Iy/m =
√
2560k/3
96k
=
4
√
5
3
.
32. We are given ρ(x, y, z) = k.
Ix =
∫ 1
0
∫ 2−z
z2
∫ 3
0
k(y2 + z2)dy dx dz = k
∫ 1
0
∫ 2−z
z2
(
1
3
y3 + yz2
) ∣∣∣∣3
0
dx dz = k
∫ 1
0
∫ 2−z
z2
(9 + 3z2) dx dz
= k
∫ 1
0
(9x + 3xz2)
∣∣∣2−z
z2
dz = k
∫ 1
0
(18− 9z − 3z2 − 3z3 − 3z4) dz
= k
(
18z − 9
2
z2 − z3 − 3
4
z4 − 3
5
z5
) ∣∣∣∣1
0
=
223
20
k
m =
∫ 1
0
∫ 2−z
z2
∫ 3
0
k dy dx dz = k
∫ 1
0
∫ 2−z
z2
3 dx dz = 3k
∫ 1
0
(2− z − z2) dz = 3k
(
2z − 1
2
z2 − 1
3
z3
) ∣∣∣∣1
0
=
7
2
k
Rg =
√
Ix
m
=
√
223k/20
7k/2
=
√
223
70
33. Iz = k
∫ 1
0
∫ 1−x
0
∫ 1−x−y
0
(x2 + y2) dz dy dx = k
∫ 1
0
∫ 1−x
0
(x2 + y2)(1− x− y) dy dx
= k
∫ 1
0
∫ 1−x
0
(x2 − x3 − x2y + y2 − xy2 − y3) dy dx
= k
∫ 1
0
[
(x2 − x3)y − 1
2
x2y2 +
1
3
(1− x)y3 − 1
4
y4
] ∣∣∣∣1−x
0
dx
= k
∫ 1
0
[
1
2
x2 − x3 + 1
2
x4 +
1
12
(1− x)4
]
dx = k
[
1
6
x6 − 1
4
x4 +
1
10
x5 − 1
60
(1− x)5
] ∣∣∣∣1
0
=
k
30
525
9.15 Triple Integrals
34. We are given ρ(x, y, z) = kx.
Iy =
∫ 1
0
∫ 2
0
∫ 4−z
z
kx(x2 + z2) dy dx dz = k
∫ 1
0
∫ 2
0
(x3 + xz2)y
∣∣∣4−z
z
dx dz
= k
∫ 1
0
∫ 2
0
(x3 + xz2)(4− 2z) dx dz = k
∫ 1
0
(
1
4
x4 +
1
2
x2z2
)
(4− 2z)
∣∣∣∣2
0
dz
= k
∫ 1
0
(4 + 2z2)(4− 2z) dz = 4k
∫ 1
0
(4− 2z + 2z2 − z3) dz = 4k
(
4z − z2 + 2
3
z3 − 1
4
z4
) ∣∣∣∣1
0
=
41
3
k
35. x = 10 cos 3π/4 = −5√2 ; y = 10 sin 3π/4 = 5√2 ; (−5√2 , 5√2 , 5)
36. x = 2 cos 5π/6 = −√3 ; y = 2 sin 5π/6 = 1; (−√3 , 1,−3)
37. x =
√
3 cosπ/3 =
√
3/2; y =
√
3 sinπ/3 = 3/2; (
√
3/2, 3/2,−4)
38. x = 4 cos 7π/4 = 2
√
2 ; y = 4 sin 7π/4 = −2√2 ; (2√2 ,−2√2 , 0)
39. With x = 1 and y = −1 we have r2 = 2 and tan θ = −1. The point is (√2 ,−π/4,−9).
40. With x = 2
√
3 and y = 2 we have r2 = 16 and tan θ = 1/
√
3 . The point is (4, π/6, 17).
41. With x = −√2 and y = √6 we have r2 = 8 and tan θ = −√3 . The point is (2√2 , 2π/3, 2).
42. With x = 1 and y = 2 we have r2 = 5 and tan θ = 2. The point is (
√
5 , tan−1 2, 7).
43. r2 + z2 = 25 44. r cos θ + r sin θ − z = 1
45. r2 − z2 = 1 46. r2 cos2 θ + z2 = 16
47. z = x2 + y2 48. z = 2y
49. r cos θ = 5, x = 5 50. tan θ = 1/
√
3 , y/x = 1/
√
3 , x =
√
3 y, x > 0
51. The equations are r2 = 4, r2 + z2 = 16, and z = 0.
V =
∫ 2π
0
∫ 2
0
∫ √16−r2
0
r dz dr dθ =
∫ 2π
0
∫ 2
0
r
√
16− r2 dr dθ
=
∫ 2π
0
−1
3
(16− r2)3/2
∣∣∣∣2
0
dθ =
∫ 2π
0
1
3
(64− 24
√
3 ) dθ =
2π
3
(64− 24
√
3 )
52. The equation is z = 10− r2.
V =
∫ 2π
0
∫ 3
0
∫ 10−r2
1
r dz dr dθ =
∫ 2π
0
∫ 3
0
r(9− r2) dr dθ =
∫ 2π
0
(
9
2
r2 − 1
4
r4
) ∣∣∣∣3
0
dθ
=
∫ 2π
0
81
4
dθ =
81π
2
.
53. The equations are z = r2, r = 5, and z = 0.
V =
∫ 2π
0
∫ 5
0
∫ r2
0
r dz dr dθ =
∫ 2π
0
∫ 5
0
r3 dr dθ =
∫ 2π
0
1
4
r4
∣∣∣∣5
0
dθ
=
∫ 2π
0
625
4
dθ =
625π
2
526
9.15 Triple Integrals
54. Substituting the first equation into the second, we see that the surfaces intersect
in the plane y = 4. Using polar coordinates in the xz-plane, the equations of the
surfaces become y = r2 and y = 12r
2 + 2.
V =
∫ 2π
0
∫ 2
0
∫ r2/2+2
r2
r dy dr dθ =
∫ 2π
0
∫ 2
0
r
(
r2
2
+ 2− r2
)
dr dθ
=
∫ 2π
0
∫ 2
0
(
2r − 1
2
r3
)
dr dθ =
∫ 2π
0
(
r2 − 1
8
r4
) ∣∣∣∣2
0
dθ =
∫ 2π
0
2 dθ = 4π
55. The equation is z =
√
a2 − r2 . By symmetry, x¯ = y¯ = 0.
m =
∫ 2π
0
∫ a
0
∫ √a2−r2
0
r dz dr θ =
∫ 2π
0
∫ a
0
r
√
a2 − r2 dr dθ
=
∫ 2π
0
−1
3
(a2 − r2)3/2
∣∣∣∣a
0
dθ =
∫ 2π
0
1
3
a3 dθ =
2
3
πa3
Mxy =
∫ 2π
0
∫ a
0
∫ √a2−r2
0
zr dz dr dθ =
∫ 2π
0
∫ a
0
1
2
rz2
∣∣∣∣
√
a2−r2
0
dr dθ =
1
2
∫ 2π
0
∫ a
0
r(a2 − r2) dr dθ
=
1
2
∫ 2π
0
(
1
2
a2r2 − 1
4
r4
) ∣∣∣∣a
0
dθ =
1
2
∫ 2π
0
1
4
a4 dθ =
1
4
πa4
z¯ = Mxy/m =
πa4/4
2πa3/3
= 3a/8. The centroid is (0, 0, 3a/8).
56. We use polar coordinates in the yz-plane. The density is ρ(x, y, z) = kz. By symmetry,
y¯ = z¯ = 0.
m =
∫ 2π
0
∫ 4
0
∫ 5
0
kxr dx dr dθ = k
∫ 2π
0
∫ 4
0
1
2
rz2
∣∣∣∣5
0
dr dθ =
k
2
∫ 2π
0
∫ 4
0
25r dr dθ
=
25k
2
∫ 2π
0
1
2
r2
∣∣∣∣4
0
dθ =
25k
2
∫ 2π
0
8 dθ = 200kπ
Myz =
∫ 2π
0
∫ 4
0
∫ 5
0
kx2r dx dr dθ = k
∫ 2π
0
∫ 4
0
1
3
rx3
∣∣∣∣5
0
dr dθ =
1
3
k
∫ 2π
0
∫ 4
0
125r dr dθ
=
1
3
k
∫ 2π
0
125
2
r2
∣∣∣∣4
0
dθ =
1
3
k
∫ 2π
0
1000 dθ =
2000
3
kπ
x¯ = Myz/m =
2000kπ/3
200kπ
= 10/3. The center of mass of the given solid is (10/3, 0, 0).
57. The equation is z =
√
9− r2 and the density is ρ = k/r2. When z = 2, r = √5 .
Iz =
∫ 2π
0
∫ √5
0
∫ √9−r2
2
r2(k/r2)r dz dr dθ = k
∫ 2π
0
∫ √5
0
rz
∣∣∣√9−r2
2
dr dθ
= k
∫ 2π
0
∫ √5
0
(r
√
9− r2 − 2r) dr dθ = k
∫ 2π
0
[
−1
3
(9− r2)3/2 − r2
] ∣∣∣∣
√
5
0
dθ
= k
∫ 2π
0
4
3
dθ =
8
3
πk
527
9.15 Triple Integrals
58. The equation is z = r and the density is ρ = kr.
Ix =
∫ 2π
0
∫ 1
0
∫ 1
r
(y2 + z2)(kr)r dz dr dθ = k
∫ 2π
0
∫ 1
0
∫ 1
r
(r4 sin2 θ + r2z2) dz dr dθ
= k
∫ 2π
0
∫ 1
0
[
(r4 sin2 θ)z +
1
3
r2z3
] ∣∣∣∣1
r
dr dθ
= k
∫ 2π
0
∫ 1
0
(
r4 sin2 θ +
1
3
r2 − r5 sin2 θ − 1
3
r5
)
dr dθ
= k
∫ 2π
0
(
1
5
r5 sin2 θ +
1
9
r3 − 1
6
r6 sin2 θ − 1
18
r6
) ∣∣∣∣1
0
dθ = k
∫ 2π
0
(
1
30
sin2 θ +
1
18
)
dθ
= k
(
1
60
θ − 1
120
sin 2θ +
1
18
θ
) ∣∣∣∣2π
0
=
13
90
πk
59. (a) x = (2/3) sin(π/2) cos(π/6) =
√
3/3; y = (2/3) sin(π/2) sin(π/6) = 1/3;
z = (2/3) cos(π/2) = 0; (
√
3/3, 1/3, 0)
(b) Withx =
√
3/3 and y = 1/3 we have r2 = 4/9 and tan θ =
√
3/3. The point is (2/3, π/6, 0).
60. (a) x = 5 sin(5π/4) cos(2π/3) = 5
√
2/4; y = 5 sin(5π/4) sin(2π/3) = −5√6/4;
z = 5 cos(5π/4) = −5√2/2; (5√2/4,−5√6/4,−5√2/2)
(b) With x = 5
√
2/4 and y = −5√6/4 we have r2 = 25/2 and tan θ = −√3 .
The point is (5/
√
2 , 2π/3,−5√2/2).
61. (a) x = 8 sin(π/4) cos(3π/4) = −4; y = 8 sin(π/4) sin(3π/4) = 4; z = 8 cos(π/4) = 4√2 ;
(−4, 4, 4√2)
(b) With x = −4 and y = 4 we have r2 = 32 and tan θ = −1. The point is (4√2 , 3π/4, 4√2 ).
62. (a) x = (1/3) sin(5π/3) cos(π/6) = −1/4; y = (1/3) sin(5π/3) sin(π/6) = −√3/12;
z = (1/3) cos(5π/3) = 1/6; (−1/4,−√3/12, 1/6)
(b) With x = −1/4 and y = −√3/12 we have r2 = 1/12 and tan θ = √3/3. The point is (1/2√3 , π/6, 1/6).
63. With x = −5, y = −5, and z = 0, we have ρ2 = 50, tan θ = 1, and cosφ = 0. The point is (5√2 , π/2, 5π/4).
64. With x = 1, y = −√3 , and z = 1, we have ρ2 = 5, tan θ = −√3 , and cosφ = 1/√5 . The point is
(
√
5 , cos−1 1/
√
5 ,−π/3).
65. With x =
√
3/2, y = 1/2, and z = 1, we have ρ2 = 2, tan θ = 1/
√
3 , and cosφ = 1/
√
2 . The point is
(
√
2 , π/4, π/6).
66. With x = −√3/2, y = 0, and z = −1/2, we have ρ2 = 1, tan θ = 0, and cosφ = −1/2. The point is (1, 2π/3, 0).
67. ρ = 8
68. ρ2 = 4ρ cosφ; ρ = 4 cosφ
69. 4z2 = 3x2 + 3y2 + 3z2; 4ρ2 cos2 φ = 3ρ2; cosφ = ±√3/2; φ = π/6 or equivalently, φ = 5π/6
70. −x2 − y2 − z2 = 1− 2z2; −ρ2 = 1− 2ρ2 cos2 φ; ρ2(2 cos2 φ− 1) = 1
71. x2 + y2 + z2 = 100
72. cosφ = 1/2; ρ2 cos2 φ = ρ2/4; 4z2 = x2 + y2 + z2; x2 + y2 = 3z2
73. ρ cosφ = 2; z = 2
74. ρ(1− cos2 φ) = cosφ; ρ2 − ρ2 cos2 φ = ρ cosφ; x2 + y2 + z2 − z2 = z; z = x2 + y2
528
9.15 Triple Integrals
75. The equations are φ = π/4 and ρ = 3.
V =
∫ 2π
0
∫ π/4
0
∫ 3
0
ρ2 sinφdρ dφ dθ =
∫ 2π
0
∫ π/4
0
1
3
ρ3 sinφ
∣∣∣∣3
0
dφ dθ =
∫ 2π
0
∫ π/4
0
9 sinφdφ dθ
=
∫ 2π
0
−9 cosφ
∣∣∣π/4
0
dθ = −9
∫ 2π
0
(√
2
2
− 1
)
dθ = 9π(2−
√
2 )
76. The equations are ρ = 2, θ = π/4, and θ = π/3.∫ π/3
π/4
∫ π/2
0
∫ 2
0
ρ2 sinφdρ dφ dθ =
∫ π/3
π/4
∫ π/2
0
1
3
ρ3 sinφ
∣∣∣∣2
0
dφ dθ
=
∫ π/3
π/4
∫ π/2
0
8
3
sinφdφ dθ =
8
3
∫ π/3
π/4
− cosφ
∣∣∣π/2
0
dθ
=
8
3
∫ π/3
π/4
(0 + 1) dθ =
2π
9
77. From Problem 69, we have φ = π/6. Since the figure is in the first octant and z = 2 we also
have θ = 0, θ = π/2, and ρ cosφ = 2.
V =
∫ π/2
0
∫ π/6
0
∫ 2 secφ
0
ρ2 sinφdρ dφ dθ =
∫ π/2
0
∫ π/6
0
1
3
ρ3 sinφ
∣∣∣∣2 secφ
0
dφ dθ
=
8
3
∫ π/2
0
∫ π/6
0
sec3 φ sinφdφ dθ =
8
3
∫ π/2
0
∫ π/6
0
sec2 φ tanφdφ dθ
=
8
3
∫ π/2
0
1
2
tan2 φ
∣∣∣∣π/6
0
dθ =
4
3
∫ π/2
0
1
3
dθ =
2
9
π
78. The equations are ρ = 1 and φ = π/4. We find the volume above the xy-plane and double.
V = 2
∫ 2π
0
∫ π/2
π/4
∫ 1
0
ρ2 sinφdρ dφ dθ = 2
∫ 2π
0
∫ π/2
π/4
1
3
ρ3 sinφ
∣∣∣∣1
0
dφ dθ
=
2
3
∫ 2π
0
∫ π/2
π/4
sinφdφ dθ =
2
3
∫ 2π
0
− cosφ
∣∣∣π/2
π/4
dθ =
2
3
∫ 2π
0
√
2
2
dθ =
2π
√
2
3
79. By symmetry, x¯ = y¯ = 0. The equations are φ = π/4 and ρ = 2 cosφ.
m =
∫ 2π
0
∫ π/4
0
∫ 2 cosφ
0
ρ2 sinφdρ dφ dθ =
∫ 2π
0
∫ π/4
0
1
3
ρ3 sinφ
∣∣∣∣2 cosφ
0
dφ dθ
=
8
3
∫ 2π
0
∫ π/4
0
sinφ cos3 φdφ dθ =
8
3
∫ 2π
0
−1
4
cos4 φ
∣∣∣∣π/4
0
dθ
= −2
3
∫ 2π
0
(
1
4
− 1
)
dθ = π
Mxy =
∫ 2π
0
∫ π/4
0
∫ 2 cosφ
0
zρ2 sinφdρ dφ dθ =
∫ 2π
0
∫ π/4
0
∫ 2 cosφ
0
ρ3 sinφ cosφdρ dφ dθ
=
∫ 2π
0
∫ π/4
0
1
4
ρ4 sinφ cosφ
∣∣∣∣2 cosφ
0
dφ dθ = 4
∫ 2π
0
∫ π/4
0
cos5 φ sinφdφ dθ
= 4
∫ 2π
0
−1
6
cos6 φ
∣∣∣∣π/4
0
dθ = −2
3
∫ 2π
0
(
1
8
− 1
)
dθ =
7
6
π
z¯ = Mxy/m =
7π/6
π
= 7/6. The centroid is (0, 0, 7/6).
529
9.15 Triple Integrals
80. We are given density = kz. By symmetry, x¯ = y¯ = 0. The equation is ρ = 1.
m =
∫ 2π
0
∫ π/2
0
∫ 1
0
kzρ2 sinφdρ dφ dθ = k
∫ 2π
0
∫ π/2
0
∫ 1
0
ρ3 sinφ cosφdρ dφ dθ
= k
∫ 2π
0
∫ π/2
0
1
4
ρ4 sinφ cosφ
∣∣∣∣1
0
dφ dθ =
1
4
k
∫ 2π
0
∫ π/2
0
sinφ cosφdφ dθ
=
1
4
k
∫ 2π
0
1
2
sin2 φ
∣∣∣∣π/2
0
dθ =
1
8
k
∫ 2π
0
dθ =
kπ
4
Mxy =
∫ 2π
0
∫ π/2
0
∫ 1
0
kz2ρ2 sinφdρ dφ dθ = k
∫ 2π
0
∫ π/2
0
∫ 1
0
ρ4 cos2 φ sinφdρ dφ dθ
= k
∫ 2π
0
∫ π/2
0
1
5
ρ5 cos2 φ sinφ
∣∣∣∣1
0
dφ dθ =
1
5
k
∫ 2π
0
∫ π/2
0
cos2 φ sinφdφ dθ
=
1
5
k
∫ 2π
0
−1
3
cos3 φ
∣∣∣∣π/2
0
dθ = − 1
15
k
∫ 2π
0
(0− 1) dθ = 2
15
kπ
z¯ = Mxy/m =
2kπ/15
kπ/4
= 8/15. The center of mass is (0, 0, 8/15).
81. We are given density = k/ρ.
m =
∫ 2π
0
∫ cos−1 4/5
0
∫ 5
4 secφ
k
ρ
ρ2 sinφdρ dφ dθ = k
∫ 2π
0
∫ cos−1 4/5
0
1
2
ρ2 sinφ
∣∣∣∣5
4 secφ
dφ dθ
=
1
2
k
∫ 2π
0
∫ cos−1 4/5
0
(25 sinφ− 16 tanφ secφ) dφ dθ
=
1
2
k
∫ 2π
0
(−25 cosφ− 16 secφ)
∣∣∣cos−1 4/5
0
dθ =
1
2
k
∫ 2π
0
[−25(4/5)− 16(5/4)− (−25− 16)] dθ
=
1
2
k
∫ 2π
0
dθ = kπ
82. We are given density = kρ.
Iz =
∫ 2π
0
∫ π
0
∫ a
0
(x2 + y2)(kρ)ρ2 sinφdρ dφ dθ
= k
∫ 2π
0
∫ π
0
∫ a
0
(ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ)ρ3 sinφdρ dφ dθ
= k
∫ 2π
0
∫ π
0
∫ a
0
ρ5 sin3 φdρ dφ dθ = k
∫ 2π
0
∫ π
0
1
6
ρ6 sin3 φ
∣∣∣∣a
0
dφ dθ =
1
6
ka6
∫ 2π
0
∫ π
0
sin3 φdφ dθ
=
1
6
ka3
∫ 2π
0
∫ π
0
(1− cos2 φ) sinφdφ dθ = 1
6
ka3
∫ 2π
0
(
− cosφ + 1
3
cos3 φ
) ∣∣∣∣π
0
dθ =
1
6
ka3
∫ 2π
0
4
3
dθ =
4π
9
ka6
530
9.16 Divergence Theorem
EXERCISES 9.16
Divergence Theorem
1. div F = y + z + x
The Triple Integral:∫∫∫
D
div F dV =
∫ 1
0
∫ 1
0
∫ 1
0
(x + y + z) dx dy dz
=
∫ 1
0
∫ 1
0
(
1
2
x2 + xy + xz
) ∣∣∣∣1
0
dy dz
=
∫ 1
0
∫ 1
0
(
1
2
+ y + z
)
dy dz =
∫ 1
0
(
1
2
y +
1
2
y2 + yz
) ∣∣∣∣1
0
dz
=
∫ 1
0
(1 + z) dz =
1
2
(1 + z2)
∣∣∣1
0
= 2− 1
2
=
3
2
The Surface Integral: Let the surfaces be S1 in z = 0, S2 in z = 1, S3 in y = 0, S4 in y = 1, S5 in x = 0,
and S6 in x = 1. The unit outward normal vectors are −k, k, −j, j, −i and i, respectively. Then∫∫
S
F · n dS =
∫∫
S1
F · (−k) dS1 +
∫∫
S2
F · k dS2 +
∫∫
S3
F · (−j) dS3 +
∫∫
S4
F · j dS4
+
∫∫
S5
F · (−i) dS5 +
∫∫
S6
F · i dS6
=
∫∫
S1
(−xz) dS1 +
∫∫
S2
xz dS2 +
∫∫
S3
(−yz) dS3 +
∫∫
S4
yz dS4
+
∫∫
S5
(−xy) dS5 +
∫∫
S6
xy dS6
=
∫∫
S2
x dS2 +
∫∫
S4
z dS4 +
∫∫
S6
y dS6
=
∫ 1
0
∫ 1
0
x dx dy +
∫ 1
0
∫ 1
0
z dz dx +
∫ 1
0
∫ 1
0
y dy dz
=
∫ 1
0
1
2
dy +
∫ 1
0
1
2
dx +
∫ 1
0
1
2
dz =
3
2
.
2. div F = 6y + 4z
The Triple Integral:∫∫∫
D
div F dV =
∫ 1
0
∫ 1−x
0
∫ 1−x−y
0
(6y + 4z) dz dy dx
=
∫ 1
0
∫ 1−x
0
(6yz + 2z2)
∣∣∣1−x−y
0
dy dx
=
∫ 1
0
∫ 1−x
0
(−4y2 + 2y − 2xy + 2x2 − 4x + 2) dy dx
531
9.16 Divergence Theorem
=
∫ 1
0
(
−4
3
y3 + y2 − xy2 + 2x2y − 4xy + 2y
) ∣∣∣∣1−x
0
dx
=
∫ 1
0
(
−5
3
x3 + 5x2 − 5x + 5
3
)
dx =
(
− 5
12
x4 +
5
3
x3 − 5
2
x2 +
5
3
x
) ∣∣∣∣1
0
=
5
12
The Surface Integral: Let the surfaces be S1 in the plane x + y + z = 1, S2 in z = 0, S3 in x = 0, and S4 in
y = 0. The unit outward normal vectors are n1 = (i+ j+k)/
√
3 , n2 = −k, n3 = −i, and n4 = −j, respectively.
Now on S1, dS1 =
√
3 dA1, on S3, x = 0, and on S4, y = 0, so∫∫
SF · n dS =
∫∫
S1
F · n1 dS1 +
∫∫
S2
F · (−k) dS2 +
∫∫
S3
F · (−j) dS3 +
∫∫
S4
F · (−i) dS4
=
∫ 1
0
∫ 1−x
0
(6xy + 4y(1− x− y) + xe−y) dy dx +
∫ 1
0
∫ 1−x
0
(−xe−y) dy dx
+
∫∫
S3
(−6xy) dS3 +
∫∫
S4
(−4yz) dS4
=
∫ 1
0
(
xy2 + 2y2 − 4
3
y3 − xe−y
) ∣∣∣∣1−x
0
dx +
∫ 1
0
xe−y
∣∣∣1−x
0
dx + 0 + 0
=
∫ 1
0
[x(1− x)2 + 2(1− x)2 − 4
3
(1− x)3 − xex−1 + x] dx +
∫ 1
0
(xex−1 − x) dx
=
[
1
2
x2 − 2
3
x3 +
1
4
x4 − 2
3
(1− x)3 + 1
3
(1− x)4
] ∣∣∣∣1
0
=
5
12
.
3. div F = 3x2 + 3y2 + 3z2. Using spherical coordinates,∫∫
S
F · n dS =
∫∫∫
D
3(x2 + y2 + z2) dV =
∫ 2π
0
∫ π
0
∫ a
0
3ρ2ρ2 sinφdρ dφ dθ
=
∫ 2π
0
∫ π
0
3
5
ρ5 sinφ
∣∣∣∣a
0
dφ dθ =
3a5
5
∫ 2π
0
∫ π
0
sinφdφ dθ
=
3a5
5
∫ 2π
0
− cosφ
∣∣∣π
0
dθ =
6a5
5
∫ 2π
0
dθ =
12πa5
5
.
4. div F = 4 + 1 + 4 = 9. Using the formula for the volume of a sphere,∫∫
S
F · n dS =
∫∫∫
D
9 dV = 9
(
4
3
π23
)
= 96π.
5. div F = 2(z − 1). Using cylindrical coordinates,∫∫
S
F · n dS =
∫∫∫
D
2(z − 1)V =
∫ 2π
0
∫ 4
0
∫ 5
1
2(z − 1) dz r dr dθ =
∫ 2π
0
∫ 4
0
(z − 1)2
∣∣∣5
1
r dr dθ
=
∫ 2π
0
∫ 4
0
16r dr dθ =
∫ 2π
0
8r2
∣∣∣4
0
dθ = 128
∫ 2π
0
dθ = 256π.
6. div F = 2x + 2z + 12z2.∫∫
S
F · n dS =
∫∫∫
D
div F dV =
∫ 3
0
∫ 2
0
∫ 1
0
(2x + 2z + 12z2) dx dy dz
=
∫ 3
0
∫ 2
0
(x2 + 2xz + 12xz2)
∣∣∣1
0
dy dz =
∫ 3
0
∫ 2
0
(1 + 2z + 12z2) dy dz
=
∫ 3
0
2(1 + 2z + 12z2) dz = (2z + 2z2 + 8z3)
∣∣∣3
0
= 240
532
9.16 Divergence Theorem
7. div F = 3z2. Using cylindrical coordinates,∫∫
S
F · n dS =
∫∫∫
D
div F dV =
∫ 2π
0
∫ √3
0
∫ √4−r2
0
3z2r dz dr dθ
=
∫ 2π
0
∫ √3
0
rz3
∣∣∣√4−r2
0
dr dθ =
∫ 2π
0
∫ √3
0
r(4− r2)3/2 dr dθ
=
∫ 2π
0
−1
5
(4− r2)5/2
∣∣∣∣
√
3
0
dθ =
∫ 2π
0
−1
5
(1− 32) dθ =
∫ 2π
0
31
5
dθ =
62π
5
.
8. div F = 2x.∫∫
S
F · n dS =
∫∫∫
D
div F dV =
∫ 3
0
∫ 9
x2
∫ 9−y
0
2x dz dy dx
=
∫ 3
0
∫ 9
x2
2x(9− y) dy dx =
∫ 3
0
−x(9− y)2
∣∣∣9
x2
dx =
∫ 3
0
x(9− x)2 dx
=
∫ 3
0
(x3 − 18x2 + 81x) dx =
(
1
4
x4 − 6x3 + 81
2
x2
) ∣∣∣∣3
0
=
891
4
9. div F =
1
x2 + y2 + z2
. Using spherical coordinates,
∫∫
S
F · n dS =
∫∫∫
D
div F dV =
∫ 2π
0
∫ π
0
∫ b
a
1
ρ2
ρ2 sinφdρ dφ dθ
=
∫ 2π
0
∫ π
0
(b− a) sinφdφ dθ = (b− a)
∫ 2π
0
− cosφ
∣∣∣π
0
dθ
= (b− a)
∫ 2π
0
2 dθ = 4π(b− a).
10. Since div F = 0,
∫∫
S
F · n dS =
∫∫∫
D
0 dV = 0.
11. div F = 2z + 10y − 2z = 10y.∫∫
S
F·n dS =
∫∫∫
D
10y dV =
∫ 2
0
∫ 2−x2/2
0
∫ 4−z
z
10y dy dz dx =
∫ 2
0
∫ 2−x2/2
0
5y2
∣∣∣4−z
z
dz dx
=
∫ 2
0
∫ 2−x2/2
0
(80− 40z) dz dx =
∫ 2
0
(80z − 20z2)
∣∣∣2−x2/2
0
dx =
∫ 2
0
(80− 5x4) dx = (80x− x5)
∣∣∣2
0
= 128
12. div F = 30xy.∫∫
S
F · n dS =
∫∫∫
D
30xy dV =
∫ 2
0
∫ 2−x
0
∫ 3
x+y
30xy dz dy dx
=
∫ 2
0
∫ 2−x
0
30xyz
∣∣∣3
x+y
dy dx
=
∫ 2
0
∫ 2−x
0
(90xy − 30x2y − 30xy2) dy dx
=
∫ 2
0
(45xy2 − 15x2y2 − 10xy3)
∣∣∣2−x
0
dx
=
∫ 2
0
(−5x4 + 45x3 − 120x2 + 100x) dx =
(
−x5 + 45
4
x4 − 40x3 + 50x2
) ∣∣∣∣2
0
= 28
533
9.16 Divergence Theorem
13. div F = 6xy2 + 1− 6xy2 = 1. Using cylindrical coordinates,∫∫
S
F · n dS =
∫∫∫
D
dV =
∫ π
0
∫ 2 sin θ
0
∫ 2r sin θ
r2
dz r dr dθ =
∫ π
0
∫ 2 sin θ
0
(2r sin θ − r2)r dr dθ
=
∫ π
0
(
2
3
r3 sin θ − 1
4
r4
) ∣∣∣∣2 sin θ
0
dθ =
∫ π
0
(
16
3
sin4 θ − 4 sin4 θ
)
dθ
=
4
3
∫ π
0
sin4 θ dθ =
4
3
(
3
8
θ − 1
4
sin 2θ +
1
32
sin 4θ
) ∣∣∣∣π
0
=
π
2
14. div F = y2 + x2. Using spherical coordinates, we have x2 + y2 = ρ2 sin2 φ and z = ρ cosφ or ρ = z secφ. Then∫∫
S
F · n dS =
∫∫∫
D
(x2 + y2) dS =
∫ 2π
0
∫ π/4
0
∫ 4 secφ
2 secφ
ρ2 sin2 φρ2 sinφdρ dφ dθ
=
∫ 2π
0
∫ π/4
0
1
5
ρ5 sin3 φ
∣∣∣∣4 secφ
2 secφ
dφ dθ =
∫ 2π
0
∫ π/4
0
992
5
sec5 φ sin3 φdφ dθ
=
∫ 2π
0
∫ π/4
0
992
5
tan3 φ sec2 φdφ dθ =
992
5
∫ 2π
0
1
4
tan4 φ
∣∣∣∣π/4
0
dθ =
992
5
∫ 2π
0
1
4
dθ =
496π
5
.
15. (a) div E = q
[ −2x2 + y2 + z2
(x2 + y2 + z2)5/2
+
x2 − 2y2 + z2
(x2 + y2 + z2)5/2
+
x2 + y2 − 2z2
(x2 + y2 + z2)5/2
]
= 0∫∫
S∪Sa
(E · n) dS =
∫∫∫
D
div E dV =
∫∫∫
D
0 dV = 0
(b) From (a),
∫∫
S
(E · n) dS +
∫∫
Sa
(E · n) dS = 0 and
∫∫
S
(E · n) dS = −
∫∫
Sa
(E · n) dS. On Sa,
|r| = a, n = −(xi + yj + zk)/a = −r/a and E · n = (qr/a3) · (−r/a) = −qa2/a4 = −q/a2. Thus∫∫
S
(E · n) dS = −
∫∫
Sa
(
− q
a2
)
dS =
q
a2
∫∫
Sa
dS =
q
a2
× (area of Sa) = q
a2
(4πa2) = 4πq.
16. (a) By Gauss’ Law
∫∫
(E · n) dS =
∫∫∫
D
4πρ dV , and by the Divergence Theorem∫∫
S
(E · n) dS =
∫∫∫
D
div E dV . Thus
∫∫∫
D
4πρ dV =
∫∫∫
D
div E dV and
∫∫∫
D
(4πρ− div E) dV = 0.
Since this holds for all regions D, 4πρ− div E = 0 and div E = 4πρ.
(b) Since E is irrotational, E = ∇φ and ∇2φ = ∇ · ∇φ = ∇E = div E = 4πρ.
17. Since div a = 0, by the Divergence Theorem∫∫
S
(a · n) dS =
∫∫∫
D
div a dV =
∫∫∫
D
0 dV = 0.
18. By the Divergence Theorem and Problem 30 in Section 9.7,∫∫
S
(curl F · n) dS =
∫∫∫
D
div (curl F) dV =
∫∫∫
D
0 dV = 0.
19. By the Divergence Theorem and Problem 27 in Section 9.7,∫∫
S
(f∇g) · n dS =
∫∫∫
D
div (f∇g) dV =
∫∫∫
D
∇ · (f∇g) dV =
∫∫∫
D
[f(∇ · ∇g) +∇g · ∇f ] dV
=
∫∫∫
D
(f∇2g +∇g · ∇f) dV.
534
9.17 Change of Variables in Multiple Integrals
20. By the Divergence Theorem and Problems 25 and 27 in Section 9.7,∫∫
S
(f∇g − g∇f) · n dS =
∫∫∫
D
div (f∇g − g∇f) dV =
∫∫∫
D
∇ · (f∇g − g∇f) dV
=
∫∫∫
D
[f(∇ · ∇g) +∇g · ∇f − g(∇ · ∇f)−∇f · ∇g] dV
=
∫∫∫
D
(f∇2g − g∇2f) dV.
21. If G(x, y, z) is a vector valued function then we define surface integrals and triple integrals of G component-wise.
In this case, if a is a constant vector it is easily shown that∫∫
S
a ·G dS = a ·
∫∫
S
G dS and
∫∫∫
D
a ·G dV = a ·
∫∫∫
D
G dV.
Now let F = fa. Then ∫∫
S
F · n dS =
∫∫
S
(fa) · n dS =
∫∫
S
a · (fn) dS
and, using Problem 27 in Section 9.7 and the fact that ∇ · a = 0, we have∫∫∫
D
div F dV =
∫∫∫
D
∇ · (fa) dV =
∫∫∫
D
[f(∇ · a) + a · ∇f ] dV =
∫∫∫
D
a · ∇f dV.
By the Divergence Theorem,∫∫
S
a · (fn) dS =
∫∫
S
F · n dS =
∫∫∫
D
div F dV =
∫∫∫
D
a · ∇f dV
and
a ·
(∫∫
S
fn dS
)
= a ·
(∫∫∫
D
∇f dV
)
or a ·
(∫∫
S
fn dS −
∫∫∫
D
∇f dV
)
= 0.
Since a is arbitrary, ∫∫
S
fn dS −
∫∫∫
D
∇f dV = 0 and
∫∫
S
fn dS =
∫∫∫
D
∇f dV.
22. B + W = −
∫∫
S
pn dS + mg = mg −
∫∫∫
D
∇p dV = mg −
∫∫∫
D
ρg dV = mg −
(∫∫∫
D
ρ dV
)
g
= mg −mg = 0
EXERCISES 9.17
Change of Variables in Multiple Integrals
1. T : (0, 0) → (0, 0); (0, 2) → (−2, 8); (4, 0) → (16, 20); (4, 2) → (14, 28)
2. Writing x2 = v − u and y = v + u and solving for u and v, we obtain u = (y − x2)/2 and v = (x2 + y)/2.
Then the images under T−1 are (1, 1) → (0, 1); (1, 3) → (1, 2); (√2 , 2) → (0, 2).
535
1 2
1
2
v=0
u=2
v=u
S
u
v
3 6
-4
-2
2
y=14-3x
y=x/2
y=-2x/3
x
y
-2 2 4
3
6
v=1
u=4
v=5
u=-1
S
u
v
-2 3
3
6
x+2y=1
x+2y=5
x-y=-1x-y=4x
y
-4 -2 2
2
v=0
u=1
v=2
u=0 S
u
v
-4 -2 2
2
y=0
x=1-y
x=y /4-42
2
x
y
2 4
2
4
v=1
u=2
v=2
u=1 S
u
v
2 4
2
4
y=1
y=4
y=x /4
y=x2
2
x
y
9.17 Change of Variables in Multiple Integrals
3. The uv-corner points (0, 0), (2, 0), (2, 2) corre-
spond to xy-points (0, 0), (4, 2), (6,−4).
v = 0: x = 2u, y = u =⇒ y = x/2
u = 2: x = 4 + v, y = 2− 3v =⇒
y = 2− 3(x− 4) = −3x + 14
v = u: x = 3u, y = −2u =⇒ y = −2x/3
4. Solving for x and y we see that the transformation
is x = 2u/3+v/3, y = −u/3+v/3. The uv-corner
points (−1, 1), (4, 1), (4, 5), (−1, 5) correspond
to the xy-points (−1/3, 2/3), (3,−1), (13/3, 1/3),
(1, 2).
v = 1: x + 2y = 1; v = 5: x + 2y = 5;
u = −1: x− y = −1; u = 4: x− y = 4
5. The uv-corner points (0, 0), (1, 0), (1, 2),
(0, 2) correspond to the xy-points (0, 0),
(1, 0), (−3, 2), (−4, 0).
v = 0: x = u2, y = 0 =⇒ y = 0 and 0 ≤ x ≤ 1
u = 1: x = 1− v2, y = v =⇒ x = 1− y2
v = 2: x = u2 − 4, y = 2u =⇒ x = y2/4− 4
u = 0: x = −v2, y = 0 =⇒ y = 0 and −4 ≤ x ≤ 0
6. The uv-corner points (1, 1), (2, 1), (2, 2), (1, 2)
correspond to the xy-points (1, 1), (2, 1), (4, 4), (2, 4).
v = 1: x = u, y = 1 =⇒ y = 1, 1 ≤ x ≤ 2
u = 2: x = 2v, y = v2 =⇒ y = x2/4
v = 2: x = 2u, y = 4 =⇒ y = 4, 2 ≤ x ≤ 4
u = 1: x = v, y = v2 =⇒ y = x2
7.
∂(x, y)
∂(u, v)
=
∣∣∣∣−ve−u e−uveu eu
∣∣∣∣ = −2v
8.
∂(x, y)
∂(u, v)
=
∣∣∣∣ 3e3u sin v e3u cos v3e3u cos v −e3u sin v
∣∣∣∣ = −3e6u
9.
∂(u, v)
∂(x, y)
=
∣∣∣∣−2y/x3 1/x2−y2/x2 2y/x
∣∣∣∣ = −3y2x4 = −3 ( yx2 )2 = −3u2; ∂(x, y)∂(u, v) = 1−3u2 = − 13u2
10.
∂(u, v)
∂(x, y)
=
∣∣∣∣∣∣∣∣
2(y2 − x2)
(x2 + y2)2
−4xy
(x2 + y2)2
4xy
(x2 + y2)2
2(y2 − x2)
(x2 + y2)2
∣∣∣∣∣∣∣∣ =
4
(x2 + y2)2
536
v=0
u=1
v=1
u=0 S
u
v
y=0
y=1-x
x=0
x
y
-6 -3 3 6
-3
3
R1
R2
R3
R4
R
x
y
-3 3
-2
2
S
u
v
3
-2
2
R1
R2
R3
R4
R
x
y
2 4
3
6
S
u
v
2
R1
R2
R3
R4
R
x
y
2
S
u
v
9.17 Change of Variables in Multiple Integrals
From u = 2x/(x2 + y2) and v = −2y(x2 + y2) we obtain u2 + v2 = 4/(x2 + y2). Then x2 + y2 = 4/(u2 + v2) and
∂(x, y)/∂(u, v) = (x2 + y2)2/4 = 4/(u2 + v2)2.
11. (a) The uv-corner points (0, 0), (1, 0), (1, 1), (0, 1) corre-
spond to the xy-points (0, 0), (1, 0), (0, 1), (0, 0).
v = 0: x = u, y = 0 =⇒ y = 0, 0 ≤ x ≤ 1
u = 1: x = 1− v, y = v =⇒ y = 1− x
v = 1: x = 0, y = u =⇒ x = 0, 0 ≤ y ≤ 1
u = 0: x = 0, y = 0
(b) Since the segment u = 0, 0 ≤ v ≤ 1 in the uv-plane maps to the origin in the xy-plane, the transformation
is not one-to-one.
12.
∂(x, y)
∂(u, v)
=
∣∣∣∣ 1− v v−u u
∣∣∣∣ = u. The transformation is 0 when u is 0, for 0 ≤ v ≤ 1.
13. R1: x + y = −1 =⇒ v = −1
R2: x− 2y = 6 =⇒ u = 6
R3: x + y = 3 =⇒ v = 3
R4: x− 2y = −6 =⇒ u = −6
∂(u, v)
∂(x, y)
=
∣∣∣∣ 1 −21 1
∣∣∣∣ = 3 =⇒ ∂(x, y)∂(u, v) = 13∫∫
R
(x + y) dA =
∫∫
S
v
(
1
3
)
dA′ =
1
3
∫ 3
−1
∫ 6
−6
v du dv =
1
3
(12)
∫ 3
−1
v dv = 4
(
1
2
)
v2
∣∣∣∣3
−1
= 16
14. R1: y = −3x + 3 =⇒ v = 3
R2: y = x− π =⇒ u = π
R3: y = −3x + 6 =⇒ v = 6
R4: y = x =⇒ u = 0
∂(u, v)
∂(x, y)
=
∣∣∣∣ 1 −13 1
∣∣∣∣ = 4 =⇒ ∂(x, y)∂(u, v) = 14
∫∫
R
cos 12 (x− y)
3x + y
dA =
∫∫
S
cosu/2
v
(
1
4
)
dA′ =
1
4
∫ 6
3
∫ π
0
cosu/2
v
du dv =
1
4
∫ 6
3
2 sinu/2
v
∣∣∣∣π
0
dv
=
1
2
∫ 6
3
dv
v
=
1
2
ln v
∣∣∣∣6
3
=
1
2
ln 2
15. R1: y = x2 =⇒ u = 1
R2: x = y2 =⇒ v = 1
R3: y = 12x
2 =⇒ u = 2
R4: x = 12y
2 =⇒ v = 2
∂(u, v)
∂(x, y)
=
∣∣∣∣∣ 2x/y −x2/y2−y2/x2 2y/x
∣∣∣∣∣ = 3 =⇒ ∂(x, y)∂(u, v) = 13
537
3
3
R1
R2
R3
R4
R
x
y
2
2
S
u
v
a b
c
d
R1
R2
R3
R4 R
u
v
a b
c
d
S
u
v
2 4
-2
2
R1
R2
R3
R4
R
x
y
5 10-2
2
S
u
v
9.17 Change of Variables in Multiple Integrals
∫∫
R
y2
x
dA =
∫∫
S
v
(
1
3
)
dA′ =
1
3
∫ 2
1
∫ 2
1
v du dv =
1
3
∫ 2
1
v dv =
1
6
v2
∣∣∣∣2
1
=
1
2
16. R1: x2 + y2 = 2y =⇒ v = 1
R2: x2 + y2 = 2x =⇒ u = 1
R3: x2 + y2 = 6y =⇒ v = 1/3
R4: x2 + y2 = 4x =⇒ u = 1/2
∂(u, v)
∂(x, y)
=
∣∣∣∣∣∣∣∣
2(y2 − x2)
(x2 + y2)2
−4xy
(x2 + y2)2
−4xy
(x2 + y2)2
2(x2 − y2)
(x2 + y2)2
∣∣∣∣∣∣∣∣ =
−4
(x2 + y2)2
Using u2 + v2 = 4/(x2 + y2) we see that ∂(x, y)/∂(u, v) = −4/(u2 + v2)2.
∫∫
R
(x2 + y2)−3dA =
∫∫
S
(
4
u2 + v2
)−3 ∣∣∣∣ −4(u2 + v2)2
∣∣∣∣ dA′ = 116
∫ 1
1/3
∫ 1
1/2
(u2 + v2) du dv =
115
5184
17. R1: 2xy = c =⇒ v = c
R2: x2 − y2 = b =⇒ u = b
R3: 2xy = d =⇒ v = d
R4: x2 − y2 = a =⇒ u = a
∂(u, v)
∂(x, y)
=
∣∣∣∣ 2x −2y2y 2x
∣∣∣∣ = 4(x2 + y2)
=⇒ ∂(x, y)
∂(u, v)
=
1
4(x2 + y2)
∫∫
R
(x2 + y2) dA =
∫∫
S
(x2 + y2)
1
4(x2 + y2)
dA′ =
1
4
∫ d
c
∫ b
a
du dv =
1
4
(b− a)(d− c)
18. R1: xy = −2 =⇒ v = −2
R2: x2 − y2 = 9 =⇒ u = 9
R3: xy = 2 =⇒ v = 2
R4: x2 − y2 = 1 =⇒ u = 1
∂(u, v)
∂(x, y)
=
∣∣∣∣ 2x −2yy x
∣∣∣∣ = 2(x2 + y2)
=⇒ ∂(x, y)
∂(u, v)
=
1
2(x2 + y2)∫∫
R
(x2 + y2) sinxy dA =
∫∫
S
(x2 + y2) sin v
(
1
2(x2 + y2)
)
dA′ =
1
2
∫ 2
−2
∫ 9
1
sin v du dv =
1
2
∫ 2
−2
8 sin v dv = 0
538
1
2
R1
R2
R3 R
x
y
1
2
S
u
v
-4 -2 2
3
R1
R2
R3
R
x
y
2
2
S
u
v
2 4
2
4
R1 R2
R3R4
R
x
y
2 4
2
4
S
u
v
9.17 Change of Variables in Multiple Integrals
19. R1: y = x2 =⇒ v + u = v − u =⇒ u = 0
R2 : y = 4− x2 =⇒ v + u = 4− (v − u)
=⇒ v + u = 4− v + u =⇒ v = 2
R3: x = 1 =⇒ v − u = 1 =⇒ v = 1 + u
∂(x, y)
∂(u, v)
=
∣∣∣∣∣∣
− 1
2
√
v − u
1
2
√
v − u
1 1
∣∣∣∣∣∣ = − 1√v − u
∫∫
R
x
y + x2
dA =
∫∫
S
√
v − u
2v
∣∣∣∣− 1√v − u
∣∣∣∣ dA′ = 12
∫ 1
0
∫ 2
1+u
1
v
dv du =
1
2
∫ 1
0
[ln 2− ln(1 + u)] du
=
1
2
ln 2− 1
2
[(1 + u) ln(1 + u)− (1 + u)]
∣∣∣1
0
=
1
2
ln 2− 1
2
[2 ln 2− 2− (0− 1)] = 1
2
− 1
2
ln 2
20. Solving x = 2u − 4v, y = 3u + v for u and v we
obtain u = 114x +
2
7y, v = − 314x + 17y. The xy-
corner points (−4, 1), (0, 0), (2, 3) correspond to
the uv-points (0, 1), (0, 0), (1, 0).
∂(x, y)
∂(u, v)
=
∣∣∣∣ 2 −43 1
∣∣∣∣ = 14∫∫
R
y dA =
∫∫
S
(3u + v)(14) dA′ = 14
∫ 1
0
∫ 1−u
0
(3u + v) dv du = 14
∫ 1
0
(
3uv +
1
2
v2
) ∣∣∣∣1−u
0
du
= 14
∫ 1
0
(
1
2
+ 2u− 5
2
u2
)
du =
(
7u + 14u2 − 35
3
u3
) ∣∣∣∣1
0
=
28
3
21. R1: y = 1/x =⇒ u = 1
R2: y = x =⇒ v = 1
R3: y = 4/x =⇒ u = 4
R4: y = 4x =⇒ v = 4
∂(u, v)
∂(x, y)
=
∣∣∣∣ y x−y/x2 1/x
∣∣∣∣ = 2yx =⇒ ∂(x, y)∂(u, v) = x2y
8
∫∫
R
y4 dA =
∫∫
S
u2v2
(
1
2v
)
du dv =
1
2
∫ 4
1
u2v du dv =
1
2
∫ 4
1
1
3
u3v
∣∣∣∣4
1
dv =
1
6
∫ 4
1
63v dv =
21
4
v2
∣∣∣∣4
1
=
315
4
22. Under the transformation u = y+z, v = −y+z, w = x−y the parallelepiped D is mapped to the parallelepiped
E: 1 ≤ u ≤ 3, −1 ≤ v ≤ 1, 0 ≤ w ≤ 3.
∂(u, v, w)
∂(x, y, z)
=
∣∣∣∣∣∣∣
0 1 1
0 −1 1
1 −1 0
∣∣∣∣∣∣∣ = 2 =⇒
∂(x, y, z)
∂(u, v, w)
=
1
2
539
-1 1
1
R1
R2R3 R
x
y
-1 1
1
S
u
v
-2
2
R1
R2
R3
R
x
y
2
2
S
u
v
4
4
R1
R2
R3
R4
R
x
y
2 4
4
8
S
u
v
9.17 Change of Variables in Multiple Integrals
∫∫
D
(4z + 2x− 2y) dV =
∫∫
E
(2u + 2v + 2w)
1
2
dV ′ =
1
2
∫ 3
0
∫ 1
−1
∫ 3
1
(2u + 2v + 2w) du dv dw
=
1
2
∫ 3
0
∫ 1
−1
(u2 + 2uv + 2uw)
∣∣∣3
1
dv dw =
1
2
∫ 3
0
∫ 1−1
(8 + 4v + 4w) dv dw
=
∫ 3
0
(4v + v2 + 2vw)
∣∣∣1
−1
dw =
∫ 3
0
(8 + 4w) dw = (8w + 2w2)
∣∣∣3
0
= 42
23. We let u = y − x and v = y + x.
R1: y = 0 =⇒ u = −x, v = x =⇒ v = −u
R2: x + y = 1 =⇒ v = 1
R3: x = 0 =⇒ u = y, v = y =⇒ v = u
∂(u, v)
∂(x, y)
=
∣∣∣∣−1 11 1
∣∣∣∣ = −2 =⇒ ∂(x, y)∂(u, v) = −12∫∫
R
e(y−x)/(y+x)dA =
∫∫
S
eu/v
∣∣∣∣−12
∣∣∣∣ dA′ = 12
∫ 1
0
∫ v
−v
eu/v du dv =
1
2
∫ 1
0
veu/v
∣∣∣v
−v
dv
=
1
2
∫ 1
0
v(e− e−1) dv = 1
2
(e− e−1)1
2
v2
∣∣∣∣1
0
=
1
4
(e− e−1)
24. We let u = y − x and v = y.
R1: y = 0 =⇒ v = 0, u = −x =⇒ v = 0, 0 ≤ u ≤ 2
R2: x = 0 =⇒ v = u
R3: y = x + 2 =⇒ u = 2
∂(u, v)
∂(x, y)
=
∣∣∣∣−1 10 1
∣∣∣∣ = −1 =⇒ ∂(x, y)∂(u, v) = −1
∫∫
R
ey
2−2xy+x2dA =
∫∫
S
eu
2 | − 1| dA′ =
∫ 2
0
∫ u
0
eu
2
dv du =
∫ 2
0
ueu
2
du =
1
2
eu
2
∣∣∣∣2
0
=
1
2
(e4 − 1)
25. Noting that R2, R3, and R4 have equations y+2x = 8, y−2x = 0,
and y + 2x = 2, we let u = y/x and v = y + 2x.
R1: y = 0 =⇒ u = 0, v = 2x =⇒ u = 0, 2 ≤ v ≤ 8
R2: y + 2x = 8 =⇒ v = 8
R3: y − 2x = 0 =⇒ u = 2
R4: y + 2x = 2 =⇒ v = 2
∂(u, v)
∂(x, y)
=
∣∣∣∣−y/x2 1/x2 1
∣∣∣∣ = −y + 2xx2 =⇒ ∂(x, y)∂(u, v) = − x2y + 2x∫∫
R
(6x + 3y) dA = 3
∫∫
S
(y + 2x)
∣∣∣∣− x2y + 2x
∣∣∣∣ dA′ = 3∫∫
S
x2 dA′
From y = ux we see that v = ux + 2x and x = v/(u + 2). Then
3
∫∫
S
x2 dA′ = 3
∫ 2
0
∫ 8
2
v2(u + 2)2 dv du =
∫ 2
0
v3
(u + 2)2
∣∣∣∣8
2
du = 504
∫ 2
0
du
(u + 2)2
= − 504
u + 2
∣∣∣∣2
0
= 126.
540
4
-2
2
R1 R2
R3R4
R
x
y
4
-2
2
S
u
v
9.17 Change of Variables in Multiple Integrals
26. We let u = x + y and v = x− y.
R1: x + y = 1 =⇒ u = 1
R2: x− y = 1 =⇒ v = 1
R3: x + y = 3 =⇒ u = 3
R4: x− y = −1 =⇒ v = −1
∂(u, v)
∂(x, y)
=
∣∣∣∣ 1 11 −1
∣∣∣∣ = −2 =⇒ ∂(x, y)∂(u, v) = −12∫∫
R
(x + y)4ex−y dA =
∫∫
S
u4ev
∣∣∣∣−12
∣∣∣∣ dA′ = 12
∫ 3
1
∫ 1
−1
u4ev dv du =
1
2
∫ 3
1
u4ev
∣∣∣1
−1
du
=
e− e−1
2
∫ 3
1
u4 du =
e− e−1
10
u5
∣∣∣∣3
1
=
242(e− e−1)
10
=
121
5
(e− e−1)
27. Let u = xy and v = xy1.4. Then xy1.4 = c =⇒ v = c; xy = b =⇒ u = b; xy1.4 = d =⇒ v = d;
xy = a =⇒ u = a.
∂(u, v)
∂(x, y)
=
∣∣∣∣ y xy1.4 1.4xy0.4
∣∣∣∣ = 0.4xy1.4 = 0.4v =⇒ ∂(x, y)∂(u, v) = 52v∫∫
R
dA =
∫∫
S
5
2v
dA′ =
∫ d
c
∫ b
a
5
2v
du dv =
5
2
(b− a)
∫ d
c
dv
v
=
5
2
(b− a)(ln d− ln c)
28. The image of the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 under the transformation u = x/a, v = y/b, w = z/c, is
the unit sphere u2 + v2 + w2 = 1. The volume of this sphere is 43π. Now
∂(x, y, z)
∂(u, v, w)
=
∣∣∣∣∣∣∣
a 0 0
0 b 0
0 0 c
∣∣∣∣∣∣∣ = abc
and ∫∫∫
D
dV =
∫∫∫
E
abc dV ′ = abc
∫∫∫
E
dV ′ = abc
(
4
3
π
)
=
4
3
πabc.
29. The image of the ellipse is the unit circle x2 + y2 = 1. From
∂(x, y)
∂(u, v)
=
∣∣∣∣ 5 00 3
∣∣∣∣ = 15 we obtain
∫∫
R
(
x2
25
+
y2
9
)
dA =
∫∫
S
(u2 + v2)15 dA′ = 15
∫ 2π
0
∫ 1
0
r2r dr dθ =
15
4
∫ 2π
0
r4
∣∣∣1
0
dθ
=
15
4
∫ 2π
0
dθ =
15π
2
.
30.
∂(x, y, z)
∂(ρ, φ, θ)
=
∣∣∣∣∣∣∣
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0
∣∣∣∣∣∣∣
= cosφ(ρ2 sinφ cosφ cos2 θ + ρ2 sinφ cosφ sin2 θ) + ρ sinφ(ρ sin2 φ cos2 θ + ρ sin2 φ sin2 θ)
= ρ2 sinφ cos2 φ(cos2 θ + sin2 θ) + ρ2 sin3 φ(cos2 θ + sin2 θ) = ρ2 sinφ(cos2 φ + sin2 φ) = ρ2 sinφ
541
9.17 Change of Variables in Multiple Integrals
CHAPTER 9 REVIEW EXERCISES
CHAPTER 9 REVIEW EXERCISES
1. True; |v(t)| = √2
2. True; for all t, y = 4.
3. True
4. False; consider r(t) = t2i. In this case, v(t) = 2ti and a(t) = 2i. Since v · a = 4t, the velocity and acceleration
vectors are not orthogonal for t �= 0.
5. False; ∇f is perpendicular to the level curve f(x, y) = c.
6. False; consider f(x, y) = xy at (0, 0).
7. True; the value is 4/3.
8. True; since 2xy dx− x2 dy is not exact.
9. False;
∫
C
x dx + x2 dy = 0 from (−1, 0) to (1, 0) along the x-axis and along the semicircle y = √1− x2 , but
since x dx + x2 dy is not exact, the integral is not independent of path.
10. True
11. False; unless the first partial derivatives are continuous.
12. True 13. True
14. True; since curl F = 0 when F is a conservative vector field.
15. True 16. True 17. True 18. True
19. F = ∇φ = −x(x2 + y2)−3/2i− y(x2 + y2)−3/2j
20. curl F =
∣∣∣∣∣∣∣
i j k
∂/∂x ∂/∂y ∂/∂z
f(x) g(y) h(z)
∣∣∣∣∣∣∣ = 0
21. v(t) = 6i + j + 2tk; a(t) = 2k. To find when the particle passes through the plane, we solve −6t+ t+ t2 = −4
or t2 − 5t + 4 = 0. This gives t = 1 and t = 4. v(1) = 6i + j + 2k, a(1) = 2k; v(4) = 6i + j + 8k, a(4) = 2k
22. We are given r(0) = i + 2j + 3k.
r(t) =
∫
v(t) dt =
∫
(−10ti + (3t2 − 4t)j + k) dt = −5t2i + (t3 − 2t2)j + tk + c
i + 2j + 3k = r(0) = c
r(t) = (1− 5t2)i + (t3 − 2t2 + 2)j + (t + 3)k
r(2) = −19i + 2j + 5k
23. v(t) =
∫
a(t) dt =
∫
(
√
2 sin ti +
√
2 cos tj) dt = −
√
2 cos ti +
√
2 sin tj + c;
−i + j + k = v(π/4) = −i + j + c, c = k; v(t) = −√2 cos ti +√2 sin tj + k;
542
CHAPTER 9 REVIEW EXERCISES
r(t) = −√2 sin ti−√2 cos tj + tk + b; i + 2j + (π/4)k = r(π/4) = −i− j + (π/4)k + b, b = 2i + 3j;
r(t) = (2−√2 sin t)i + (3−√2 cos t)j + tk; r(3π/4) = i + 4j + (3π/4)k
24. v(t) = ti + t2j− tk; |v| = t√t2 + 2 , t > 0; a(t) = i + 2tj− k; v · a = t + 2t3 + t = 2t + 2t3;
v × a = t2i + t2k, |v × a| = t2√2 ; aT = 2t + 2t
3
t
√
t2 + 2
=
2 + 2t2√
t2 + 2
, aN =
t2
√
2
t
√
t2 + 2
=
√
2 t√
t2 + 2
;
κ =
t2
√
2
t3(t2 + 2)3/2
=
√
2
t(t2 + 2)3/2
25.
26. r′(t) = sinh ti + cosh tj + k, r′(1) = sinh 1i + cosh 1j + k;
|r′(t)| =
√
sinh2 t + cosh2 t + 1 =
√
2 cosh2 t =
√
2 cosh t; |r′(1)| = √2 cosh 1;
T(t) =
1√
2
tanh ti +
1√
2
j +
1√
2
sech tk, T(1) =
1√
2
(tanh 1i + j + sech 1k);
dT
dt
=
1√
2
sech2 ti− 1√
2
sech t tanh tk;
d
dt
T(1) =
1√
2
sech2 1i− 1√
2
sech 1 tanh 1k,∣∣∣∣ ddtT(1)
∣∣∣∣ = sech 1√2 √sech2 1 + tanh2 1 = 1√2 sech 1; N(1) = sech 1i− tanh 1k;
B(1) = T(1)×N(1) = − 1√
2
tanh 1i +
1√
2
(tanh2 1 + sech2 1)j− 1√
2
sech 1k
=
1√
2
(− tanh 1i + j− sech 1k)
κ =
∣∣∣∣ ddtT(1)
∣∣∣∣ /|r′(1)| = (sech 1)/√2√2 cosh 1 = 12 sech2 1
27. ∇f = (2xy − y2)i + (x2 − 2xy)j; u = 2√
40
i +
6√
40
j =
1√
10
(i + 3j);
Duf =
1√
10
(2xy − y2 + 3x2 − 6xy) = 1√
10
(3x2 − 4xy − y2)
28. ∇F = 2x
x2 + y2 + z2
i +
2y
x2 + y2 + z2
j +
2z
x2 + y2 + z2
k; u = −2
3
i +
1
3
j +
2
3
k; DuF =
−4x + 2y + 4z
3(x2 + y2 + z2)
29. fx = 2xy4, fy = 4x2y3.
(a) u = i, Du(1, 1) = fx(1, 1) = 2
(b) u = (i− j)/√2 , Du(1, 1) = (2− 4)/
√
2 = −2/√2
(c) u = j, Du(1, 1) = fy(1, 1) = 4
30. (a)
dw
dt
=
∂w
∂x
dx
dt
+
∂w
∂y
dy
dt
+
∂w
∂z
dz
dt
=
x√
x2 + y2 + z2
6 cos 2t +
y√
x2 + y2 + z2
(−8 sin 2t) + z√
x2 + y2 + z2
15t2
=
(6x cos 2t− 8y sin 2t + 15zt2)√
x2 + y2 + z2
543
CHAPTER 9 REVIEW EXERCISES
(b)
∂w
∂t
=
∂w
∂x
∂x
∂t
+
∂w
∂y
∂y
∂t
+
∂w
∂z
∂z
∂t
=
x√
x2 + y2 + z2
6
r
cos
2t
r
+
y√
x2 + y2 + z2
(
8r
t2
sin
2r
t
)
+
z√
x2 + y2 + z2
15t2r3
=
(
6x
r
cos
2t
r
+
8yr
t2
sin
2r
t
+ 15zt2r3
)
√
x2 + y2 + z2
31. F (x, y, z) = sinxy − z; ∇F = y cosxyi + x cosxyj− k; ∇F (1/2, 2π/3,
√
3/2) =
π
3
i +
1
4
j− k. The equation of
the tangent plane is
π
3
(
x− 1
2
)
+
1
4
(
y − 2π
3
)
−
(
z −
√
3
2
)
= 0
or 4πx + 3y − 12z = 4π − 6√3 .
32. We want to find a normal to the surface that

Outros materiais