Buscar

Apostila Projeto Mecânico

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 59 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 1 -
deformação
transitória
deformação
permanente
RESISTÊNCIA DOS MATERIAIS
Na Estática os corpos são considerados indeformáveis tal
hipótese é necessária afim de se conseguir um resultado
completamente independente das propriedades da matéria de que
são constituídos.
A Resistência dos Materiais, que também faz parte da
Mecânica, entretanto, considera os corpos tais como são na
realidade, isto é, deformáveis e suscetíveis de sofrerem rupturas
quando sob a ação de forças.
Assim, a Resistência dos Materiais se ocupa em estudar:
1. As mudanças ocasionadas no corpo pela ação de forças externas
e internas;
2. As propriedades (dimensões, forma, material) que o fazem capaz
de resistir à ação dessas forças.
SOLICITAÇÕES
Um sistema de forças pode ser aplicado num corpo de
diferentes maneiras, originando portanto diversos tipos de
solicitações, tais como tração, compressão, cisalhamento, flexão e
torção.
Quando cada tipo se apresenta isoladamente, diz-se que a
solicitação é simples . No caso de dois ou mais tipos agirem
contemporaneamente a solicitação é composta.
Tração - solicitação que tende a alongar a peça no sentido da reta de
ação da resultante do sistema de forças.
F F
Reta de ação da força
Compressão - solicitação que tende a encurtar a peça no sentido da
reta de ação da resultante do sistema de forças.
F F
Reta de ação da força
Cisalhamento - solicitação que tende a deslocar paralelamente em
sentido oposto, duas secções contíguas de uma peça.
F
F
Reta de ação da força
Flexão - solicitação que tende a modificar o eixo geométrico de uma
peça.
F
Torção - solicitação que tende a girar as secções de uma peça, uma
em relação às outras.
F
M t
DEFORMAÇÃO
A experiência ensina que a ação de qualquer força sobre
um corpo altera a sua forma, isto é, provoca uma deformação.
Com o aumento da intensidade da força, há um aumento
da deformação.
No ensaio de tração, um fio solicitado pôr uma força de
pequena intensidade sofrerá uma deformação transitória e
retomará seu comprimento inicial quando a força for removida.
Aumentando a intensidade da força, o fio sofrerá uma
deformação permanente.
O ponto que separa os dois tipos de deformações é o limite
de elasticidade
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 2 -
l
l o
Dl
P
s
A(área)
ALONGAMENTO UNITÁRIO
Alongamento unitário ( e ) é a relação entre o alongamento
total ( Dl ) e o comprimento inicial ( l ).
e =
D
o
l
l [ cm/cm]
Pode ser expresso também em porcentagem(%).
TENSÃO
Tensão (s)é a relação entre a força normal (P) e a área (S).
s =
P
A [ Kgf/cm
2 ou Kgf/mm2 ]
s é a força aplicada em
cada quadradinho de área unitária
DIAGRAMA TENSÃO-DEFORMAÇÃO
Como já foi visto, o ensaio de tração consiste em aplicar
num corpo de prova uma força axial com o objetivo de deformá-lo até
que se produza sua ruptura.
O ensaio é feito com auxílio do extensômetro,
esquematizado ao lado.
F
F
Corpo de Prova
Aumentando-se a tensão, a deformação também vai
aumentando e os resultados da experiência podem ser mostrados
por um gráfico, marcando em abcissas as deformações
(alongamento unitário) e em ordenadas as tensões.
e
s
1 32
sp
s r
s e
P
E
R
(1). zona elástica deformação transitória
(2). zona plástica deformação permanente
(3). zona de ruptura
O gráfico representa o caso típico do aço doce (baixo teor
de carbono).
Até o ponto P, o gráfico é uma reta. Neste trecho é válida
a lei de Hook, que diz:
As deformações são diretamente proporcionais às
tensões que as produzem.
O ponto P é o limite de elasticidade e a tensão
correspondente é a tensão de proporcionalidade ( sp ).
O trecho PE ainda se verifica a elasticidade mas já não é
pura, pois, tem-se um misto de deformações elásticas e deformações
permanentes.
De fato, cessando as solicitações, o corpo de prova não
readquire completamente o formato primitivo, mas tenderá a este,
permanecendo parcialmente deformado.
Depois do ponto E a tensão sofre oscilações desordenadas
enquanto o material vai se deformando com grande fluidez. Este
fenômeno é chamado de escoamento e a tensão correspondente
tensão de escoamento ( se ).
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 3 -
Convém frisar que o escoamento é característico nos aços
doces e outros materiais. Ele marca o início das grandes
deformações permanentes.
Continuando o ensaio, nota-se que a curva toma um
aspecto definido até atingir o ponto R, onde se verifica a ruptura do
corpo. Este ponto é o limite de ruptura e a tensão atingida é a
tensão de ruptura (sr).
Todos os materiais apresentam, com variantes mais ou
menos acentuadas, o mesmo comportamento, e o diagrama terá
sempre aspecto semelhante, apesar de alguns trechos se
confundirem para alguns materiais e se evidenciarem para outros.
No aço duro, por exemplo, não se verifica o escoamento
enquanto o chumbo e o estanho são caracterizados por isto.
DIMENSIONAMENTO
No dimensionamento dos elementos de máquinas
admitem-se apenas deformações elásticas. Os cálculos podem ser:
de verificação ou de dimensionamento propriamente dito.
Verificação
No primeiro caso escolhem-se as dimensões e depois
verifica-se se a tensão de trabalho não ultrapassa a tensão
admissível.
s = £ st
P
A
onde ( s ) é tensão admissível [kgf/mm2 ou kgf/cm2]
Dimensionamento
No segundo caso, o processo é inverso: as dimensões são
calculadas admitindo-se a tensão de trabalho, com critério e
segurança.
A ³
s
P
(A) é a área da seção transversal da peça [cm2 ,mm2]
Vejamos agora um exemplo de calculo para uma área de
seção circular:
área: A
.d
4
2
=
p
 substituindo temos:
p.
4
³
s
2d P
 isolando o
diâmetro temos:
d
4.P
³
p s.
onde (d) é o diâmetro da peça [mm]
A tensão admissível fixada deve ser bem inferior à tensão
de ruptura. Seu valor é determinado dividindo-se a tensão de
ruptura por um coeficiente (n) chamado fator de segurança.
s =
s r
n
A escolha de n requer muito bom senso por parte do
projetista, todavia, numa primeira aproximação, pode-se adotar o
seguinte:
n = x . y . z . w
valores para x ( fator do tipo de material):
x = 2,0 para materiais comum
x = 1,5 para aços de qualidade e aço liga
valores para y (fator do tipo de solicitação)
y = 1,0 para carga constante
y = 2,0 para carga intermitente
y = 3,0 para carga alternada
valores para z (fator do tipo de carga)
z = 1,0 para carga gradual
z = 1,5 para choque leves
z = 2,0 para choques bruscos
valores para w (fator que prevê possíveis falhas de fabricação)
w = 1,0 a 1,5 para aços
w = 1,5 a 2,0 para ferro fundido FoFo
As tensões admissíveis segundo Bach para os aços ao
carbono podem ser obtidas na tabela em anexo no final dessa
apostila.
Nesta tabela foram considerados três tipos de
carregamento:
a) carregamento estático:
a carga aplicada se mantém constante (vigas das estruturas).
Na tabela: -Carregamento I
b) carregamento intermitente:
a carga é aplicada periodicamente (dentes de engrenagens).Na tabela: -Carregamento II
d
tempo
s
tempo
s
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 4 -
tempo
s
A A
l o
l o
DlDl P P
c) carregamento alternado:
a carga aplicada varia continuamente de sentido (eixos à flexão). -
Carregamento III
Observação:
Os aços distinguem-se em laminados e trefilados: estes
últimos apresentam características técnicas superiores aos
laminados.
As barras, as chapas e os perfis laminados são obtidos a
quente nos laminadores, enquanto os trefilados são obtidos a frio por
meio de fieiras.
Podemos trabalhar com as tensões de ruptura (sr) e
escoamento (se) com os seguintes fatores de segurança:
s =
s r
n s =
s e
n
*Para tensão de ruptura: n = 6,0 a 12,0
*Para tensão de escoamento: n = 2,0 a 6,0
TRAÇÃO E COMPRESSÃO
No ensaio de tração foi visto que a deformação
(alongamento unitário e ) é proporcional à tensão s (lei de Hooke).
Isto é válido para a compressão.
s = eE. \ E =
s
e
[ Kg/cm2 ]
O coeficiente de proporcionalidade ( e ) é chamado módulo
de elasticidade normal; depende do material e o seu valor é
determinado experimentalmente.
Este coeficiente de é tirado através da tabela da página.
Substituindo nesta fórmula o alongamento unitário (e) e a
tensão (s), tem-se:
D = ol
lP
A.E
.
E representa a carga capaz de alongar o fio de secção de
área unitária ao dobro de seu comprimento inicial.
DIMENSIONAMENTO DE PARAFUSOS
É dado o esquema de um parafuso submetido a uma carga
de tração e aperto conforme figura abaixo:
A
A
(P+Po)
d
do
CORTE “AA”
t
d do
pa
Nomenclatura:
P = Carga Axial (tração) [ kgf ]
Po = Carga de Aperto [ kgf ] Utilizar Þ Po = 0,15 . P
d = diâmetro externo da rosca [ mm ]
do = diâmetro interno da rosca [ mm ]
p = passo da rosca [ mm ]
 t = profundidade do filete [ mm ]
a = 55o rosca WHITWORTH
a = 60O rosca MÉTRICA
Da fórmula da tensão temos: s
+
³
P P
A
o equação (I)
onde: s = tensão de tração admissível [ kgf/mm² ]
A = área do diâmetro do núcleo [ mm² ] Þ A ³
s
P
 equação ( II )
Substituindo a equação ( II ) na equação ( I ) e isolando o
diâmetro ( do ) temos:
d
4.(P + P
o
o³
)
.p s
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 5 -
Pôr esta formula determinamos o diâmetro (do) do núcleo do
parafuso
* Para determinar o diâmetro da rosca ( d ) consultamos a
TABELA DE ROSCA em anexo através do diâmetro interno (do ) ou
pela formula:
d = do + 2 . t
onde t = profundidade da rosca [ mm ]
Ver Tabela de rosca em Anexo.
EXERCÍCIOS DE APLICAÇÃO
1-) Calcular o alongamento total de um fio de cobre de comprimento
50 cm e diâmetro 2 mm quando é aplicado uma carga de 20 kgf.
l o
Dl
P
2-) Calcular o encurtamento dos pés da mesa em figura.
Material aço meio carbono e comprimento do tubo 80cm.
12,0 tf
4 
cm
5 cm
Seção dos pés
3-) Um fio de comprimento 30 cm e diâmetro 1mm foi submetido ao
ensaio de tração e com uma carga de 40kgf obteve um alongamento
total de 0,08cm. Calcular o alongamento unitário, alongamento
percentual, tensão e módulo de elasticidade.
30
 c
m 1 mm
P
P
4-) Calcular a força necessárias para alongar 1 mm um fio de cobre
de comprimento 2m e diâmetro 4mm
5-) Calcular a tensão de trabalho no elo da corrente em figura.
200 kgf 200 kgf
5mm
6-) Calcular a força necessária capaz de romper um arame de aço
ABNT 1030 trefilado e diâmetro 2 mm.
7-) Calcular o diâmetro de um arame de aço ABNT 1030 trefilado
destinado a manter suspenso um peso de 200 kgf.
Carregamento I
P
d
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 6 -
8-) Escolher a corrente destinada a resistir uma carga de 1,0 tf.
Material: Aço ABNT 1040 laminado e fator de segurança n = 3,5
1,0 tf 1,0 tf
d
3,5.d
1,5.d
9-) A peça em figura foi submetida ao ensaio de compressão e
sofreu ruptura com 32 tf. Calcular a tesão de ruptura a compressão
(scr) .
32 tf
4 cm 2 cm
10-) No dispositivo em figura a bucha é de aço ABNT 1010 laminado
e o parafuso de aço ABNT 1030 laminado. Determine o diâmetro
externo da bucha e parafuso para suportar uma carga de aperto de
2,0 tf. ( carregamento I) Usar para d1 = d + 1 mm
P
d1
D
d
11-) Dimensionar a seção a x b e o diâmetro do parafuso do
esticador na figura abaixo para uma carga estática máxima de 1,5 tf.
Material do Corpo: aço ABNT 1030 laminado n = 4,0
Material do parafuso: aço ABNT 1020 laminado
ba
d
12-) Verificar a seção do montantes da prensa em figura, para uma
carga máxima de 3,2 tf. Material: Ferro Fundido
P
4
2
2
[cm]
13-) Dimensionar os parafusos do suporte como mostra a figura
abaixo. Material do parafuso: aço ABNT 1020 laminado
Carregamento I
8 cm
60
 c
m
3000 kgf2 parafusos
14-) Dimensionar os diâmetros dos tirantes para o suporte em
figura.
Dados: Carregamento I
material aço ABNT 1020 laminado
Carga P = 500 kgf
3m
4m
2 tirantes
Q
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 7 -
CISALHAMENTO
No cisalhamento como já foi visto, a peça é solicitada pôr
duas forças proximas, paralelas e de sentidos contrários.
F
F
Reta de ação da força
A
A seção (A) resistente à força cortante (F) é paralela à linha
de ação desta força e quando o limite de resistência é ultrapassado
há um deslizamento desta área.
A força que age em cada quadradinho de área unitária da
superfície (A) é a tensão de cisalhamento (tc). Logo:
t c
F
A
= [kgf/cm2] ou [kgf/mm2]
No dimensionamento temos:
t c
F
A
³ ou A t
³
F
c
Na verificação temos: t tc c
F
A
= £
O dimensionamento de peças submetidas ao cisalhamento
é feito o tomando como base os valores da tensão admissível da
seguinte maneira:
t sc t0 ,7 5= .
EXERCÍCIOS:
1-) Calcular a força de corte P da chapa em figura.
Dados: espessura s = 4mm
 largura L = 5 cm
 Material aço ABNT 1020
s
L P
2-) Calcular a força de corte P da chapa em figura. Dados: Aço
1030 laminado
esp. 2mm
100
R. 20
20
3-) Verificar a tensão de cisalhamento no elo da corrente em figura.
Dados: Material Aço ABNT 1020
 Laminado
300 kgf 300 kgf
 5mmf
4-) Dimensionar a articulação esquematizada na figura abaixo.
Material aço ABNT 1040 laminado n = 4,5
e1
e2
d
R
600kgf 600kgf
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 8 -
6-) Calcular o diâmetro do rebite em figura e as medidas a x b.
Material: chapa de aço ABNT 1010 carregamento I
 rebite de aço ABNT 1010
b
a
d
200kgf
200 kgf
cisalhamento
tração
2 mm
Resolução
carregamento I t c
26,5mm= d
4.P
. c
³
p t
d
4.200
.6,5
6,3mm= =
p
adotando d= 7,0 mm
Seção b (solicitada a cisalhamento)
b
2mm
Þ 2 áreas cisalhadas P
200
2
100kgf= =
área Þ A =s . b
tensão de cisalhamento t c
25 mm=
5
100
2.b
= isolando b temos b
100
2.5
10mm= =
A
t
³
P
c
Seção a (solicitada a tração)
a
d2mm Área
P= 200kgf
Área tracionada A = s.(a - d)
tensão admissível s t
28 mm= A
s
³
P
c
8
200
2.(a 7)
=
-
a - 7
200
2 . 8
= \ a =19,5 mm
8-) No dispositivo de segurança em figura. o arame de aço ABNT
1040 deverá quebrar-se com uma força tangencial de 50 kgf.
Calcular o diâmetro do arame.
Dado: n = 4,5
Eixo
d
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 9 -
MOMENTO TORÇOR
Denomina-se momento torçor (Mt) de uma manivela ao
produto da força (F) pelo raio (R).
F
M t
R
+ -
Convenção: Mt será positivo se a manivela girar no sentido anti-
horário e negativo se a manivela girar no sentido horário.
O momento torçor pode ser ser obtido também pela
seguinte fórmula:
M 71620.
N
nt
= [ kgf.cm]
 N= potência do motor [CV] (cavalo vapor)
 n= rotação no eixo [rpm]
MÓDULO DE RESISTÊNCIA A TORÇÃO
O módulo de resistência a torção ( W t) depende
dos vários tipos de seção em que está sendo solicitado para se fazer
um bom dimensionamento de uma determinada peça.
A unidade de ( Wt) é: [ cm3 ]
Vejamos agora alguns tipos de seção:
d h
W
.d
16t
3
=
p
W 0,208.ht
3=
TORÇÃO
Torção é a solicitação que tende a girar uma
seção em relação a outra de uma peça.
A tenção de torção (tt) numa seção (x) qualquer é
dada pela seguinte fórmula:
t t
t
t
M
W
= [ kgf/mm2 ou kgf/cm2 ]
Verificação: É fixada a tensão admissível e comparada com a tesão
de trabalho.
t tt
t
t
t
M
W
= £
Dimensionamento: No dimensionamento de peças à torção,
admitem-se apenas deformações elásticas. A tensão de trabalho é
fixada pelo fator de segurança ou pela tesão admissível.
Exemplo: diâmetro de um eixo
Temos o seguinte
t t
t
t
M
W
³ (1) W
.d
16t
3
=
p
 (2)
substituindo a equação (2) em (1) temos:
t
pt
t
o
3
M
.d
³
16
 isolando do temos:
d
16.M
o
t
t
3³
p t.
Observação: nos eixos chavetados somente o núcleo do diâmetro
(do) é o que vai resistir à torção, e o diâmetro (d) é determinado
através da tabela de chaveta segundo norma ABNT e pela formula
abaixo.
D = do + 2.t1
APLICAÇÃO:
1-) Dimensionar o eixo do motor de 2 CV a 1000 rpm.
Material aço ABNT 1030 laminado carregamento II
d
2-) Dimensionar o terminal da manivela em figura.
Material: aço ABNT 1010 laminado carregamento II
Força no manipulo F= 20kgf
h R= 10 cm
Mt = F.R
d
do
t1
b
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 10 -
MOMENTO FLETOR ( Mf )
A seção ( x ) da barra em figura está solicitada parte à
compressão e parte a tração, isto é, as fibras superiores da barra são
comprimidas e as fibras inferiores são tracionadas.
Denomina-se momento fletor (Mf) da seção ( x ), a soma
algébrica dos momentos, em relação a ( x ), de todas as forças Pi
que precedem ou seguem a seção.
Exemplo: momento fletor na seção ( x ):
Convenção: Mf
Mf = P1.a – R1 . b + P2 . c
Desse modo calcula-se o momento fletor de cada seção do
eixo e com valores obtidos traça-se o diagrama como nos exemplos
que se seguem.
Gráfico de Momento Fletor (Cargas Concentradas)
Mf1 = 0
 Mf2 = 10 . 2 = 20 kgf.cm
 Mf3 = 10 . 5 – 22 . 3 = -16 kgf.cm
 Mf4 = 0
Observações:
1-) Neste exemplo foi considerado as forças que precedem a seção.
Se forem tomadas as forças que seguem as seções, os momentos
terão os mesmos valores, a menos do sinal.
2-) Notar que, no caso em questão (forças concentradas), o
momento fletor varia linearmente ao longo dos trechos
descarregados. Conclui-se daí que, para traçar o diagrama basta
calcular apenas o momentos fletores nas seções em que são
aplicados as forças e unir os valores por meio de retas.
3-) A seção mais solicitada é aquela que o momento fletor é
máximo.
Problemas Propostos:
1-)
 tração
compressão
Linha Neutra
P
P1
R2
c
R1
P1
b
a
x
 +
10 kgf
Mf2
2
R1 = 22 kgf
20 kgf
3
+
R1 = 8 kgf
Mf3
Mf4Mf1
-
2 cm
100
2,5
300
1,5 2,0 m
200 kgf
3,0
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 11 -
2-)
3-)
4-)
MÓDULO DE RESISTÊNCIA A FLEXÃO
O módulo de resistência a flexão ( Wf ) dos vários tipos de
seção são obtidos através de tabelas, e apresentaremos alguns mais
usados.
32
.dW
3
f
p
=
6
b.hW
3
f =
[ cm3 ]
200
2,0
400
2,5 2,0 m
200 kgf
3,0
400
2,0
 m
200 kgf
4,0
200
2,0 m
600
 kgf
4,0
d x
x h
b
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 12 -
Observação - 1: ( Wf ) depende do tipo de seção e da sua posição
relativa, conforme mostra o exemplo abaixo.
3
3
cm2
6
3.8 56===
6
b.hW
3
f
3
3
cm3
6
8.3 6===
6
b.hW
3
f
Observação – 2: quanto maior for o módulo de resistência a flexão,
maior é a resistência da peça flexionada.
FLEXÃO
Já foi visto que a flexão é a solicitação que tende a
modificar o eixo geométrico da peça.
A tensão à flexão fs numa seção (x) qualquer é dada
pela seguinte formula:
f
f
f W
M
=s [ kgf/cm2 ]
Dimensionamento:
No dimensionamento de peças à flexão admitem-se
apenas deformações elásticas. A tensão de trabalho é fixada pelo
fator de segurança ou pela tensão admissível.
ff ss £ f
f
f
f W
M
ss £=
A fórmula da tensão é aplicada nas seções críticas, isto é,
nas seções onde pode haver ruptura do material.
Exemplo: Calculo do diâmetro de um eixo.
Temos o seguinte
f
f
f W
M
³s (1)
32
.dW
3
o
f
p
= (2)
substituindo a equação (2) em (1) temos:
32
Mf
3
od.
f p
s ³ isolando do temos:
3
f
f
o
32.Md
sp.
³
Aplicação:
1-) Projetar um eixo para uma polia chavetada. Dados:
Material: Aço ABNT 1040
2-) Dimensionar a seção da viga I em figura Dados: Aço ABNT
1020
3
P
 8
x
P
 8 3
x
P
x
200 kgf
4,0 5,0 5,0 1,0
cm
d1 d2 d3
1000 kgf
40 cm
d
do
t1
b
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 13 -
FLAMBAGEM
Denomina-se Flambagem a carga axial que faz com que a peça
venha a perder a sua estabilidade, demonstrada pelo seu
encurvamento na direção do eixo longitudinalcomo mostra a figura
ao lado. Ocorre sempre na direção do eixo de menor momento de
inércia transversal.
lo l lf
Pfl
CARGA DE FLAMBAGEM ( Euler )
Através do estudo do Suíço Leonard Euler ( 1707 – 1783 )
determinou-se a fórmula da Carga Flambagem nas peças carregadas
axialmente.
P
.E.J
fl
2
fl
2=
p
l
J = momento de Inércia, seção transversal da peça ( cm4, mm4 )
E = módulo de resistência do material ( Kgf / cm2 ; Kgf / mm2 )
Pfl = carga de flambagem ( Kgf )
l fl = comprimento livre de flambagem ( cm, mm )
COMPRIMENTO LIVRE DE FLAMBAGEM
Em função do tipo de fixação das suas extremidades, a
peça apresenta diferentes comprimentos livres de flambagem
como mostra as figuras abaixo :
Momento de Inércia ( Jx ) de Superfície Plana
É a somatória ( S ) das variações de área da Superfície
plana pelas respectivas distâncias elevada ao quadrado como mostra
a figura :
Momento em relação ao eixo x:
J y . Ax
2= å D [cm4]
Momento em relação ao eixo y
J x . Ay
2= å D [cm2]
Obs. : quanto maior o momento de inércia de uma peça ( seção
transversal ) maior será sua resistência.
Momento de Inércia de algumas figuras :
y
x
b
a
G
y
x
G
d
Retangular Circular
J
b.h
12x
3
= J
h.b
12x
3
=
64
.dJJ
4
yx ==
Circular Vazada
J J
. ( D d )
64x y
4 4
= =
-p
Circular Vazada
y
xx
y
D A
x
D
y
d
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 14 -
Translação de Eixos : Sejam ( x ) e ( y ) eixos centrais de uma
figura e ( x1 ) e ( y1 ) eixos respectivamente paralelas a ( x ) e ( y ).
As distâncias entre esses eixos são (a) e (b) que podem ser
consideradas como coordenadas de ( G ) . Por definição temos :
J J b .Ax x
2
1
= +
J J a .Ay y
2
1
= +
Raio de Giração ( i )
O raio de giração de uma superfície plana em relação a um
eixo de referência, constitui-se em uma distância particular entre a
superfície e o eixo, na qual o produto entre a referida distância
elevada ao quadrado e a área total da superfície, determina o
momento de inércia da superfície em relação ao eixo.
y
xiy
Gix
A
J A.ix x
2= J A. iy y
2=
Para determinar o raio de geração da superfície é dado
pela seguinte expressão :
A
Ji xx = i
J
Ay
y=
Unidade: [m, cm, mm]
Raio de Giração de Algumas Figuras
6
3a.i x = i
b. 3
6y
=
i i
d
4y x
= = i i
D d
4y x
2 2
= =
+
Índice de Esbeltez ( l )
É definido através da relação entre o comprimento de
flambagem ( Lfl ) e o raio de giração mínima da seção transversal da
peça.
l =
l fl
mini
l = índice de Esbeltez ( adimensional )
l fl = comprimento de flambagem ( m, cm, mm )
imin = raio de giração mínimo ( m, cm, mm )
Tensão Crítica ( scr )
A tensão Crítica deverá ser menor ou igual a tensão de
proporcionalidade do material. Desta forma, observa-se que o
material deverá estar sempre na região de deformação elástica, pois
o limite de proporcionalidade constitui-se no limite máximo para a
validade da Lei de Hooke.
A tensão crítica é expressa da seguinte forma:
s =
p E
l
2
2cr
.
scr = tensão crítica ( Kgf / cm2; Kgf / mm2 )
E = módulo de elasticidade do material (Kgf / cm2); Kgf / mm2)
l = índice de esbeltez ( adimensional )
Quando a tensão de flambagem ultrapassa a tensão de
proporcionalidade do material, a fórmula de Euler perde a sua
validade. Para estes casos utiliza-se o estudo de Tetmajer.
Para o Aço ABNT NB 14
l £ 105 Þ s l 2fl 1200 0,023.= -
l > 105 Þ s
l 2fl
10363000
=
y
x
b
a
x1
G
y1
o1
A
y
x
b
a
G
x
D
y
d
y
x
G
d
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 15 -
Curva de Flambagem
É a representação gráfica da função que relaciona a tensão
de flambagem com o índice de esbeltz ( l ) para cada material.
No que se segue, ( sp ) é a tensão de proporcionalidade e
( se ) a tensão de escoamento :
s fl
sp
se
colunas
curtas
colunas
intermediarias
colunas
longas
hiperblole de
Euler
l lim l fl l
Flambagem Elástica : ( como já foi visto )
Para s ?£? sp , vale a hipérbole de Euler:
s = p
l
2
2fl
E
. s =
Afl
flP
onde temos a carga de flambagem :
P .A
.E.J
fl fl
fl
2= =s
p 2
l
* logo a validade das fórmulas acima, conhecida como fórmula de
Euler, é :
l ³ l limEuler l p slimEuler p
E
= .
A carga admissível será :
P
P
c
fl= Unidade: [ kgf ]
c = coeficiente de Segurança ; para estruturas metálicas;
c = 1,7 para l?= 0
c = 3,5 para l = llimEuler ou l > llimEuler
* Tabela de Valores de l limEuler para alguns materiais
Material sp
E ( módulo de
elasticidade )
llim
Euler
Aço ABNT
1010/1020
2.050 Kgf/cm2
20,5 Kgf/mm2
2.100.000 Kgf / cm2
21.000 Kgf / mm2
100
Aço ABNT
1040/1050
2.400 Kgf/cm2
24,0 Kgf/mm2
2.100.000 Kgf / cm2
21.000 Kgf / mm2
93
Ferro
Fundido
1540 Kgf / cm2
15,4 Kgf/mm2
1.00.0 Kgf / cm2
10.000 Kgf / mm2
80
Pinho
99 Kgf / cm2
0,99 Kgf/a
100.000 Kgf / cm2
1.000 Kgf / mm2
100
ESTRUTURAS METÁLICAS – MÉTODO ( w )
O método w consiste em :
s w sfl
fl
c
P
A
= £.
s c = tensão de compressão admissível (tabela)
Pfl = carga de flambagem: Pfl = P . c
c = coeficiente de segurança c = 1,75 a 3,5
w = valor extraído do gráfico abaixo pelo índice de esbeltz ( l ):
40 80 120 160 200 250
0
6
2
1
5
4
3
10
9
8
7
11
Indíce de Esbeltez [ l ]
C
oe
fic
ie
nt
e 
de
 F
la
m
ge
m
 [
w
]
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 16 -
h
H
H
y
x
Momento de Inércia de Perfil Composto:
Perfil “U”
y y1y1
x
a aU
Momento de Inércia em [ y ]
J 2. J A. a
U
2y y
2
1
= + +
æ
èç
ö
ø÷
é
ë
ê
ù
û
ú
J A .iy t y
2=
y = eixo que passa entre os perfis
At = área da seção transversal total
Jy = momento de inércia total em [ y ]
Jy1 = momento de inércia de cada seção em [ y1 ]
Perfil Caixão Retangular:
Área: A = H.B - h.b
J
B.H b.h
12x
3 3
=
-
J
H.B h.b
12y
3 3
=
-
Perfil Caixão Quadrado:
J J
H h
12x y
4 4
= =
-
Área: A = H2 - h2
Ver em Anexos as tabelas de vigas perfis “I” e “U “com respectivos
dados.
Exercícios:
1-) Calcular a carga máxima P para a viga representada abaixo:
Padrão Americano Aço 1020 laminado 8”x4” 3a alma
P
10 m
h
b
B
H
y
x
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 17 -
2-) Calcular a carga máxima P para uma viga de perfil cilíndrico de
chapa calandrada de 1”de espessura como mostra a figura abaixo.
Aço ABNT 1020 laminado
P
6 m
400
[ mm ]
3-) Calcular a carga necessária para que a viga abaixo não flambe.
y y1y1
x
a aU
P
3,25 m
Material Aço ABNT 1040 laminado
10” x 25/8” x6,10mm
U = 50 mm
4-) Calcular o comprimento mínimo para a viga em flambagem.
Considerar valida a formula de Euler.
Aço 1050 laminado carregamento II 2
C 12,5kgf/mm=s
45
0
350
400
50
0
y
x
P 25,7tf=
l
[ mm ]
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 18 -
Tabela de Características Mecânicas dos Aços
AÇOS
1010 1020 1030 1040 1050
CLASSIF.
NORMA
ABNT
lam. Tref. lam. Tref. lam. Tref. lam. Tref. lam. Tref.
sr 33 37 39 43 48 53 53 60 63 70
se 18 31 21 36 26 45 29 50 35 59
Along. % 28 20 25 15 20 12 18 12 15 10
HB[kgf/mm2] 95 105 111 121 137 149 149 170 179 197
Tensão Admissível Segundo Bach [kgf/mm2]
I 8,0 10,0 10,0 14,0 13,0 15,5 15,0 21,0 20,0 22,0
II 5,0 6,5 6,5 9,0 8,5 10,0 9,5 13,5 12,5 14,5s t
III 3,.5 4,5 4,5 6.5 6,0 7,5 7,0 9,0 8,0 10,0
I 8,0 10,0 10,0 14,0 13,0 15,5 15,0 21,0 20,0 22,0
II 5,0 6,5 6,5 9,0 8,5 10,0 9,5 13,5 12,5 14,5s c
III 3,.5 4,5 4,5 6.5 6,0 7,5 7,0 9,0 8,0 10,0
I 8,5 11,0 11,0 15,0 14,5 17,0 16,5 23,0 22,0 24,0
II 5,5 7,0 7,0 10,0 9,5 11,0 10,5 15,0 14,0 16,0s f
III 4,0 5,0 5,0 7,0 6,5 8,0 7,5 10,5 9,5 11,51
I 5,0 6,5 6,5 8,5 8,0 10,0 9,5 12,5 11,5 13,5
II 3,0 4,0 4,0 5,5 5,0 6,5 6,0 8,0 7,0 9,0t t
III 2,0 3,0 3,0 4,0 3,5 5,0 4,5 6,0 5,0 7,0
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 19 -
s t = tensão admissível de TRAÇÃO s c = tensão admissível de COMPRESSÃO
s f = tensão admissível de FLEXÃO t t = tensão admissível de TORÇÃO
Tabela de Módulo de Elasticidade Longitudinal
TIPO DE MOD. ELASTICIDADE sr [kgf/cm2] se [kgf/cm2]
MATERIAL [kgf/cm2] str=sfr scr ste=sfe scr
Aço Fundido 2.000.000 5040 5040 2736 2736
Aço p/ Estrutura 2.000.000 4320 4320 2520 2520
Aço Doce 2.200.000 4680 5760 3240 4320
Aço meio Carbono 2.000.000 5760 7200 4320 5760
Aço duro 2.000.000 8640 11520 7200 10080
Alumínio fundido 700.000 1080 864 468 396
Alumínio laminado 700.000 1872 ----- 936 -----
Cobre em fios 1.200.000 ----- ----- ----- -----
Cobre laminado 1.200.000 2520 2304 720 -----
Concreto 144.000 ----- ----- ----- -----
Duralumínio 750.000 5400 ----- 3400 ----
Ferro fundido 800.000 1296 5760 432 1440
Ferro Forjado 2.000.000 3600 3600 1944 1944
Propriedade Mecânica - Aço Carbono
SAE sr [kgf/mm2] se [kgf/mm2]
laminado 39 21
1020
trefilado 43 36
laminado 48 26
1030
trefilado 53 45
laminado 53 29
1040
trefilado 60 50
laminado 63 35
1050
trefilado 70 59
1070 laminado 70 39
1095 laminado 91 50
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 20 -
Tabela de Roscas
TABELA DE ROSCAS
ROSCA MÉTRICA(M)
perfil triangular ISO
NB - 97
ROSCA WHITHWORTH
NORMAL
(W)
ROSCA WHITWORTH GÁS
Para canos(RC)
NB 202 - ABNT
d
diam.
do
núcleo
P
passo
d
diam.
d
mm
do
núcleo
No de
fios/1”
d
diam.
d
mm
do
núcleo
No de
fios/1”
4 3,14 0,7 1/8” 3,17 2,36 40 1/8” 9,73 8,57 28
6 4,77 1 5/32” 3,96 2,95 32 1 /4” 13,15 11,44 19
8 6,46 1,25 3/16” 4,76 3,4 24 3/8” 16,63 14,95 19
10 8,16 1,5 7/32” 5,55 4,2 20 1 /2” 20,95 18,63 14
12 9,83 1,75 1 /4” 6,35 4,72 20 5/8” 22,91 20,58 14
14 11,54 2 5/16” 7,93 6,13 18 3 /4” 26,44 24,11 14
16 13,54 2 3/8” 9,52 7,49 16 7/8” 30,2 27,87 14
18 14,99 2,5 1 /2” 12,7 9,99 12 1” 33,25 30,29 11
20 16,93 2,5 9/16” 14,28 11,57 12 1 1/4” 41,91 38,95 11
22 18,93 2,5 5/8” 15,87 12,91 11 1 1/2” 47,8 44,84 11
24 20,32 3 11/16” 17,46 14,5 11 1 3/4” 53,74 50,79 11
30 25,71 3,5 3 /4” 19,05 16,79 10 2” 59,61 56,65 11
36 31,09 4 13/16” 20,63 17,38 10 2 1/4” 65,71 62,75 11
42 36,48 4,5 7/8” 22,22 18,61 9 2 1/2” 75,18 72,23 11
48 41,87 5 15/16” 23,81 20,19 9 2 3/4” 81,53 78,58 11
56 49,25 5,5 1” 25,4 21,33 8 3” 87,88 84,93 11
60 53,25 5,5 1 1/8” 28,57 23,92 7 3 1/4” 93,98 91,02 11
64 56,64 6 1 1/4” 31,75 27,1 7 3 1/2” 100,33 97,37 11
do d
p
a
a = 60o Rosca Métrica
a = 55o Rosca Whithworth
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 21 -
Anexos de tabelas de Vigas
a
c
h
b
d
Y
Y
X X
TAMANHO
NOMINAL
Furos
pol. mm
Larg
da
aba
(b)
mm
Esp
da
alma
(d)
mm
Área
cm2
Peso
Kg/m
c
cm
*
a
mm
**
Æ
pol
Jx
cm4
Jy
cm4
Wx
cm3
Wy
cm3
rx
cm
ry
cm
3 x
1
1/2
76,2 x
38,1
35,8
38,0
40,5
4,32
6,55
9,04
7,78
9,48
11,40
6,11
7,44
8,93
1,11
1,11
1,16
22
22
22
1/2
1/2
1/2
68,9
77,2
86,3
8,2
10,3
12,7
18,1
20,3
22,7
3,32
3,82
4,39
2,98
2,85
2,75
1,03
1,04
1,06
4 x
1
5/8
101,6
x
41,3
40,1
41,8
43,7
4,57
6,27
8,13
10,1
11,9
13,7
7,95
8,30
10,80
1,16
1,15
1,17
25
25
25
1/2
1/2
1/2
159,5
174,4
190,6
13,1
15,5
18,0
31,4
34,3
37,5
4,61
5,10
5,61
3,97
3,84
3,73
1,14
1,14
1,15
6 x 2
152,4
x
50,8
48,8
51,7
54,8
57,9
5,08
7,98
11,10
14,20
15,5
19,9
24,7
29,4
12,2
15,6
19,4
23,1
1,30
1,27
1,31
1,38
29
29
35
35
5/8
5/8
5/8
5/8
546
632
724
815
28,8
36,0
43,9
52,4
71,7
82,9
95,0
107,0
8,16
9,24
10,50
11,90
5,94
5,63
5,42
5,27
1,36
1,34
1,33
1,33
8 x
2
1/4
203,2
x
57,2
57,4
59,5
61,8
64,2
66,5
5,59
7,70
10,0
12,4
14,7
21,8
26,1
30,8
35,6
40,3
17,1
20,5
24,2
27,9
31,6
1,45
1,41
1,40
1,44
1,49
35
35
38
38
38
3/4
3/4
3/4
3/4
3/4
1.356
1.503
1.667
1.830
1.990
54,9
63,6
72,9
82,5
92,6
133,4
147,9
164,0
180,1
196,2
12,8
14,0
15,3
16,6
17,9
7,89
7,60
7,35
7,17
7,02
1,59
1,56
1,54
1,52
1,52
10 x
2
5/8
254,0
x
66,7
66,0
69,6
73,3
77,0
80,8
6,10
9,63
13,40
17,10
20,80
29,0
37,9
47,4
56,9
66,4
22,7
29,8
37,2
44,7
52,1
1,61
1,54
1,57
1,65
1,76
38
38
44
44
44
3/4
3/4
3/4
3/4
3/4
2.800
3.290
3.800
4.310
4.820
95,1
117,0
139,7
164,2
191,7
221,0
259,0
299,0
339,0
379,0
19,0
21,6
24,3
27,1
30,4
9,84
9,81
8,95
8,70
8,52
1,81
1,76
1,72
1,70
1,70
12 x
3
304,8
x
76,2
74,7
77,4
80,5
83,6
86,7
7,11
9,83
13,00
16,10
19,20
39,1
47,4
56,9
66,4
75,9
30,7
37,2
44,7
52,1
59,6
1,77
1,71
1,71
1,76
1,83
44
44
44
51
51
7/8
7/8
7/8
7/8
7/8
5.370
6.010
6.750
7.880
8.210
161,1
186,1
214,0
242,0
273,0
352,0
394,0
443,0
491,0
539
28,3
30,9
33,7
36,7
39,8
11,70
11,30
10,90
10,60
10,40
2,03
1,98
1,94
1,91
1,90
15 x
3
3/8
381,0
x
85,7
86,4
86,9
89,4
91,9
94,4
96,9
10,2
10,7
13,2
15,7
18,2
20,7
64,2
66,4
75,8
85,3
94,8
104,3
50,4
52,1
59,5
67,0
74,4
81,9
2,00
1,99
1,98
1,99
2,03
2,21
51
51
51
57
57
57
1
1
1
1
1
1
13.100
13.360
14.510
15.650
16.800
17.950
338,0
347,0
387,0
421,0
460,0
498,0
688,0
701,0
762,0
822,0
882,0
942,0
51,0
51,8
55,2
58,5
62,0
66,514,30
14,20
13,80
13,50
13,30
13,10
2,30
2,29
2,25
2,22
2,20
2,18
Tabela I - Vigas U. Padrão Americano
* Gabarito usual na mesa
** Diâmetro máximo de rebite na mesa
Tecnologia de Projetos II 2o Ciclo de Mecânica
__________________________________________________________________________________________
- 22 -
Tabela II - Vigas I. Padrão Americano
a
h
d
b
x x
y
y
TAMANHO
NOMINAL
Larg
da
Esp
da
Furos
pol. mm
mesa
(b)
mm
alma
(d)
mm
Área
cm2
Peso
Kg/m
*
a
mm
**
Æ
pol.
Jx
cm4
Jy
cm4
Wx
cm3
Wy
cm3
rx
cm
ry
cm
3 x
2 3/8
76,2 x
60,3
59,2
61,2
63,7
4,32
6,38
8,86
10,8
12,3
14,2
8,45
9,68
11,20
38
38
38
3/8
3/8
3/8
105,1
112,6
121,8
18,9
21,3
24,4
27,6
29,6
32,0
6,41
6,95
7,67
3,12
3,02
2,93
1,33
1,31
1,31
4 x
 2 5/8
101,6
x
66,7
67,6
69,2
71,0
72,9
4,83
6,43
8,28
10,16
14,5
16,1
18,0
19,9
11,4
12,7
14,1
15,6
38
38
38
38
1/2
1/2
1/2
1/2
252
266
283
299
31,7
34,3
37,6
41,2
49,7
52,4
55,6
58,9
9,4
9,9
10,6
11,3
4,17
4,06
3,96
3,87
1,48
1,46
1,45
1,44
5 x 3
127,0
x
76,2
76,2
79,7
83,4
5,33
8,81
12,55
18,8
23,2
28,0
14,8
18,2
22,0
44
44
44
1/2
1/2
1/2
511
570
634
50,2
58,6
69,1
80,4
89,8
99,8
13,2
14,7
16,6
5,21
4,95
4,76
1,63
1,59
1,57
6 x
3 3/8
152,4
x
85,7
84,6
87,5
90,6
5,84
8,71
11,81
23,6
28,0
32,7
18,5
22,0
25,7
50
50
50
5/8
5/8
5/8
919
1.003
1.095
75,7
84,9
96,2
120,6
131,7
143,7
17,9
19,4
21,2
6,24
5,99
5,79
1,79
1,74
1,72
8 x 4 203,2
x
101,6
101,6
103,6
105,9
108,3
6.66
8,86
11,20
13,51
34,8
38,9
43,7
48,3
27,3
30,5
34,3
38,0
58
58
58
58
3/4
3/4
3/4
3/4
2.400
2.540
2.700
2.860
155
166
179
194
236
250
266
282
30,5
32,0
33,9
35,8
8,30
8,08
7,86
7,69
2,11
2,07
2,03
2,00
10 x
4 5/8
254,0
x
117,5
118,4
121,8
125,6
129,3
7,9
11,4
15,1
18,8
48,1
56,9
66,4
75,9
37,7
44,7
52,1
59,6
70
70
70
70
3/4
3/4
3/4
3/4
5.140
5.610
6.120
6.630
212
282
348
389
405
442
482
522
47,7
51,3
55,4
60,1
10,30
9,93
9,60
9,35
2,42
2,34
2,29
2,26
12 x
5 1/4
304,8
x
133,4
133,4
136,0
139,1
142,2
11,7
14,4
17,4
20,6
77,3
85,4
94,8
104,3
60,6
67,0
74,4
81,9
76
76
76
76
3/4
3/4
3/4
3/4
11.330
11.960
12.690
13.430
563
603
654
709
743
785
833
881
84,5
88,7
94,0
99,7
12,1
11,8
11,6
11,3
2,70
2,66
2,63
2,61
15 x
5 1/2
381,0
x
139,7
139,7
140,8
143,3
145,7
10,4
11,5
14,0
16,5
80,6
84,7
94,2
103,6
63,3
66,5
73,9
81,4
90
90
90
90
3/4
3/4
3/4
3/4
18.580
19.070
20.220
21.370
598
614
653
696
975
1.001
1.061
1.122
85,7
87,3
91,2
95,5
15,2
15,0
14,7
14,4
2,73
2,70
2,63
2,59
18 x 6 457,2
x
152,4
152,4
154,6
156,7
158,8
11,7
13,9
16,0
18,1
103,7
113,8
123,3
132,8
81,4
89,3
96,3
104,3
90
90
90
90
3/4
3/4
3/4
3/4
33.460
35.220
36.680
38.540
867
912
957
1.004
1.464
1.541
1.613
1.686
113,7
117,9
122,1
126,5
18,0
17,6
17,3
17,0
2,89
2,83
2,79
2,75
20 x 7 508,0
x
177,8
177,8
179,1
181,0
182,9
184,7
15,2
16,6
18,4
20,3
22,2
154,4
161,3
170,7
180,3
189,7
121,2
126,6
134,6
141,5
148,9
102
102
102
102
102
1
1
1
1
1
61.640
63.110
65.140
67.190
69.220
1.872
1.922
1.993
2.070
2.140
2.430
2.480
2.560
2.650
2.730
211
215
220
226
232
20,0
19,8
19,5
19,3
19,1
3,48
3,45
3,42
3,39
3,36
* Gabarito usual na mesa
** Diâmetro máximo de rebite na mesa
Tecnologia Projeto II 2o Ciclo de Mecânica
- 23 -
Elementos de Transmissão
Você vai estudar alguns elementos de máquina para transmissão:
correia, correntes, engrenagens, rodas de atrito, roscas, cabos de
aço.
Com esses elementos são montados sistemas de transmissão que
transferem potência e movimento a um outro sistema.
Na figura abaixo, a polia condutora transmite energia e movimento à
polia conduzida.
Os sistemas de transmissão podem, também, variar as rotações
entre dois eixos. Nesse caso, o sistema de rotação é chamado
variador.
As maneiras de variar a rotação de um eixo podem ser:
· por engrenagens;
· por correias;
· por atrito.
Abaixo, temos a ilustração de um variador por engrenagens acionado
por um motor elétrico.
Seja qual for o tipo de variador, sua função está ligada a eixos.
Modos de transmissão
A transmissão de força e movimento pode ser pela forma e por atrito.
A transmissão pela forma é assim chamada porque a forma dos
elementos transmissores é adequada para encaixamento desses
elementos entre si. Essa maneira de transmissão é a mais usada,
principalmente com os elementos chavetados, eixos-árvore
entalhados e eixos-árvore estriados.
elementos chavetados
eixos-árvore entalhados
eixos-árvore estriados
A transmissão por atrito possibilita uma boa centralização das peças
ligadas aos eixos. Entretanto, não possibilita transmissão de grandes
esforços quanto os transmitidos pela forma. Os principais elementos
de transmissão por atrito são os elementos anelares e arruelas
estreladas.
elementos anelares
Esses elementos constituem-se de dois anéis cônicos apertados
entre si e que atuam ao mesmo tempo sobre o eixo e o cubo.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 24 -
arruelas estreladas
As arruelas estreladas possibilitam grande rigor de movimento axial
(dos eixos) e radial (dos raios). As arruelas são apertadas por meio
de parafusos que forçam a arruela contra o eixo e o cubo ao mesmo
tempo.
Descrição de alguns elementos de transmissão
Apresentamos, a seguir, uma breve descrição dos principais elementos
de máquina de transmissão: correias, correntes, engrenagens, rodas de
atrito, roscas, cabos de aço e acoplamento. Os eixos já foram descritos.
Cada um desses elementos será estudado mais profundamente nas
aulas seguintes.
Correias
São elementos de máquina que transmitem movimento de rotação
entre eixos por intermédio das polias. As correias podem ser
contínuas ou com emendas. As polias são cilíndricas, fabricadas em
diversos materiais. Podem ser fixadas aos eixos por meio de
pressão, de chaveta ou de parafuso.
Correntes
São elementos de transmissão, geralmente metálicos, constituídos
de uma série de anéis ou elos. Existem vários tipos de corrente e
cada tipo tem uma aplicação específica.
corrente de elos
corrente de buchas
Engrenagens
Também conhecidas como rodas dentadas, as engrenagens são
elementos de máquina usados na transmissão entre eixos. Existem
vários tipos de engrenagem.
engrenagens cilíndricas de dentes retos
Rodas de atrito
São elementos de máquinas que transmitem movimento por atrito
entre dois eixos paralelos ou que se cruzam.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 25 -
Roscas
São saliências de perfil constante, em forma de hélice (helicoidal). As
roscas se movimentam de modo uniforme, externa ou internamente,ao redor de uma superfície cilíndrica ou cônica. As saliências são
denominadas filetes.
Existem roscas de transporte ou movimento que transformam o
movimento giratório num movimento longitudinal. Essas roscas são
usadas, normalmente, em tornos e prensas, principalmente quando
são freqüentes as montagens e desmontagens.
rosca que transforma movimento giratório
em movimento longitudinal
rosca que transforma movimento
longitudinal em movimento giratório
Cabos de aço
São elementos de máquinas feitos de arame trefilado a frio.
Inicialmente, o arame é enrolado de modo a formar pernas. Depois
as pernas são enroladas em espirais em torno de um elemento
central, chamado núcleo ou alma.
cabos
Acoplamento
É um conjunto mecânico que transmite movimento entre duas peças.
Eixos e árvores
Assim como o homem, as máquinas contam com sua “coluna
vertebral” como um dos principais elementos de sua estrutura física:
eixos e árvores, que podem ter perfis lisos ou compostos, em que
são montadas as engrenagens, polias, rolamentos, volantes,
manípulos etc.
Os eixos e as árvores podem ser fixos ou giratórios e sustentam os
elementos de máquina. No caso dos eixos fixos, os elementos
(engrenagens com buchas, polias sobre rolamentos e volantes) é que
giram.
Quando se trata de eixo-árvore giratório, o eixo se movimenta
juntamente com seus elementos ou independentemente deles como,
por exemplo, eixos de afiadores (esmeris), rodas de trole (trilhos),
eixos de máquinas-ferramenta, eixos sobre mancais.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 26 -
Material de fabricação
Os eixos e árvores são fabricados em aço ou ligas de aço, pois os
materiais metálicos apresentam melhores propriedades mecânicas
do que os outros materiais. Por isso, são mais adequados para a
fabricação de elementos de transmissão:
· eixos com pequena solicitação mecânica são fabricados em aço
ao carbono;
· eixo-árvore de máquinas e automóveis são fabricados em aço-
níquel;
· eixo-árvore para altas rotações ou para bombas e turbinas são
fabricados em aço cromo-níquel;
· eixo para vagões são fabricados em aço-manganês.
Quando os eixos e árvores têm finalidades específicas, podem ser
fabricados em cobre, alumínio, latão. Portanto, o material de
fabricação varia de acordo com a função dos eixos e árvores.
Tipos e características de árvores
Conforme sua funções, uma árvore pode ser de engrenagens (em
que são montados mancais e rolamentos) ou de manivelas, que
transforma movimentos circulares em movimentos retilíneos.
Para suporte de forças radiais, usam-se espigas retas, cônicas, de
colar, de manivela e esférica.
Para suporte de forças axiais, usam-se espigas de anéis ou de
cabeça.
As forças axiais têm direção perpendicular (90º) à seção transversal
do eixo, enquanto as forças radiais têm direção tangente ou paralela
à seção transversal do eixo.
Quanto ao tipo, os eixos podem ser roscados, ranhurados, estriados,
maciços, vazados, flexíveis, cônicos, cujas características estão
descritas a seguir.
Eixos maciços
A maioria dos eixos maciços tem seção transversal circular maciça,
com degraus ou apoios para ajuste das peças montadas sobre eles.
A extremidade do eixo é chanfrada para evitar rebarbas. As arestas são
arredondadas para aliviar a concentração de esforços.
Eixos vazados
Normalmente, as máquinas-ferramenta possuem o eixo-árvore vazado
para facilitar a fixação de peças mais longas para a usinagem.
Temos ainda os eixos vazados empregados nos motores de avião, por
serem mais leves.
Eixos cônicos
Os eixos cônicos devem ser ajustados a um componente que possua
um furo de encaixe cônico. A parte que se ajusta tem um formato
cônico e é firmemente presa por uma porca. Uma chaveta é utilizada
para evitar a rotação relativa.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 27 -
Eixos roscados
Esse tipo de eixo é composto de rebaixos e furos roscados, o que
permite sua utilização como elemento de transmissão e também
como eixo prolongador utilizado na fixação de rebolos para
retificação interna e de ferramentas para usinagem de furos.
Eixos-árvore ranhurados
Esse tipo de eixo apresenta uma série de ranhuras longitudinais em
torno de sua circunferência. Essas ranhuras engrenam-se com os
sulcos correspondentes de peças que serão montadas no eixo. Os
eixos ranhurados são utilizados para transmitir grande força.
Eixos-árvore estriados
Assim como os eixos cônicos, como chavetas, caracterizam-se por
garantir uma boa concentricidade com boa fixação, os eixos-árvore
estriados também são utilizados para evitar rotação relativa em barras
de direção de automóveis, alavancas de máquinas etc.
Eixos-árvore flexíveis
Consistem em uma série de camadas de arame de aço enroladas
alternadamente em sentidos opostos e apertadas fortemente. O
conjunto é protegido por um tubo flexível e a união com o motor é
feita mediante uma braçadeira especial com uma rosca.
São eixos empregados para transmitir movimento a ferramentas
portáteis (roda de afiar), e adequados a forças não muito grandes e
altas velocidades (cabo de velocímetro).
Dimensionamento de Eixo
Dimensionamento a Flexão Simples
Calculo do eixo: 3
f
fM2,17.d
s
=
onde MF = P . a ® momento fletor [ kgf . cm ]
a = distancia da carga em relação a um ponto fixo [ cm ]
P = carga aplicada no eixo [ kgf ]
fs = tensão admissível que depende do material do eixo [ kgf/cm
2 ]
fs = 100 a 300 kgf/cm2 para eixos fixos material DIN St 50.11
fs = 300 a 600 kgf/cm2 para eixos livres material DIN St 50.11
Exemplo de calculo:
1-) Dimensione o eixo indicado na figura abaixo: dados P = 2000 kgf
a1 = 5 cm a2 = 10 cm
Tecnologia Projeto II 2o Ciclo de Mecânica
- 28 -
2-) Dimensione o eixo indicado na figura abaixo: dados P = 2000 kgf
a = 7 cm
Polias e Correias
Introdução
Às vezes, pequenos problemas de uma empresa podem ser
resolvidos com soluções imediatas, principalmente quando os
recursos estão próximos de nós, sem exigir grandes investimentos.
Por exemplo: com a simples troca de alguns componentes de uma
máquina, onde se pretende melhorar o rendimento do sistema de
transmissão, conseguiremos resolver o problema de atrito, desgaste
e perda de energia. Esses componentes - as polias e as correias,
que são o assunto da aula de hoje.
Polias
As polias são peças cilíndricas, movimentadas pela rotação do eixo
do motor e pelas correias.
Uma polia é constituída de uma coroa ou face, na qual se enrola a
correia. A face é ligada a um cubo de roda mediante disco ou braços.
Tipos de polia
Os tipos de polia são determinados pela forma da superfície na qual
a correia se assenta. Elas podem ser planas ou trapezoidais. As
polias planas podem apresentar dois formatos na sua superfície de
contato. Essa superfície pode ser plana ou abaulada.
A polia plana conserva melhor as correias, e a polia com superfície
abaulada guia melhor as correias. As polias apresentam braços a partir
de 200 mm de diâmetro. Abaixo desse valor, a coroa é ligada ao cubo
por meio de discos.
A polia trapezoidal recebe esse nome porque a superfície na qual a
correia se assenta apresenta a forma de trapézio. As polias
trapezoidais devem ser providas de canaletes (ou canais) e são
dimensionadas de acordo com o perfil padrão da correia a ser
utilizada.
Ver anexo das Dimensões da Polia
Tecnologia Projeto II2o Ciclo de Mecânica
- 29 -
Essas dimensões são obtidas a partir de consultas em tabelas.
Vamos ver um exemplo que pode explicar como consultar tabela.
Imaginemos que se vai executar um projeto de fabricação de polia,
cujo diâmetro é de 250 mm, perfil padrão da correia C e ângulo do
canal de 34º. Como determinar as demais dimensões da polia?
Com os dados conhecidos, consultamos a tabela e vamos encontrar
essas dimensões:
Perfil padrão da correia: C Diâmetro externo da polia: 250 mm
Ângulo do canal: 34º T: 15,25 mm
 S: 25,5 mm W: 22,5 mm
 Y: 4 mm Z: 3 mm
 H: 22 mm K: 9,5 mm
 U = R: 1,5 mm X: 8,25 mm
Além das polias para correias planas e trapezoidais, existem as
polias para cabos de aço, para correntes, polias (ou rodas) de atrito,
polias para correias redondas e para correias dentadas. Algumas
vezes, as palavras roda e polia são utilizadas como sinônimos.
No quadro da próxima página, observe, com atenção, alguns
exemplos de polias e, ao lado, a forma como são representadas em
desenho técnico.
Material das polias
Os materiais que se empregam para a construção das polias são
ferro fundido (o mais utilizado), aços, ligas leves e materiais
sintéticos. A superfície da polia não deve apresentar porosidade,
pois, do contrário, a correia irá se desgastar rapidamente.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 30 -
Correias
As correias mais usadas são planas e as trapezoidais. A correia em
“V” ou trapezoidal é inteiriça, fabricada com seção transversal em
forma de trapézio. É feita de borracha revestida de lona e é formada
no seu interior por cordonéis vulcanizados para suportar as forças de
tração.
O emprego da correia trapezoidal ou em “V” é preferível ao da correia
plana porque:
· praticamente não apresenta deslizamento;
· permite o uso de polias bem próximas;
· elimina os ruídos e os choques, típicos das correias emendadas
(planas).
Existem vários perfis padronizados de correias trapezoidais.
Outra correia utilizada é a correia dentada, para casos em que não
se pode ter nenhum deslizamento, como no comando de válvulas do
automóvel.
Material das correias
Os materiais empregados para fabricação das correias são couro;
materiais fibrosos e sintéticos (à base de algodão, pêlo de camelo,
viscose, perlon e náilon) e material combinado (couro e sintéticos).
Transmissão
Na transmissão por polias e correias, a polia que transmite
movimento e força é chamada polia motora ou condutora. A polia
que recebe movimento e força é a polia movida ou conduzida. A
maneira como a correia é colocada determina o sentido de rotação
das polias. Assim, temos:
· sentido direto de rotação - a correia fica reta e as polias têm o
mesmo sentido de rotação;
· sentido de rotação inverso - a correia fica cruzada e o sentido
de rotação das polias inverte-se;
Tecnologia Projeto II 2o Ciclo de Mecânica
- 31 -
· transmissão de rotação entre eixos não paralelos.
Para ajustar as correias nas polias, mantendo tensão correta, utiliza-
se o esticador de correia.
Já vimos que a forma da polia varia em função do tipo de correia.
Relação de transmissão
Na transmissão por polias e correias, para que o funcionamento seja
perfeito, é necessário obedecer alguns limites em relação ao
diâmetro das polias e o número de voltas pela unidade de tempo.
Para estabelecer esses limites precisamos estudar as relações de
transmissão.
Costumamos usar a letra i para representar a relação de
transmissão. Ela é a relação entre o número de voltas das polias (n)
numa unidade de tempo e os seus diâmetros.
A velocidade tangencial (V) é a mesma para as duas polias, e é
calculada pela fórmula:
V = p .· D . n
Como as duas velocidades são iguais, temos:
V1 = V2 ® p · D1 · n1 = p · D2 · n2 \
D1 · n1 = D2 · n2 ou i==
1
2
2
1
D
D
n
n
Portanto:
1
2
2
1
D
D
n
ni ==
Onde: D1 = diâmetro da polia menor
D2 = diâmetro da polia maior
n1 = número de rotações por minuto (rpm) da polia menor
n2 = número de rotações por minuto (rpm) da polia maior
Na transmissão por correia plana, a relação de transmissão (i) não
deve ser maior do que 6 (seis), e na transmissão por correia
trapezoidal esse valor não deve ser maior do que 10 (dez).
Dimensionamento de Polias e
Correias Trapezoidais
Critérios Para Escolha do Tipo e Número de
Correias
As correias em “V” são fabricadas na série industrial com 5 perfis
designados por A, B, C, D e E indicados na pagina 15.
Os critérios para a seleção são os seguintes:
1-) Seleção do perfil: depende do (HP) e (rpm) dos motores pelo
gráfico da página ( )
2-) Polias: determinação pelas tabelas da página ( )
3-) Calculo das distância de Centros provisórias: ver formula
página ( )
4-) Comprimento nominal da correia: tabela da página ( )
5-) Distancia entre centros recalculada: ver formula página ( )
6-) Velocidade linear: ver formula página ( )
7-) Capacidade de HP por correia: depende de ( V ) e ( D1)
8-) Fator de Serviço: depende da máquina condutora e máquina
conduzida, tabela da página ( )
9-) Fator de Correção do Arco de Contato: depende da diferença
( D2 – D1 ) e distancia entre centros ( I ) tabela da página ( )
10-) Quantidade de Correias: ver formula página ( )
A correia é dimensionada pela máxima força de tração. O valor é
determinado experimentalmente e fornecido pelo fabricante sob
forma de potência.
Correias – V Série Industrial
Distância entre Centro
ú
û
ù
ê
ë
é -
++-=
2.L
)D(D)D0,785.(D
2
LI
2
12
12
Arco de Contato
I
)D60.(D180 12? --=a
Tecnologia Projeto II 2o Ciclo de Mecânica
- 32 -
Tensão
contatodearcodefator.correiaporHP
viçofatordeser.motordoHPdeCorreiasQuantidade =
Exercício:
Dimensione a correia para um motor de 10CV que e 1760rpm para
reduzir par 800rpm para transportadores de roscas espiral em motor
de corrente continua.
Transmissão por Correntes
Introdução
Os problemas de uma empresa da área de transporte e cargas fez
com que o encarregado do setor tomasse algumas decisões
referentes à substituição de equipamentos, como componentes do
sistema de movimentação das esteiras transportadoras, e à
manutenção corretiva e preventiva dos órgãos de sustentação e
transferência de carga pesada.
Tomadas as providências e resolvidos os problemas, elaborou-se um
relatório que dava ênfase aos componentes substituídos, que são o
assunto que vamos estudar nesta aula: correntes.
Conceito
As correntes transmitem força e movimento que fazem com que a
rotação do eixo ocorra nos sentidos horário e anti-horário. Para isso,
as engrenagens devem estar num mesmo plano. Os eixos de
sustentação das engrenagens ficam perpendiculares ao plano.
O rendimento da transmissão de força e de movimento vai depender
diretamente da posição das engrenagens e do sentido da rotação.
disposições favoráveis e desfavoráveis para transmissões por
corrente com duas engrenagens. Os eixos das engrenagens são
horizontais.
Transmissão
A transmissão ocorre por meio do acoplamento dos elos da corrente
com os dentes da engrenagem. A junção desses elementos gera
uma pequena oscilação durante o movimento.
Tecnologia Projeto II2o Ciclo de Mecânica
- 33 -
Algumas situações determinam a utilização de dispositivos especiais
para reduzir essa oscilação, aumentando, conseqüentemente, a
velocidade de transmissão.
Veja alguns casos.
· Grandes choques periódicos - devido à velocidade tangencial,
ocorre intensa oscilação que pode ser reduzida por amortecedores
especiais.
·
transmissão de corrente com amortecedor de
oscilações através de guias de borracha
· Grandes distâncias - quando é grande a distância entre os eixos
de transmissão, a corrente fica “com barriga”. Esse problema pode
ser reduzido por meio de apoios ou guias.
guias para diminuir a ?barriga? devido a grande distância
entre eixos
· Grandes folgas - usa-se um dispositivo chamado esticador ou tensor
quando existe uma folga excessiva na corrente. O esticador ajuda a
melhorar o contato das engrenagens com a corrente.
Tipos de corrente
Correntes de rolo simples, dupla e tripla
Fabricadas em aço temperado, as correntes de rolo são constituídas
de pinos, talas externa e interna, bucha remachada na tala interna.
Os rolos ficam sobre as buchas.
corrente simples de rolos
1 - pino;
2 - tala interna e externa;
3 - bucha remachada na tala interna 2;
4 - rolo, com rotação livre sobre a bucha 3.
corrente dupla e tripla de rolos
O fechamento das correntes de rolo pode ser feito por cupilhas ou
travas elásticas, conforme o caso.
Essas correntes são utilizadas em casos em que é necessária a
aplicação de grandes esforços para baixa velocidade como, por
exemplo, na movimentação de rolos para esteiras transportadoras.
Corrente de bucha
Essa corrente não tem rolo. Por isso, os pinos e as buchas são feitos
com diâmetros maiores, o que confere mais resistência a esse tipo
de corrente do que à corrente de rolo. Entretanto, a corrente de bucha
se desgasta mais rapidamente e provoca mais ruído.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 34 -
Corrente de dentes
Nessa corrente, cada pino possui várias talas, colocadas uma ao
lado da outra. Assim, é possível construir correntes bem largas e
resistentes.
Corrente de dente com guia interna e articulações basculantes. Os
dois pinos articulados hachurados estão fixos à torção no grupo de
talas no meio da figura, em cima, e os dois pinos pontilhados fixos à
torção no grupo de talas ao lado, à esquerda.
Corrente de articulação desmontável
Esse tipo de corrente é usado em veículos para trabalho pesado,
como em máquinas agrícolas, com pequena velocidade tangencial.
Seus elos são fundidos na forma de corrente e os pinos são feitos de
aço.
corrente de articulação desmontável
corrente com pino de aço
Correntes Gall e de aço redondo
Utilizadas para o transporte de carga, são próprias para velocidade
baixa e grande capacidade de carga.
Dimensão das correntes
A dimensão das correntes e engrenagens são indicadas nas Normas
DIN. Essas normas especificam a resistência dos materiais de que é
feito cada um dos elementos: talas, eixos, buchas, rolos etc.
Em Resistência dos Materiais iremos dimensionar e verificar estes
tipos de correntes
Dimensionamento
Veremos um exemplo de dimensionamento de corrente de elo
simples indicado na figura abaixo
Fórmulas para dimensionamento a
tração:
t
2.Td
sp.
=
ts = tensão admissível a tração [
kgf/cm2 ]
T = força de tração no elo da corrente
[ kgf ]
p = 3,14 aproximadamente
£ts 637 kgf/cm2 se trabalha
raramente
£ts 510 kgf/cm2 para casos
comuns
£ts 318 kgf/cm2 para uso
continuo
Tecnologia Projeto II 2o Ciclo de Mecânica
- 35 -
Dimensões da corrente
Cabos de Aço
Conceito
Cabos são elementos de transmissão que suportam cargas (força de
tração), deslocando-as nas posições horizontal, inclinada ou vertical.
Os cabos são muito empregados em equipamentos de transporte e
na elevação de cargas, como em elevadores, escavadeiras, pontes
rolantes.
Componentes
O cabo de aço se constitui de alma e perna. A perna se compõe de
vários arames em torno de um arame central, conforme a figura ao
lado.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 36 -
Vejamos ao lado um esquema de cabo de aço.
 cabo de aço
alma perna
arame central arame
Construção de cabos
Um cabo pode ser construído em uma ou mais operações,
dependendo da quantidade de fios e, especificamente, do número de
fios da perna. Por exemplo: um cabo de aço 6 por 19 significa que
uma perna de 6 fios é enrolada com 12 fios em duas operações,
conforme segue:
Quando a perna é construída em várias operações, os passos ficam
diferentes no arame usado em cada camada. Essa diferença causa
atrito durante o uso e, conseqüentemente, desgasta os fios.
Passo é a distância entre dois pontos de um fio em torno da alma do
cabo.
Tipos de distribuição dos fios nas pernas
Existem vários tipos de distribuição de fios nas camadas de cada
perna do cabo. Os principais tipos de distribuição que vamos estudar
são:
· normal;
· seale;
· filler;
· warrington.
Distribuição normal
Os fios dos arames e das pernas são de um só diâmetro.
Distribuição seale
As camadas são alternadas em fios grossos e finos.
Distribuição filler
As pernas contêm fios de diâmetro pequeno que são utilizados como
enchimento dos vãos dos fios grossos.
Distribuição warrington
Os fios das pernas têm diâmetros diferentes numa mesma camada.
Tipos de alma de cabos de aço
As almas de cabos de aço podem ser feitas de vários materiais, de
acordo com a aplicação desejada. Existem, portanto, diversos tipos
de alma. Veremos os mais comuns: alma de fibra, de algodão, de
asbesto, de aço.
Alma de fibra
É o tipo mais utilizado para cargas não muito pesadas. As fibras
podem ser naturais (AF) ou artificiais (AFA).
cabo com alma de fibra AF (fibra natural)
ou AFA (fibra artificial)
As fibras naturais utilizadas normalmente são o sisal ou o rami. Já a
fibra artificial mais usada é o polipropileno (plástico).
Vantagens das fibras artificiais:
· não se deterioram em contato com agentes agressivos;
· são obtidas em maior quantidade;
· não absorvem umidade.
Desvantagens das fibras artificiais:
· são mais caras;
· são utilizadas somente em cabos especiais.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 37 -
Alma de algodão
Tipo de alma que é utilizado em cabos de pequenas dimensões.
Alma de asbesto
Tipo de alma utilizado em cabos especiais, sujeitos a altas
temperaturas.
Alma de aço
A alma de aço pode ser formada por uma perna de cabo (AA) ou por
um cabo de aço independente (AACI), sendo que este último oferece
maior flexibilidade somada à alta resistência à tração.
cabo com alma de aço formada por cabo independente AACI
cabo com alma de aço formada por uma perna AA
Tipos de torção
Os cabos de aço, quando tracionados, apresentam torção das pernas
ao redor da alma. Nas pernas também há torção dos fios ao redor do
fio central. O sentido dessas torções pode variar, obtendo-se as
situações:
Torção regular ou em cruz
Os fios de cada perna são torcidos no sentido oposto ao das pernas
ao redor da alma. As torções podem ser à esquerda ou à direita.
Esse tipo de torção confere mais estabilidade ao cabo.
regular à direita regular à esquerda
Torção lang ou em paralelo
Os fios de cada perna são torcidos no mesmosentido das pernas
que ficam ao redor da alma. As torções podem ser à esquerda ou à
direita. Esse tipo de torção aumenta a resistência ao atrito (abrasão)
e dá mais flexibilidade.
Iang à d ireit a Iang à esquerda
O diâmetro de um cabo de aço corresponde ao diâmetro da
circunferência que o circunscreve.
Preformação dos cabos de aço
Os cabos de aço são fabricados por um processo especial, de modo
que os arames e as pernas possam ser curvados de forma helicoidal,
sem formar tensões internas.
As principais vantagens dos cabos preformados são:
· manuseio mais fácil e mais seguro;
· no caso da quebra de um arame, ele continuará curvado;
· não há necessidade de amarrar as pontas.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 38 -
Fixação do cabo de aço
Os cabos de aço são fixados em sua extremidade por meio de
ganchos ou laços. Os laços são formados pelo trançamento do
próprio cabo. Os ganchos são acrescentados ao cabo.
Dimensionamento
Para dimensionar cabos, calculamos a resistência do material de
fabricação aos esforços a serem suportados por esses cabos. É
necessário verificar o nível de resistência dos materiais à ruptura.
Os tipos, características e resistência à tração dos cabos de aço são
apresentados nos catálogos dos fabricantes.
Vejamos dois exemplos de tabelas de cabos de aço do fabricante
CIMAF.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 39 -
Engrenagens
Engrenagens são rodas com dentes padronizados que servem para
transmitir movimento e força entre dois eixos. Muitas vezes, as
engrenagens são usadas para variar o número de rotações e o
sentido da rotação de um eixo para o outro.
Observe as partes de uma engrenagem:
Existem diferentes tipos de corpos de engrenagem. Para você
conhecer alguns desses tipos, observe as ilustrações.
corpo em forma de disco corpo em forma de disco
com furo central com cubo e furo central
corpo com 4 furos, corpo com braços
cubo e furo central cubo e furo central
Os dentes são um dos elementos mais importantes das engrenagens.
Observe, no detalhe, as partes principais do dente de engrenagem.
Para produzir o movimento de rotação as rodas devem estar
engrenadas. As rodas se engrenam quando os dentes de uma
engrenagem se encaixam nos vãos dos dentes da outra engrenagem.
As engrenagens trabalham em conjunto. As engrenagens de um
mesmo conjunto podem ter tamanhos diferentes.
Quando um par de engrenagens tem rodas de tamanhos diferentes, a
engrenagem maior chama-se coroa e a menor chama-se pinhão.
Os materiais mais usados na fabricação de engrenagens são: aço-
liga fundido, ferro fundido, cromo-níquel, bronze fosforoso, alumínio,
náilon.
Tipos de engrenagem
Existem vários tipos de engrenagem, que são escolhidos de acordo com
sua função. Nesta aula você vai estudar os tipos mais comuns.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 40 -
Engrenagens cilíndricas
Engrenagens cilíndricas têm a forma de cilindro e podem ter dentes
retos ou helicoidais (inclinados). Observe duas engrenagens
cilíndricas com dentes retos:
Veja a representação de uma engrenagem com dentes helicoidais:
Os dentes helicoidais são paralelos entre si, mas oblíquos em
relação ao eixo da engrenagem.
Já os dentes retos são paralelos entre si e paralelos ao eixo da
engrenagem.
As engrenagens cilíndricas servem para transmitir rotação entre
eixos paralelos, como mostram os exemplos.
As engrenagens cilíndricas com dentes helicoidais transmitem
também rotação entre eixos reversos (não paralelos). Elas funcionam
mais suavemente que as engrenagens cilíndricas com dentes retos
e, por isso, o ruído é menor.
Engrenagens cônicas
Engrenagens cônicas são aquelas que têm forma de tronco de cone.
As engrenagens cônicas podem ter dentes retos ou helicoidais.
Nesta aula, você ficará conhecendo apenas as engrenagens cônicas
de dentes retos.
engrenagem cônica de dentes retos
As engrenagens cônicas transmitem rotação entre eixos
concorrentes. Eixos concorrentes são aqueles que vão se encontrar
em um mesmo ponto, quando prolongados.
Observe no desenho como os eixos das duas engrenagens se
encontram no ponto A.
Observe alguns exemplos de emprego de engrenagens cônicas com
dentes retos.
A coroa é a engrenagem com maior número de dentes e que
transmite a força motora.Veja a resposta correta.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 41 -
Engrenagens helicoidais
Nas engrenagens helicoidais, os dentes são oblíquos em relação ao
eixo.
Entre as engrenagens helicoidais, a engrenagem para rosca sem-fim
merece atenção especial. Essa engrenagem é usada quando se
deseja uma redução de velocidade na transmissão do movimento.
Repare que os dentes da engrenagem helicoidal para rosca sem-fim
são côncavos.
Côncavos porque são dentes curvos, ou seja, menos elevados no
meio do que nas bordas.
No engrenamento da rosca sem-fim com a engrenagem helicoidal, o
parafuso sem-fim é o pinhão e a engrenagem é a coroa.
Veja um exemplo do emprego de coroa para rosca sem-fim.
Repare que no engrenamento por coroa e rosca sem-fim, a transmissão
de movimento e força se dá entre eixos não coplanares.
Cremalheira
Cremalheira é uma barra provida de dentes, destinada a engrenar
uma roda dentada. Com esse sistema, pode-se transformar
movimento de rotação em movimento retilíneo e vice-versa.
Conceitos básicos
As engrenagens são representadas, nos desenhos técnicos, de
maneira normalizada. Como regra geral, a engrenagem é
representada como uma peça sólida, sem dentes.
Apenas um elemento da engrenagem, o diâmetro primitivo, é
indicado por meio de uma linha estreita de traços e pontos, como
mostra o desenho.
Na fabricação de engrenagens, o perfil dos dentes é padronizado. Os
dentes são usinados por ferramentas chamadas fresas. A escolha da
fresa depende da altura da cabeça e do número de dentes da
engrenagem. Por isso, não há interesse em representar os dentes
nos desenhos.
Tecnologia Projeto II 2o Ciclo de Mecânica
- 42 -
Representação dos dentes
Quando, excepcionalmente, for necessário representar um ou dois
dentes, eles devem ser desenhados com linha contínua larga.
Entretanto, nas representações em corte, os dentes atingidos no
sentido longitudinal devem ser desenhados. Nesses casos, os dentes
são representados com omissão de corte, isto é, sem hachura.
Observe os dentes representados nas vistas laterais, em meio-corte,
das engrenagens a seguir.
engrenagem cilíndrica de dente reto
engrenagem cônica de dente reto
engrenagem helicoidal côncava
Analise as vistas de cada engrenagem e veja que, na vista frontal e
na parte não representada em corte da vista lateral, a raiz do dente
não aparece representada.
Na parte em corte da vista lateral, a raiz do dente aparece
representada pela linha contínua larga.
Caso seja necessário representar a raiz do dente da engrenagem em
uma vista sem corte, deve-se usar a linha contínua estreita, como no
desenho seguinte.
Quando, na vista lateral da engrenagem, aparecem representadas
três linhas estreitas paralelas, essas linhas indicam a direção de
inclinação dos dentes helicoidais.

Outros materiais