Buscar

Apostila de M001

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 93 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Instituto Nacional de Telecomunicações 
 
Curso de M001 - Matemática 
 
1o Período 
 
 
 
 
2o Semestre de 2017 
 
 
 
 
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 1 
REVISÃO DE MATEMÁTICA E FUNÇÕES 
 
1.1. Frações. Operações com frações. 
 
1.1.1. Definições 
 
Uma fração corresponde a uma parcela de um todo. Por exemplo, se você comeu 3 
fatias de uma pizza de 8 fatias, significa que você comeu 
8
3
 da pizza, em que: 
rdenominado 
numerador 
8
3
→
→
 
 
Duas frações são equivalentes quando representam o mesmo valor. Para encontrar uma 
fração equivalente à fração dada, basta multiplicar ou dividir simultaneamente o 
numerador e o denominador pelo mesmo valor. 
 
Exemplo 01: 
2
1
4
4
8
4
=
÷
÷
. Logo, 
8
4
 e 
2
1
 são frações equivalentes. 
 
Exemplo 02: Simplifique as frações a seguir: 
 
a) 
18
15
 b) 
24
60
 c) 
36
12
 
 
 
1.1.2. Operações com frações 
 
a) Adição e subtração 
 
Ao somar e subtrair duas ou mais frações, basta somar ou subtrair os numeradores 
quando os denominadores são iguais. 
 
Exemplo 03: Calcule: 
 
a) 
7
2
7
3
+ 
 
b) 
16
9
16
3
− 
 
 
Quando os denominadores são diferentes, é necessário encontrar frações equivalentes de 
mesmo denominador para cada termo da soma/subtração, utilizando o mínimo múltiplo 
comum entre os denominadores. 
 
 
 
nribe
Realce
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 2 
Exemplo 04: Calcule: 
 
a) 
7
5
3
2
+ 
 
b) 
6
5
4
1
− 
 
c) 
5
3
9
4
15
2
−+ 
 
d) 
2
7
8
2
6
5
−+ 
 
e) 











+−−−
75
36
45
14
15
2
225
1
 
 
f) 
4
1
10
3
2
1
15
2
8
1
24
19
+





+





−−− 
 
b) Multiplicação 
 
Multiplicamos os numeradores entre si e os denominadores entre si. 
 
Exemplo 05: Calcule: 
 
a) 
7
5
3
2
× 
 
b) 
6
5
2
3
5
4
×× 
 
c) Divisão 
 
Multiplicamos a primeira fração pelo inverso da segunda fração, sabendo que o inverso 
da fração 
B
A
 é a fração 
A
B
 (uma fração cujo numerador é igual a zero não possui 
inversa). 
 
Exemplo 06: Calcule: 
 
a) 
7
5
3
2
÷ 
 
b) 
6
5
4
1
÷ 
 
nribe
Realce
nribe
Realce
-13/6
nribe
Realce
1/25
nribe
Realce
nribe
Realce
1/4
nribe
Realce
nribe
Realce
10/21
nribe
Realce
1
nribe
Realce
14/15
nribe
Realce
3/10
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 3 
c) 
5
1
6
 
 
d) 
4
3
2
 
 
e) 
5
6
12
5
 
 
f) 
8
7
4
3
 
 
g) 
3
7
2
2
4
3
−
−
 
 
h) 
15
2
5
2
4
3
5
37
3
2
÷−






−⋅−
 
 
i) 





−





+÷





−÷


















−−÷











−−− 2
3
2
4
3
3
2
4
3
5
4
3
1
5
4
3
12 
 
 
1.2. Potenciação e radiciação 
 
1.2.1. Definições 
 
Uma potência é a repetição de uma multiplicação, da forma 
 
bbbbba n ××××== L (n termos iguais a b na multiplicação), em que 
 
a é o resultado da potência n-ésima de b . 
b é a base. 
n é o expoente. 
 
Exemplo 07: 
 
a) 
27
8
3
2
3
2
3
2
3
2 3
=××=





 
b) ( ) ( ) ( ) ( ) ( ) 1622222 4 =−×−×−×−=− 
nribe
Realce
30
nribe
Realce
1/6
nribe
Realce
25/72
nribe
Realce
6/7
nribe
Realce
35/76
nribe
Realce
-32/15
nribe
Realce
-17/33
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 4 
Observações: 
 
1) ( ) 44 22 −≠− 
 
2) Se o expoente é 1, o resultado é igual a base. 
 
3) Se a base é igual a zero e o expoente é diferente de zero, o resultado é igual a zero. 
 
4) Se o expoente é zero e a base é diferente de zero, o resultado é igual a 1. 
 
5) Se o expoente é negativo, deve-se inverter a base e modificar o sinal do expoente. 
 
6) Se o expoente for um número fracionário, ele indicará uma radiciação, da forma 
n pn
p
aa =
 . 
 
1.2.2. Propriedades 
 
a) Produto de potências de mesma base 
 
nmnm aaa +=⋅ 
 
b) Razão entre potências de mesma base 
 
nm
n
m
a
a
a
−
= 
 
Da propriedade anterior podemos concluir: 
 
10 === − aa
a
a mm
m
m
 (todo número dividido por ele mesmo é igual a 1). 
 
m
mm
a
a
a
a
−
==
01
 ou m
mm
a
a
a
a
==
−−
01
 
 
c) Potência de potência 
 
nmnm aa ⋅=)( 
Observação: 
nmnm aa ≠)(
 
 
d) Potência de um produto 
 
( ) mmm baba ⋅=⋅ 
 
 
 
 
nribe
Nota
importante
nribe
Nota
importante
nribe
Nota
dar uma olhada
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 5 
e) Potência de um quociente 
 
m
mm
b
a
b
a
=





 0≠b 
 
f) Radiciação 
 
n
m
n m aa =
 
 
Utilizando a propriedade do item c, podemos concluir: 
 
( ) n mpnpmpnmpn m aaaa ==






=
⋅
 
 
g) Raiz de um produto 
 
nnn baba ⋅=⋅ 
 
h) Raiz de um quociente 
 
n
n
n
b
a
b
a
= 0≠b 
 
i) Raiz de uma raiz 
 
nmm n aa ⋅= 
 
Exemplo 08: Calcule o valor das expressões a seguir, utilizando as propriedades de 
potenciação e radiciação: 
 
a) ( )019− 
 
b) 
3
2
1 −






− 
 
c) 43− 
 
d) ( ) ( ) ( )254 222 −⋅−⋅− 
 
e) 432 2793 ⋅⋅ 
 
f) 
34
2
25
1
5
15 





⋅





⋅
−
 
 
nribe
Nota
importante
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
1
nribe
Realce
-8
nribe
Realce
-81
nribe
Realce
-2048
nribe
Realce
3486784401
nribe
Realce
1/1953125
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 6 
g) 222 36 ⋅⋅ 
 
h) 842 36 ⋅⋅ 
 
i) 5
4
2
8
 
 
j) 
6 2
3
81
9
 
 
k) 3 5525 ⋅⋅ 
 
l) ( )[ ] 06453






 
 
m) ( )[ ] ( )[ ]32784344 3223 ⋅÷⋅ 
 
n) 
n
n
n
n
a
a
a












⋅
−
−
2
1
 
 
o) 000002,0400× 
 
p) 
004,0
00072,0
 
 
q) 1
11
2
32
−
−− +
 
 
r) ( ) ( )( )2
33
004,0
02,001,0 −⋅
 
 
s) 
1
11
9
1
94
−
−−







 +
 
 
t) ( ) 1
1
0001,010
10001,01,0
−
−
×
××
 
 
u) 4 0016,0 
 
v) 5 00032,0− 
nribe
Realce
2
nribe
Realce
2^7/3
nribe
Nota
dúvida
nribe
Realce
25sqrt5
nribe
Realce
1
nribe
Realce
3^6
nribe
Realce
nribe
Nota
conferir depois se é 1^n/a
nribe
Realce
8x10^-4
nribe
Realce
1,8 x 10^-3
nribe
Realce
5/3
nribe
Nota
dúvida
nribe
Realce
4/13null
nribe
Realce
1x10^-10
nribe
Realce
1/5
nribe
Realce
-1/5
nribe
Realce
2^7
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 7 
 
w) 81,0− 
x) 
10
11
11
11
1
+
+
+
 
 
y) 3 5 602 
 
z) 64 27144 ⋅ 
 
Exemplo 09: Racionalize as expressões a seguir: 
 
a) 
2
2
 
 
b) 
3 5
3
 
 
c) 
7 23
4
 
 
Exemplo 10: Calcule as expressões a seguir, supondo que nas divisões o divisor é 
sempre diferente de zero:a) )2(3 2xx −⋅− 
 
b) )
3
1(6 223 zxyyzx −⋅− 
 
c) 23 −⋅ xx 
 
d) aa n ⋅ 
 
e) nmnm xx +− ⋅ 3
3
2
3
1
 
 
f) )1()1( 2 +−⋅+ ttt 
 
g) )2(
2
1 23 aa −÷ 
 
h) 25 −− ÷ xx 
 
i) mm uu ÷+1 
nribe
Realce
9/10 i
nribe
Realce
21/32
nribe
Realce
4
nribe
Realce
6
nribe
Realce
sqrt2
nribe
Realce
3raizcúbica de 25 / 5
nribe
Realce
4raizsétima de 243/3
nribe
Realce
6x^3
nribe
Realce
2x^4y^3z^3
nribe
Realce
x
nribe
Realce
a^n+1
nribe
Realce
2/9.X^4m
nribe
Realce
t^3 + 1
nribe
Realce
-1/4 . a
nribe
Realce
x^-3
nribe
Realce
u
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 8 
 
j) )2(6 2334 −−÷ cbba 
 
k) ])(18[)(72 23 baba −⋅−÷−⋅ 
 
l) ])(4[)(12 4322373234 babababa +−÷+ 
 
m) 34 ++ ÷ mm xx 
 
n) )5(3 32 −− −÷− mm aa 
 
o) 4 35 3 xx ÷ 
 
p) nn 2143 84 −+ ⋅ 
 
q) 1212 28127)9( ++− ÷⋅ mmmm 
 
 
1.3. Produtos notáveis 
 
Os casos mais comuns de produtos notáveis são: 
 
a) Produto da soma de dois termos pela sua diferença: 22)()( bababa −=−⋅+ 
b) Quadrado da soma de dois termos: 222 2)( bababa +±=± 
 
De forma geral, temos o produto notável: )(...)()()( babababa n ±⋅⋅±⋅±=± , que 
resulta na multiplicação de n termos )( ba ± . O resultado deste produto notável pode ser 
obtido de duas formas: 
 
1) Utilizando-se o Triângulo de Pascal para determinar seus coeficientes, conforme 
mostrado abaixo. 
M
151010515
146414
13313
1212
111
10
n
 
 
em que n é o valor da potência do termo )( ba ± . O resultado do produto notável será 
uma soma de 1+n termos, em que cada termo possui o produto pk ba × e é 
multiplicado por um coeficiente, obtido do triângulo acima. Para cada termo do 
nribe
Realce
-3a^4c^2
nribe
Realce
-4a+4b
nribe
Realce
-3a^7b - 9a^3b^7 - 9a^5b^4 - 3ab^10
nribe
Realce
x
nribe
Realce
3/5a
nribe
Realce
raiz vigésima de x ^17 / x
nribe
Realce
2^11
nribe
Realce
3^m+2
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 9 
resultado, o valor do expoente k do termo a da soma varia de n (1o termo) a zero (último 
termo). O contrário ocorre com o termo b da soma, cujos expoentes p variam de zero 
(primeiro termo) a n (último termo). Se tivermos o produto nba )( + , os sinais de todos 
os termos serão positivos, ao passo que se tivermos o produto nba )( − , os sinais dos 
termos serão alternados (o primeiro termo terá sinal positivo, o segundo terá sinal 
negativo, o terceiro positivo e assim por diante). 
 
Exemplo 11: 
 
a) 3223302112033 331331)( babbaabababababa +++=+++=+ 
 
Nota-se na expressão acima que para n=3, os coeficientes dos termos são 1,3,3 e 1, e de 
acordo com o triângulo de Pascal apresentado, o expoente de a varia de 3 a 0 nos 
termos e o expoente de b varia de 0 a 3. Como temos uma soma )( ba + , todos os 
termos possuem sinais positivos. 
 
b) 3223302112033 331331)( babbaabababababa −+−=−+−=− 
c) 222011022 2121)( babababababa ++=++=+ 
 
2) Através das expressões: 
 
∑
=
−
⋅⋅





=+
n
k
kknn ba
k
n
ba
0
)( 
 
∑
=
−
⋅⋅





⋅−=−
n
k
kknkn ba
k
n
ba
0
)1()( 
 
Os termos )!(!
!
knk
n
k
n
−⋅
=





 são os coeficientes de cada termo do resultado obtido, que 
correspondem aos coeficientes dados no triângulo de Pascal dado anteriormente. 
 
Exemplo 12: 
 
∑
=
−
⋅⋅





⋅−=−
3
0
33 3)1()(
k
kkk yx
k
yx 
3032121210303
3
3)1(
2
3)1(
1
3)1(
0
3)1()( yxyxyxyxyx ⋅⋅





⋅−+⋅⋅





⋅−+⋅⋅





⋅−+⋅⋅





⋅−=− 
322332233 33
!0!3
!3
!1!2
!3
!2!1
!3
!3!0
!3)( yxyyxxyxyyxxyx −+−=
⋅
−
⋅
+
⋅
−
⋅
=− 
 
Exemplo 13: Desenvolva os seguintes produtos notáveis: 
 
a) 5)( ba − 
b) 32 )( bac + 
nribe
Realce
a^5 -5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 10 
c) )2()2( yxyx −+⋅++ 
d) 2)( cba ++ 
e) 3)( zyx −+ 
f) 
2
3223
2
3
3
2






− baba 
g) 
2
3
4
4
1






−
x
 
h) )()( 2323 LRLR +⋅− 
i) )35()53( amma xyyx +⋅− 
j) 





−⋅





+
y
xa
y
xa
3
2
3
2 22
 
 
 
1.4. Polinômios 
 
1.4.1. Definição 
 
Polinômio é uma soma algébrica de monômios (termos algébricos). 
 
Exemplo 14: 
 
a) 23 2xx − (2 termos – binômio) 
 
b) 22 54 bbxx +− (3 termos – trinômio). 
 
c) 324 amaxy
y
bx
ay −+−+ (mais de 3 termos – polinômio). 
 
 
1.4.2. Grau de um polinômio 
 
É dado pelo termo de grau mais elevado. Para o polinômio a seguir, temos: 
 
2944332
3
2155 abxbayxzyx −+− 
 
a) O polinômio é do 3o grau em relação à x. 
b) O polinômio é do 4o grau em relação à y. 
c) O polinômio é do 1o grau em relação à z. 
d) O polinômio é do 4o grau em relação à a. 
e) O polinômio é do 9o grau em relação à b. 
 
 
 
 
 
nribe
Realce
x^2+4x-y^2+4
nribe
Realce
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc
nribe
Nota
dúvida quanto ao desenvolvimento
nribe
Realce
4/9a^6b^4-2a^5b^5+9/4a^4b^6
nribe
Realce
R^6-L^4
nribe
Realce
3x^2a-5y^2m
nribe
Realce
a^4x^2-4/9y^2
nribe
Realce
1/16+8/4x^3+16/x^6
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 11 
1.4.3. Operações com polinômios 
 
� Adição e Subtração 
 
Basta somar ou subtrair os termos semelhantes (que apresentam variáveis de mesmo 
grau). 
 
Exemplo 15: Sendo 
 
2345
1 42 babaaP +−= 
4532
2 16328 abbbaP ++−= 
234324
3 42816 bababaabP −++−= , calcule: 
 
a) 321 PPPS ++= 
b) 32 PPD −= 
 
Exemplo 16: Indique os polinômios resultantes das situações descritas a seguir. 
 
a) Subtraia o triplo da soma de 2 números consecutivos do dobro de sua diferença (o 
maior número menos o menor número), sendo x o maior desses números. 
 
b) Subtraia a diferença entre 22 2 +− tt e 122 −+ tt da soma de 12 +t com 33 −t . 
 
 
� Multiplicação 
 
Basta aplicar a propriedade distributiva da multiplicação. 
 
Exemplo 17: Calcule: 
 
a) yxyxyxyx 5253627 2)432( ⋅+− 
b) )32()2352( 223223 xyxyyyxxyx +−⋅−−+ 
c) )47()54( 422442246 bbaababaa +−⋅+− 
 
 
� Divisão 
 
Dividir um polinômio D por um polinômio d resulta em: 
 
 D d 
 R Q 
 
em que: D dividendo 
 d divisor 
 Q quociente 
 R resto 
 
nribe
Realce
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 12 
d
RQ
d
D
RQdD
+=
+×=
 
d÷
 
 
Para tal, devemos ter: 
 
1) )()( dGrauDGrau ≥ 
2) )()()( dGrauDGrauQGrau −= 
3) )()( dGrauRGrau < 
 
Exemplo 18: Façamos a divisão de 94925 234 −+−− xxxx por 322 −− xx : 
 
94925 234 −+−− xxxx 322 −− xx 
 
234 15105 xxx ++− 2285 2 ++ xx 
 9468 23 −++ xxx (quociente) 
 xxx 24168 23 ++− 
 92822 2 −+ xx 
 664422 2 ++− xx 
 5772 +x (resto) 
 
Assim, 
32
57722285
32
94925
2
2
2
234
−−
+
+++=
−−
−+−−
xx
x
xx
xx
xxxx
 
 
Exemplo 19: Calcule as divisões a seguir. Nos polinômios que possuem mais de uma 
variável, divida-os considerando x como variável. 
 
a) )43()28296( 2 +÷++ xxx 
b) )()( 55 yxyx −÷− 
c) )322()44( 235 xxxxx ++÷−+ 
d) )()( 224224 yxyxyyxx +−÷++ 
e) )22()16284( 223 −+−÷−+− aaaaa 
f) )3()38116( 22432234 bxbxbxbbxbxx +−÷++−+− 
g) )84()81644( 2423325 xbxxbbxbxx +÷−+−−h) )2()2( 226336 yxyxyyxx ++÷++ 
i) 





−+−÷





−+++ 22432234 2
3
1
2
1
2
12
8
5
18
5
3
1 bxbxbxbbxbxx 
 
 
� Regra de Ruffini: utilizada para obter de forma rápida o quociente e o resto da 
divisão de um polinômio por ax − . Teremos: 
 
1)()( −= DGrauQGrau 
0)( =RGrau )1)(( <RGrau 
 
nribe
Realce
2x+7
nribe
Realce
2x^3-3x^2+2x
nribe
Realce
-2a+3 nullresto -5a-10
nribe
Realce
x^4
nribe
Realce
x^2+x+2nullresto 2x
nribe
Realce
-2x^2+8/3x-16/9nullresto 11/9x
nribe
Realce
-x^3+2x^2-1
nribe
Realce
x^4-2x^3+4x^2-6x+12nullresto -24x
nribe
Nota
perguntar se o coeficiente das variáveis que sobraram conta
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 13 
...+nx ax − 
0kx ...1 +−nx 
 
A utilização do dispositivo de Ruffini se torna uma aplicação importante quando 
conhecemos uma das raízes de um polinômio de grau elevado (maior que 2). Se 
dividimos um polinômio por ax − e encontramos resto nulo, significa que a é uma das 
raízes deste polinômio. Por exemplo, para um polinômio do 3º grau, dado pela formula 
geral 
 
dxcxbx +⋅+⋅+ 23 
 
supondo que as 3 raízes deste polinômio sejam 1r , 2r e 3r , podemos escrevê-lo da 
seguinte forma: 
 
)()()( 32123 rxrxrxdxcxbx −⋅−⋅−=+⋅+⋅+ 
 
Se conhecermos uma das raízes deste polinômio, por exemplo, 1r , podemos dividi-lo 
por 1rx − . Dessa forma, teremos como resultado da divisão um polinômio do 2º grau e 
resto nulo. Assim, torna-se mais fácil o cálculo das outras duas raízes do polinômio do 
3º grau dado. 
 
Exemplo 20: Façamos as seguintes divisões: 
 
a) )3()1272( 4 −÷+− xxx 
 
 
4x 3x 2x 1x 0x 
2 ⊕ 0 ⊕ 0 ⊕ -7 ⊕ 12 coef. do dividendo. 
 3 2 6 18 47 153 coef. do quociente seguidos do resto. 
 
 ⊗ 
 
 ⊗ 
 ⊗ 
 ⊗ 
 
 
Quociente: 471862 23 +++ xxx 
Resto: 153 
 
b) )2()1143( 235 +÷−+− xxxx 
 
 
5x 4x 3x 2x 1x 0x 
3 0 -4 1 0 -11 
 -2 3 -6 8 -15 30 -71 
 
Quociente: 3015863 234 +−+− xxxx 
Resto: 71− 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 14 
Exemplo 21: Usando o dispositivo de Ruffini, calcule: 
 
a) )3()138( 2 −÷+− xxx 
b) )2()7( 3 −÷− xxx 
c) )2()1( 4 +÷+− xxx 
d) )1()2( 4 +÷− xxx 
e) )2()272( 23 −÷+−− aaaa 
f) )1()165879( 2345 +÷+++−− xxxxxx 
g) )2()375( 23 −÷−−+ xxxx 
h) )()( 66 yxyx +÷− 
i) )()( 444 yzxzyx +÷− 
j) )13()123( 5 +÷+ aa 
 
 
1.5. Fatoração 
 
Fatorar um número (ou uma expressão algébrica) é decompô-lo em vários fatores, 
transformando-o em produtos de termos mais simples. 
 
Exemplo 22: 
 
a) 22 32332236 ×=×××= 
 
36 2 
18 2 
 9 3 
 3 3 
 1 
 
 
b) yxxy ⋅⋅= 4381 
 
Existem números que não podem ser fatorados devido ao fato de serem divisíveis 
somente por eles mesmos e pela unidade. São chamados de números primos. 
 
Exemplo 23: 
 
13 13 
1 1 
 
 
1.5.1. Fatoração de polinômios 
 
Faremos agora o estudo de alguns casos de fatoração de polinômios. 
 
 
 
nribe
Realce
x-6nullresto 1
nribe
Realce
x^2+2x-3nullresto -6
nribe
Realce
x^3-2x^2+4x-9nullresto 20
nribe
Realce
2x^3-2x^2+2x-3nullresto 3
nribe
Nota
nribe
Realce
2a^2+3a-1
nribe
Realce
9x^4-16x^3+8x^2-7x+12nullresto 4
nribe
Realce
x^2+5x+7nullresto 11
nribe
Nota
?
nribe
Nota
?
nribe
Realce
23a^4-23/3a^3+23/9a^2-23/27a+23/81nullnullresto -23/243
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 15 
� 1o Caso: Fator comum em todos os termos 
 
Neste caso existe um fator comum em todos os termos que pode ser colocado em 
evidência. 
 
Exemplo 24: 
 
a) )(2 axxaxx +⋅=+ 
b) )432(13523926 2232223 nmmmnmnnmnm +−⋅=+− 
 
Exemplo 25: Fatore: 
 
a) 34625574 70105420140 yxyxzyxzyx −+− 
b) 6758 947 aaaa −+− 
c) mmmm xxxx +−+ −−− 123 
d) 3211 +++− +−− mmmm aaaa 
e) abcabcabdabc 120906045 +−− 
f) 54453627 14988470 babababa +−+ 
g) 23635456 1821043952 babababa −+− 
h) vtrvtrtr 342552 1193451 +− 
i) cbacmbacba 253423 855117 +− 
j) 32725423 2515105 yxyxyxyx −+− 
 
 
� 2o Caso: Fator não comum. 
 
Neste caso podemos colocar um fator que não seja comum em todos os termos em 
evidência. 
 
Exemplo 26: 
 
a) 





+⋅=+
x
xx
111 
b) 





+⋅=+ 1
2
2
a
x
aax 
 
Exemplo 27: Fatore as expressões abaixo, observando o fator não comum dado para 
cada caso: 
 
a) 1641236 632 +−+ xxx fator: 44x 
b) 8753 aaaa +−+ fator: ba m 
c) cabbcabcaab 43232 21121827 +−− fator: 2223 cba 
d) 21 ++ ++ xxx ttt fator: 321 +− xta 
 
 
 
nribe
Realce
x^4y(140y^6z-420xy^4z^2+105x^2-70y^2)
nribe
Realce
a^5(a^3+4a^2-9a-7)
nribe
Realce
x^m(1/x^3+1/x^2-1/x+1)
nribe
Realce
a^m-1(1-a^2-a^3+a^4)
nribe
Realce
15ab(5c-4d)
nribe
Realce
7a^4b^2(10a^3+12a^2b-14ab^2+2b^3)
nribe
Realce
a^3b^2(52a^3b^3-39ab^3+104b^4-182)
nribe
Realce
r^2t^2(51t^3-34r^3v+119r^2tv)
nribe
Realce
a^3b^2c(1-3abm+5a^2)
nribe
Realce
5x^2y^2(x-2x^2y^3+3y^5-5y)
nribe
Nota
voltar (em dúvida)
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 16 
� 3º Caso: Agrupamento 
 
Neste caso temos grupos de termos possuindo fatores comuns. 
 
Exemplo 28: 
 
a) bcacaba +++2 
 )()( bacbaa +⋅++⋅= 
 )()( caba +⋅+= 
 
b) bybzaybxaxaz −−+−+ 
 )()( yzxbyxza ++⋅−++⋅= 
 )()( bazyx −⋅++= 
 
Exemplo 29: Fatore: 
 
a) 23 aabba +++ 
b) dbxdbyadyadxbcybcxacyacx −−++−−+ 
c) dcbdacaba +++++ 222 
d) )2()( bxabaxx −⋅−−+⋅ 
e) 2222 mnxnpmnmmnxmpxnpxmnp +++++++ 
f) 123 +++ mmm 
g) abxybyxyax +++ 22 
h) aabab 3223 2 −−+ 
i) axbyabxy +−− 22 
j) adbcabcd 22 +++ 
k) 123 +−− ddd 
 
� 4º Caso: Diferença de dois quadrados perfeitos. 
 
)()(22 bababa −⋅+=− 
 
Exemplo 30: 
 
a) 62 2536 aa − 
 )56()56( 33 aaaa −⋅+= 
 
b) 18 −a 
 )1()1( 44 −⋅+= aa 
 )1()1()1( 224 −⋅+⋅+= aaa 
 )1()1()1()1( 24 −⋅+⋅+⋅+= aaaa 
 
c) 32 −a 
 )3()3( −⋅+= aa 
 
nribe
Realce
(1+a)(b+a^2)
nribe
Realce
(x+y)(ac-bc+ad-db)
nribe
Realce
(a^2+1)(b+c+d)
nribe
Realce
(m^2+1)(m+1)
nribe
Realce
(ax+y)(x+by)
nribe
Realce
(d+b)(2a+c)
nribe
Realce
(1-d)(1-d^2)
nribe
Realce
(2a-3)(a-b)
nribe
Realce
(mn+mx+m^2+nx)(p+n)
nribe
Realce
(ax-2)(by+1)
nribe
Realce
(x-a)(x-b)
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 17 
Exemplo 31: Fatore: 
 
a) 273 2 −a 
b) 
25
2
2 y
x − 
c) 22 )(25)6( bayx −⋅−+ 
d) 22 )()( baba −−+ 
e) 4810001,0 x− 
f) 44 )(273 dca −⋅− 
g) 22 )2(9)6( mnnm −⋅−+ 
h) 231,0 xa− 
i) 22 )( cda +− 
j) 122 −+xa 
 
 
� 5º Caso: Trinômio quadrado perfeito. 
 
222 )(2 bababa +=++ 
222 )(2 bababa −=+− 
 
Para que um trinômio ordenado segundo as potências decrescentes de uma variável seja 
quadrado perfeito é necessário que o primeiro e o último termo tenham sinal positivo, e 
que o segundo termo seja mais ou menos o dobro do produto das raízes quadradas dos 
outros dois termos (1º e 3º). 
 
Exemplo 32: 
 
a) 122 ++ dd 
 
Considerando ,0>d temos 11,2 == dd e 122 ⋅⋅= dd . 
 
O trinômio dado é quadrado perfeito. Assim, 
 
 122 ++ dd 2)1( += d 
 
 b) 222 69 cbabca +− 
 
Considerando ,0,, >cba temos bccbaa == 222 ,39 e bcaabc ⋅⋅−=− 326 . 
 
O trinômio é quadrado perfeito. Assim, 
 
 
222 69 cbabca +− 2)3( bca −= 
 
 
nribe
Realce
(asqrt(3)+3sqrt(3))(asqrt(3)-3sqrt(3))
nribe
Realce
(x+y/5)(x-y/5)
nribe
Realce[(6x+y)+5(a-b)][(6x+y)-5(a-b)]
nribe
Realce
[(a+b)+(a-b)][(a+b)-(a-b)]
nribe
Realce
(1/100+9x^2)(1/100-9x^2)
nribe
Realce
[(6m+n)-3(n-2m)][(6m+n)+3(n-2m)]
nribe
Realce
(1/sqrt(10)+axsqrt(a))(1/sqrt(10)-axsqrt(a))
nribe
Realce
(a+(d+c))(a-(d-c))
nribe
Realce
(a^x+1 + 1)(a^x+1 - 1)
nribe
Realce
[a^2sqrt(3)-3sqrt(3)(c-d)^2][a^2sqrt(3)+3sqrt(3)(c-d)^2]
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 18 
Exemplo 33: Converta em trinômios quadrados perfeitos as seguintes expressões, 
adicionando um termo: 
 
a) aba 1449 2 − 
b) 22 481 ba + 
c) 449 44 +yx 
d) pxx +2 
e) aa −24 
f) 12 22 +− yx 
g) 1144 222 +zyx 
 
Exemplo 34: Fatore os seguintes trinômios: 
 
a) 
4
2
2 fdfd +− 
b) 
4
333 2 +− aa 
c) 168 24 +− aa 
d) 363 48 ++ xx 
e) npnp 546441169 22 ++ 
f) xx 5
4
252
−+ 
g) 94249 2244 ++ baba 
h) 
16
14 2 +− aa 
i) 22 882 yxyx ++ 
j) 2412362 5105 ++++ ++ aaaa bbxx 
 
 
� 6º Caso: Trinômio do 2o grau. 
 
Da identidade 
 
abbxaxxbxax +++=+⋅+ 2)()( 
 abxbax +⋅++= )(2 
temos: 
 )()()(2 bxaxabxbax +⋅+=+⋅++ 
 
Exemplo 35: 
 
a) Para fatorar o trinômio 1272 ++ xx , devemos determinar dois números tais que o 
produto deles seja 12+ e a soma dos mesmos seja 7+ . 
 






=
=+
12
7
ab
ba
 São eles: +3 e +4, logo )4()3(1272 +⋅+=++ xxxx 
nribe
Realce
b^2
nribe
Realce
36ab
nribe
Realce
28x^2y^2
nribe
Realce
p^2/4
nribe
Realce
1/16
nribe
Realce
x^4y^4
nribe
Realce
24xyz
nribe
Realce
(d-f/2)^2
nribe
Realce
(asqrt(3)-sqrt(3)/2)^2
nribe
Realce
(a^2-4)^2
nribe
Realce
(x^2sqrt(3)+sqrt(3))^2
nribe
Realce
(13p+21n)^2
nribe
Realce
(x-5/2)^2
nribe
Realce
(7a^2b^2+3)^2
nribe
Realce
(2a-1/4)^2
nribe
Realce
(xsqrt(2)+2ysqrt(2))^2
nribe
Realce
5(x^a+3 + b^2a+1)
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 19 
b) 22 −− xx 
 






−=
−=+
2
1
ab
ba
 São eles: 2− e 1+ , logo )1()2(22 +⋅−=−− xxxx 
 
Exemplo 36: Fatore: 
 
a) 24112 ++ tt 
b) 232 +− xx 
c) 22 23 yyxx ++ 
d) 200302 +− xx 
e) 2092 +− xx 
f) 3522 −+ xx 
g) 422 −+ xx 
h) xxx 20255 23 +− 
i) 144 2 +− aa 
j) 
93
2 422 axa
x +− 
k) 372 2 ++ xx 
l) 253 2 −− aa 
m) abcbac −⋅−− )(2 
 
 
� 7º Caso: Soma ou diferença de dois cubos. 
 
)()( 2233 aaxxaxax ++⋅−=− 
)()( 2233 aaxxaxax +−⋅+=+ 
 
O primeiro passo para fatorar um polinômio do tipo 33 ax ± e obter as expressões acima 
é calcular uma das raízes deste polinômio. Tomando o polinômio 33 ax − , teremos: 
 
033 =− ax 
33 ax = 
ax =1 
 
Dessa forma, a é uma das raízes do polinômio. As outras duas raízes são complexas e 
conjugadas. Sabendo que a é uma raiz, o polinômio é divisível por )( ax − . Utilizando o 
dispositivo de Ruffini, podemos realizar a divisão )()( 33 axax −÷− . 
 
 
3x 2x 1x 0x 
1 0 0 3a− 
 a 1 a 2a 0 
 
Como era de se esperar, o resto da divisão é nulo e seu quociente será: 
 
nribe
Realce
(t+8)(t+3)
nribe
Realce
(x-1)(x-2)
nribe
Realce
(x+y)(x+2y)
nribe
Realce
(x-10)(x-20)
nribe
Realce
(x-5)(x-4)
nribe
Realce
(x-5)(x+7)
nribe
Realce
5x[(x-1)(x-4)]
nribe
Realce
(x+7)(x-6)
nribe
Realce
(x-2)(x-2)
nribe
Realce
(3x-a^2)(3x-a^2)
nribe
Realce
(2x+1)(x+3)
nribe
Realce
(a-2)(3a+1)
nribe
Realce
(c+b)(c-a)
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 20 
)( 22
33
aaxx
ax
ax
++=
−
−
 
 
Concluindo, )()( 2233 aaxxaxax ++⋅−=− . Realizando o mesmo processo, é fácil 
obter )()( 2233 aaxxaxax +−⋅+=+ . 
 
Exemplo 37: Fatore: 
 
a) 648 3 +x 
b) 66 ba − 
c) 127 3 +a 
d) 33)( cba ++ 
e) 643 −a 
f) 316 x+ 
g) 233233 zvmzyx − 
h) 164 3 −x 
i) 32128 y+ 
j) 66 2439 yx + 
 
 
� 8º Caso: Combinação dos casos anteriores. 
 
Exemplo 38: 
 
554637 32328 yxyxyx +− 
 
Colocando 358 yx em evidência, temos: 
 
)44(8 2235 yxyxyx +−⋅= 
 trinômio quadrado perfeito 
235 )2(8 yxyx −⋅= 
 
Exemplo 39: Fatore: 
 
a) 222 2 mbaba −+− 
b) 4434 234 −++− xxxx Dica: adicione e subtraia 2x à expressão dada. 
c) 642246 yyxyxx −−+ 
d) 1251016 22 −−+ xxy 
e) bcacbaba −−++ 22 2 
f) 4423 +−− ddd 
g) 8457 216 nmnm − 
h) 121 a+ 
i) 2xmx − 
j) 22 pn − 
nribe
Realce
8(x+2)(x^2-2x+4)
nribe
Nota
? daria a mesma coisa se eu não tivesse tirado o 8 em evidência 
nribe
Realce
(a+b)(a^2-ab+b^2)(a-b)(a^2+ab+b^2)
nribe
Nota
sem fatorar o polinomio inicialmente se cchaga na forma mais siples ?
nribe
Realce
(3a+1)(9a^2-3a+1)
nribe
Realce
((a+b) + c)((a+b)^2-c(a+b)+c^2)
nribe
Nota
ver se pode
nribe
Realce
(a-4)(a^2+4a+16)
nribe
Realce
(2sqrt(2)+x)(8-2xsqrt(2)+x^2)
nribe
Realce
z^2(xy-mv)(x^2y^2+xymv+m^2v^2)
nribe
Realce
(x-raizcúbica(4))(x^2+xraizcúbica(4)+2raizcúbica(2))
nribe
Nota
apesar de quando colocarmos o 4 em evidência e não ser diferença de dois cubos, podemos aplicar a fatoração de cubos
nribe
Realce
2(4+y)(16-4y+y^2)
nribe
Realce
9(x^2+3y^2)(x^4-3x^2y^2+y^4)
nribe
Realce
(a-b)^2-m^2
nribe
Nota
não poderia ter o quadrado pela diferença de dois termos no final ?
nribe
Realce
(x^2+y^2)(x-y)(x+y)(x-y)(x+y)
nribe
Realce
(4y-1)(4y+1)+5x(2-5x)
nribe
Realce
(a+b)^2-c(a+b)
nribe
Nota
poderia aplicar agrupamento na fatoração final
nribe
Realce
(d-2)(d+2)(d-1)
nribe
Realce
2m^4n^5(2m-n)(4m^2+2mn+n^2)
nribe
Realce
(1+a^4)(1-a^4+a^8)
nribe
Realce
x(m-x)
nribe
Realce
(n+p)(n-p)
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 21 
k) 3382 −− xx 
l) 42 6481 cx − 
m) 28292 +− aa 
n) 22 24144 baba +− 
o) xxqbxqxqxqxb 98251630 226434 −+−++ 
p) ayzaxazayaxa 6018362581 2224 ++−−+ 
q) bcacabcba 222222 +++++ 
r) 2222 424 bxyabyxa +++−− 
s) 2446 23 −−+ aaa 
t) abbxaxx 10252 +−− 
u) 129 nm − 
v) 2223 1616 axaxx +−− 
 
 
1.5.2. Frações racionais 
 
Simplificação de frações – simplifica-se uma fração dividindo ambos os termos 
(numerador e denominador) pelos seus fatores comuns. 
 
Exemplo 40: 
 
a) 332
2
4223
2
43
12
)43(2
)12(2
86
24
babbabba
ba
baba
ba
−
=
−⋅
⋅
=
−
 
 
b) 
1)1(
)1(
12 22 −
=
−
−⋅
=
+−
−
x
a
x
xa
xx
aax
 
 
Exemplo 41: Reduza à expressão mais simples as seguintes frações: 
 
a) 34
423
18
27
yzx
zyx
 
 
b) 26
4224
10
2515
tx
txtx −
 
 
c) 432
3223
93
62
abba
baba
−
−
 
 
d) 22
22 2
xa
xaxa
−
++
 
 
e) 
abb
aba
−
−
2
2
 
 
nribe
Realce
(x-11)(x+3)
nribe
Realce
(9x+8c^2)(9x-8c^2)
nribe
Realce
(a-1)(a-28)
nribe
Realce
(12a-b)^2
nribe
Nota
nribe
Realce
(a+b)^2+c(1+2a+2b)
nribe
Realce
nribe
Realce
3yz/2x
nribe
Realce
3x^2-5t^2/2x^4
nribe
Realce
2a/3b
nribe
Realce
a+x/a-x
nribe
Realce
-a/b
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 22 
f) 
aba
bdbcadac
+
+++
2 
 
g) 
aab
baab
2
632
−
+−−
 
 
h) 22
22
9
96
ax
aaxx
−
+−
 
 
i) 2
22
4
)()(
x
axax −−+
 
 
j) 
acxcax
abxbax
+⋅+−
+⋅+−
)(
)(
2
2
 
 
k) 246
56
yaa
yaa
−
+
 
 
l) 
632
632
+−−
−+−
naan
naan
 
 
m) 
bccba
bcacabcba
2
222
222
222
+−−
−+−++
 
 
Exemplo 42: Simplifique e calcule o valor numérico das frações:a) 
3
92
−
−
x
x
 para x=3 
 
b) 
6
103
2
2
−+
−+
aa
aa
 para a=2 
 
c) 22
22
34
23
baba
baba
++
++
 para a=–b 
 
d) 
xx
x
−
−
2
2 1
 para x=1 
 
e) 
2
164
+
−
x
x
 para x=–2 
 
f) 
ba
bdbcadac
−
−−+
 para b=a 
g) 
1
123
+
+++
x
xxx
 para x=–1 
nribe
Realce
c+d/a
nribe
Realce
a-3/a
nribe
Realce
x-3a/x+3a
nribe
Realce
a/x
nribe
Realce
x-b/x-c
nribe
Realce
a/a-y
nribe
Realce
a+3/a-3
nribe
Realce
6
nribe
Realce
7/5
nribe
Realce
1/2
nribe
Realce
2
nribe
Realce
0
nribe
Realce
c+d
nribe
Realce
2
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 23 
 
h) 
4
65
2
2
−
+−
a
aa
 para a=2 
 
i) 
8124
422
2
2
+−
−+
xx
xx
 para x=1 
 
j) 
2
23
2
2
−−
++
xx
xx
 para x=–1 
k) 
yx
yx
−
−
33
 para x=y 
 
l) 
1
13
+
+
x
x
 para x= –1 
 
m) 
3
273
−
−
x
x
 para x=3 
 
Exemplo 43: Resolva: 
 
a) 
bb
aa
b
a
−
−
÷ 2
2
 
 
b) 22
22
3218
32
43
94
ba
yx
ba
yx
−
+
÷
−
−
 
 
c) 





+÷





−
x
x
x
x
11 2
2
4
 
 
d) 
ba
baa
ba
baba
3
3 224
22
3223
−
+
×
+
−
 
 
e) 
ax
aaxx
axaaxx
−
++
÷−−+
22
3223 2)( 
 
f) 
1
2
1
3
1
1
2
−
+
−
−
+ xxx
 
 
g) 
12
12
24
2
+−
+−
xx
xx
 
 
 
 
 
 
nribe
Realce
-1/4
nribe
Realce
-3/2
nribe
Realce
-1/3
nribe
Realce
3y^2
nribe
Realce
3
nribe
Realce
27
nribe
Realce
b-1/a-1
nribe
Realce
12ax+16bx-18ay-24by
nribe
Realce
x^3-1/x
nribe
Realce
a^4b^2
nribe
Realce
x^2-2ax+a^2
nribe
Realce
4/(x-1)
nribe
Realce
1/(x+1)^2
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 24 
1.6. Funções 
 
1.6.1. Definição 
 
Dados dois conjuntos de números reais A (de valores x) e B (de valores y), dizemos que 
uma função f de A em B, (notação dada por f: A → B), é uma regra que associa a cada 
elemento de A um único elemento de B. 
 
 
 
 
 
 
 
 
 
Notação: )(xfy = , na qual a variável x é chamada de variável independente e a 
variável y é chamada de variável dependente. 
 
Exemplo 44: As relações a seguir representam funções de A em B? 
 
 
a) A B 
 
 1 3 
 2 5 
 3 
 4 6 
 
 
b) A B 
 
 1 3 
 2 5 
 3 
 4 7 
 
 
c) A B 
 
 1 3 
 5 
 2 
 3 7 
 
 
 
 
d) 
 
 
 
e) 
 
 
 
 
x y 
regra 
f 
A B 
nribe
Realce
é função
nribe
Realce
não é função
nribe
Realce
é função
nribe
Realce
é função
nribe
Realce
não é função
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 25 
1.6.2. Valor numérico da função 
 
É todo valor da variável dependente calculado para um dado valor da variável 
independente. 
 
Exemplo 45: Dada a função 12)( 2 +−== xxxfy , determine: 
 
a) )0(f b) )1(−f c) )2(f 
 
 
1.6.3. Intervalos ou subconjuntos de ℜ 
 
Intervalo fechado 
 
bxa ≤≤ ou [a,b] 
Intervalo aberto 
 
bxa << ou (a,b) ou ]a,b[ 
Intervalo fechado à 
esquerda 
 
 
bxa <≤ ou [a,b[ 
Intervalo fechado à direita 
 
bxa ≤< ou ]a,b] 
 
 
∞<<∞− x ou ),( ∞−∞ ou 
ℜ 
 
 
∞<≤ xa ou ),[ ∞a 
 
 
∞<< xa ou ),] ∞a 
 
 
bx ≤<∞− ou ],( b−∞ 
Intervalos infinitos 
 
 
bx <<∞− ou [,( b−∞ 
 
 
1.6.4. Domínio, imagem e raizes de uma função 
 
- Domínio: é o conjunto dos valores reais de x para os quais a função existe. Para se 
determinar o domínio de uma função deve-se estabelecer uma condição de existência e 
encontrar os valores de x que satisfazem esta condição. 
 
- Imagem: é o conjunto de valores assumidos pela função. 
 
- Raiz(es): é(são) o(s) valor(es) de x para o(s) qual(is) a função assume o valor zero. 
 
 
Exemplo 46: Determinar o domínio das funções a seguir: 
 
a) 13)( +== xxfy 
b) xxxxfy 835)( 23 −+== 
a b 
a b 
a b 
a b 
a 
a 
b 
b 
nribe
Realce
1
nribe
Realce
4
nribe
Realce
1
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 26 
c) 
x
xfy 3)( == 
d) 
44
23)(
+−
+
==
x
x
xfy 
e) 
423
1)(
+
+
+
==
x
x
x
xfy 
f) xxfy == )( 
g) 3)( xxfy == 
h) 
2
3)(
−
+
==
x
x
xfy 
i) 3 1)(
x
xfy == 
j) xxfy −== 1)( 
k) 
xx
xfy
−
+
−
==
1
1
1
1)( 
 
1.6.5. Funções crescentes e decrescentes 
 
Uma função é crescente num intervalo se para qualquer x1 e x2 pertencentes a esse 
intervalo com x1< x2 tivermos f(x1)< f(x2). O gráfico a seguir, obtido da equação 
12 −= xy , representa uma função crescente. 
 
 
 
 
Uma função é decrescente num intervalo se para qualquer x1 e x2 pertencentes a esse 
intervalo com x1< x2 tivermos f(x1)> f(x2). O gráfico a seguir, obtido da equação 
22 +−= xy , representa uma função decrescente. 
 
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 27 
 
 
 
Exemplo 47: Para as funções a seguir, determine: 
 
a) Os conjuntos domínio e imagem 
b) O(s) intervalo(s) no(s) qual(is) a função é crescente 
c) O(s) intervalo(s) no(s) qual(is) a função é decrescente 
 
 
 
1) Função: 42 −= xy 2) Função: 
2xy = 
 
3) Função: 3xy = 
 
 
 
 
4) Função: 
x
y 1= 5) Função: xy = 6) Função: 3 xy = 
 
 
 
 
 
 
 
 
 
 
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 28 
7) Função: 2
1
x
y = 8) Função: 2
3
xy = 9) Função: 3
2
xy = 
 
 
 
 
 
 
 
1.6.6. Funções pares e ímpares 
 
Uma função f é par se e somente se )(),()( fDxxfxf ∈∀−= . O gráfico a seguir, obtido 
da equação )3cos( xy = , para x dado em graus, representa uma função par. 
 
 
 
 
 
Uma função f é ímpar se e somente se )(),()( fDxxfxf ∈∀−−= . O gráfico a seguir, 
obtido da equação )3sen( xy = , para x dado em graus, representa uma função ímpar. 
 
 
 
 
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 29 
Graficamente, temos: 
 
Função Par Função Ímpar 
 
 
O gráfico da função par é simétrico em 
relação ao eixo y. 
O gráfico da função ímpar é simétrico em 
relação à origem dos eixos. 
 
 
Exemplo 48: As funções cujas equações são dadas a seguir são pares, ímpares ou nem 
pares e nem ímpares? 
 
a) 2)( 2 += xxf 
b) xxxf 52)( 3 −= 
c) 6)( += xxf 
 
Exemplo 49: Dada a função )1)(1(12 −+=−= xxxy , cujo gráfico é apresentado a 
seguir, determine: 
 
 
 
a) Seu domínio. 
b) Sua imagem. 
c) Os intervalos de x nos quais a função é decrescente. 
d) Os intervalos de x nos quais a função é crescente. 
e) Suas raízes. 
f) A função é par, ímpar ou nem par e nem ímpar? 
 
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 30 
1.7. Funções do primeiro grau 
 
São funções cujos gráficos resultam em retas. Os itens a seguir detalharão o estudo de 
retas. 
 
1.7.1. Incrementos (ou variações) 
 
Indicam as variações de uma grandeza.Se uma partícula se desloca do ponto ),( 111 yxP 
para o ponto ),( 222 yxP , os incrementos nas coordenadas são dados por 
 
12 xxx −=∆ 
12 yyy −=∆ 
 
Os incrementos podem ser positivos, negativos ou nulos. 
 
1.7.2. Coeficiente angular de uma reta 
 
Calculado como a divisão da variação na vertical pela variação na horizontal. É definido 
através da relação αtg
xx
yy
x
y
m =
−
−
=
∆
∆
=
12
12
. 
 
 
 
 
 
 
 
 
O coeficiente angular pode ser positivo, negativo, nulo ou ainda não existir. 
 
Se 0>m , a reta é crescente. 
Se 0<m , a reta é decrescente. 
 
1.7.3. Retas paralelas e perpendiculares 
 
PARALELAS PERPENDICULARES 
 
sr mm = 
t
r
m
m
1
−= 
 
y 
reta r 
reta r 
reta s 
reta t 
P1 
P2 
x2 x1 
y1 
y2 
x 
 ∆y 
variação 
vertical 
∆x � variação horizontal 
α 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 31 
Exemplo 50: Demonstre as relações acima. 
 
 
1.7.4. Equação de Retas 
 
Podemos escrever uma equação de reta, não vertical, se conhecermos seu coeficiente 
angular m e suas coordenadas em um ponto ponto ),( 000 yxP . Se ),( yxP for outro ponto 
qualquer dessa reta, então: 
 
)( oo
o
o xxmyy
xx
yy
m
x
y
m −=−→
−
−
=→
∆
∆
= ou oo yxxmy +−= )( 
 
Exemplo 51: Escreva uma equação para a reta que passa pelo ponto (2,3) e possui 
coeficiente angular 
3
2
−=m . 
 
Exemplo 52: Escreva a equação da reta que passa pelos pontos )2,3(1 −P e )5,4(2 −P . 
 
Exemplo 53: Determine a equação das retas vertical e horizontal que passam pelo ponto 
(2,3). 
 
1.7.5. Coeficiente linear – b 
 
A ordenada do ponto em que uma reta não vertical corta o eixo y é chamada de 
coeficiente linear da reta. Sabendo que o ponto ),0(0 bP pertence à reta e tomando um 
ponto qualquer ),( yxP também pertencente à reta, temos: 
 
bmxyxmbyxxmyy oo +=→−=−→−=− )0()( 
 
Essa equação é chamada de equação reduzida da reta. 
A raiz de uma função do primeiro grau é dada por: 0=+= bmxy �
m
b
x −= . 
Estudo de sinais: 
0>m 0<m 
 
Conclusão: 
 
 
 
 
x 
m
b−
 
+ 
– 
x 
m
b−
 
+ 
– 
x 
m
b−
 
mesmo sinal 
de m 
sinal contrário 
de m 
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 32 
Exemplo 54: Determine a equação da reta que possui coeficiente linear igual a 3− e 
passa pelo ponto )3,2( −− . 
 
Exemplo 55: Escreva a equação reduzida para a reta que passa pelo ponto )2,1(1 −P que 
seja: 
 
a) paralela à reta 43 −= xy . 
b) perpendicular à reta 43 −= xy 
 
Exemplo 56: Para qual valor de k as retas 534 =+ kyx e 12 =+ yx são: 
 
a) paralelas? 
b) perpendiculares? 
 
Exemplo 57: Determine o valor de k para o qual a reta que passa pelos pontos )3,2(−A 
e )2,(kB seja paralela à reta de equação 52 =+ yx . 
 
Exemplo 58: Considere a reta r representada no gráfico a seguir. Determine a equação 
da reta s que seja perpendicular à reta r no ponto de intersecção (2,2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exemplo 59: Prove que as retas representadas no gráfico a seguir são perpendiculares. 
 
 
y 
x 
3 
-2 
1 2 3 
2 
1 
-1 
r 
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 33 
 
Exemplo 60: Considere a reta r representada no gráfico a seguir. Determine: 
 
a) a equação da reta s que seja perpendicular à reta r no ponto (4,3). 
b) a equação da reta t que seja paralela à reta r no ponto (-1,0). 
c) trace as retas s e t no gráfico abaixo. 
 
−5 −4 −3 −2 −1 1 2 3 4 5 6
−5
−4
−3
−2
−1
1
2
3
4
5
x
y
 
 
Exemplo 61: Para que valores de Rc ∈ a função 1)1()( +−= xcxf é crescente? 
 
Exemplo 62: Para que valores de Rp ∈ a função 2)12()( −−= xpxf é decrescente? 
 
Exemplo 63: Estude o sinal das retas a seguir: 
 
a) 23)( +−= xxf 
b) 1
3
)( −= xxf 
c) 
5
2)( +−= xxf 
 
Exemplo 64: Resolva em ℜ as inequações a seguir: 
 
a) 0)5)(105( >−− xx 
b) 
2
1
2
12 −≤− xx 
c) 0
5
24 ≥
−
−
x
x
 
d) 0
3
)53)(12( ≥
−
−−−
x
xx
 
 
Exemplo 65: (ASG, 1º sem de 2010) O preço de uma passagem de ida ou volta da 
faculdade ao centro da cidade é de R$ 2,00, mas é possível comprar um passe por 
R$ 25,00 que lhe dá direito a pagar somente R$ 0,25 por cada passagem de ida ou volta. 
Em resumo, existem duas formas de usar o serviço de transporte para ir e voltar da 
faculdade: O aluno pode pagar R$2,00 por cada passagem ou o aluno pode comprar o 
reta r 
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 34 
passe por R$25,00 e tendo o passe em mãos, deverá pagar mais R$0,25 por passagem. 
Baseado nestas informações, pede-se: 
 
a) Ache as equações para o custo C de x passagens por mês nas duas condições de 
pagamento. 
b) Quantas passagens devem ser usadas para que o passe comece a compensar a sua 
compra? 
 
Exemplo 66: (ASG, 2º sem de 2011) O preço de venda de um produto é de R$27,00. A 
venda de 100 unidades dá um lucro de R$260,00. Sabendo que o custo fixo de produção 
é de R$540,00 e que o custo variável é proporcional ao número de unidades produzidas, 
determine: 
 
a) O custo variável de produção de cada unidade do produto. 
b) Uma expressão do lucro obtido em função da quantidade de peças vendidas. 
c) O número de peças vendidas que gera um lucro de R$23.460,00. 
d) O número mínimo de peças que deverão ser produzidas e vendidas para que haja 
algum lucro. 
 
 
1.8. Funções do segundo grau 
 
1.8.1. Definição 
 
É toda função que assume a forma 
 
,)( 2 cbxaxxf ++= em que 0≠a e a, b e c ℜ∈ 
 
Exemplo 67: 32 −= xy 1=a 0=b 3−=c 
 
 
1.8.2. Raízes ou zeros da função do 2o grau 
 
São obtidas utilizando a fórmula de Bhaskara: 
 
0)( 2 =++= cbxaxxf 
 
 
,
2a
b
x
∆±−
= em que acb 42 −=∆ 
 
 
Para 10 x→>∆ e ℜ∈2x / 21 xx ≠ (raízes reais distintas). 
 10 x→=∆ e ℜ∈2x / 21 xx = (raízes reais iguais). 
 10 x→<∆ e ℜ∉2x (não existem raízes reais). 
 
 
 
nribe
Realce
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 35 
Exemplo 68: Determine as raízes das funções a seguir: 
 
 
a) 0342 =+− xx 
b) 0
3
2
3
52
=−−
x
x 
 
 
1.8.3. Gráfico da função do 2o grau 
 
É dado por uma parábola. 
 
Exemplo 69: Esboce o gráfico das funções a seguir: 
 
a) 342 +−= xxy 
b) 42 +−= xy 
 
Através do exemplo 69, concluímos que: 
 
Se →> 0a a parábola possui concavidade voltada para cima. 
Se →< 0a a parábola possui concavidade voltada para baixo. 
 
Para 0>a teremos 
 
 
 
Para 0<a teremos 
 
 
1.8.4. Coordenadas do vértice da função do 2o grau 
 
a
b
x v 2
−
= 
a
yv 4
∆−
= 
nribe
Realce
3 e 1
nribe
Realce
2 e -1/3
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 36 
 
Se →> 0a xv é o ponto de mínimo e yv é o valor mínimo. 
Se →< 0a xv é o ponto de máximo e yv é o valor máximo. 
 
Exemplo 70: Calcule as raízes e as coordenadas dos vértices das funções: 
 
a) 352 2 +−= xxy 
b) 472 2 ++−= xxy 
 
 
1.8.5. Conjunto imagem da função do 2º grau 
 
 
1o Caso: 0>a 
 
 
 
 
 
 





 ∆−≥ℜ∈=
a
yyf
4
/)Im( 
 
 
 
2o Caso: 0<a




 ∆−≤ℜ∈=
a
yyf
4
/)Im( 
 
Exemplo 71: Para cada função dada a seguir, calcule suas raízes em ℜ , indique seu 
conjunto imagem, faça o estudo de sinais e o estudo de sua variação (para que valores 
de x a função é crescente ou decrescente). 
 
a) 562 +−= xxy 
b) 472 2 ++−= xxy 
nribe
Realce
Xv=5/4nullYv=-1/8null
nribe
Realce
Xv = 7/4nullYv = 81/4
nribe
Realce
nribe
Realce
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 37 
c) 253 2 −−= xxy 
d) 1342 +−= xxy 
 
Exemplo 72: Resolva em ℜ as inequações a seguir: 
 
a) 0
14112
2
2
2
≥
+−
−+
xx
xx
 
b) 0
65
253
2
2
<
−+−
+−
xx
xx
 
c) 0
4
23
2
2
>
−
−+−
x
xx
 
d) 0)4)(25( 22 ≥−− xx 
 
Exemplo 73: Qual deve ser o valor de k para que, qualquer que seja x, o trinômio 
kxx ++ 22 seja superior a 10? 
 
Exemplo 74: Determine o valor de m para que o mínimo de 352 +−−= mmxxy seja 
atingido no ponto 15=x . 
 
Exemplo 75: Sabe-se que a função quadrática 22 ++= bxaxy não tem raízes reais e 
que a abscissa de seu vértice é –3. Que valores a e b podem assumir? 
 
Exemplo 76: Em um planeta menor que a Terra, supondo a existência de vida como em 
nosso planeta, um garoto lança verticalmente para cima, do alto de um prédio de 12 
metros em relação ao solo, uma pequena bola. O movimento desta bola é considerado 
uniformemente variado e o garoto admite que a equação horária deste movimento seja 
do tipo cbtattS ++= 2)( . Durante o procedimento ele anota as seguintes características 
do movimento: 
• A bolinha muda de sentido no instante .
2
3
=t 
• A bolinha passa pelo ponto de coordenadas (1,18). 
 
Com a intenção de repetir os cálculos do movimento e determinar o tempo gasto pela 
bola para atingir o solo, o garoto percebe a necessidade de encontrar a equação que rege 
este movimento. Sabendo-se que você é um estudante de engenharia, o garoto viaja em 
sua nave até a Terra e lhe pede auxílio na determinação desta equação. Como você é um 
bom amigo, determine: 
 
a) A equação que rege o movimento. 
b) O tempo gasto pela bola para atingir o solo. 
 
Exemplo 77: A temperatura y de uma região, em um determinado período, variou de 
acordo com a função 20)( 2 −−= tttT , em que t representa o tempo, em horas, com 
70 ≤≤ t . Para este período, determine o intervalo de tempo (t) em que a temperatura 
foi positiva, o intervalo em que foi negativa, o instante em que ocorreu a menor 
temperatura e o menor valor da temperatura. 
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
nribe
Realce
m=6
nribe
Realce
b = 4/3nulla = 2/9
nribe
Nota
dúvida
nribe
Realce
positiva ]-INFINITO,4]U[5,INFINITO+[nullnegativo [4,5]nullinstante de menor temperatura = 0,5nullvalor da menor temperatura = 2,25 graus célciusnull
nribe
Realce
k>11
nribe
Nota
dúvida
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 38 
Exemplo 78: O custo diário da produção de uma indústria de aparelhos de telefone é 
dado pela função 250086)( 2 +−= xxxC , em que C(x) é o custo em dólares e x é o 
numero de unidades fabricadas. Quantos aparelhos devem ser produzidos diariamente 
para que o custo seja mínimo? 
 
 
1.9. Funções definidas em partes 
 
1.9.1. Introdução 
 
Uma função pode ser definida por uma ou mais sentenças matemáticas válidas para 
diferentes intervalos de seu domínio. 
 
Exemplo 79: Esboce o gráfico da função definida em partes a seguir, indicando os 
conjuntos domínio e imagem. 
 




−
=
,1
,
,
)( 2x
x
xf 
se
se
se
 
2
20
0
>
≤≤
<
x
x
x
 
 
Exemplo 80: Escreva as expressões que definem a função do gráfico a seguir: 
 
 
 
 
1.9.2. Função modular 
 
A função modular é definida por duas sentenças: 
 



−
==
,
,||)(
x
x
xxf 
se
se
 
0
0
<
≥
x
x
 
 
nribe
Realce
43
nribe
Realce
nribe
Realce
nribe
Realce
f(x) = -1 se x<-2nullf(x) = 3/2x+3 se -2<=x<=0nullf(x) = -3/4+9/2 se x>0
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 39 
Ou de forma mais geral, 
 



<−
≥
==
0)()(
0)()()(
xfsexf
xfsexf
xfy 
 
Exemplo 81: Esboce o gráfico da função modular || xy = , indicando os conjuntos 
domínio e imagem. 
 
Exemplo 82: Esboce o gráfico das funções a seguir, indicando os conjuntos domínio e 
imagem. Indique também as expressões das funções definidas em partes e seus 
intervalos de existência. 
 
a) 21 −−= xy 
b) 42 −= xy 
c) 12 ++−= xxy 
 
Exemplo 83: Encontre a solução das equações modulares a seguir: 
 
a) 6|| =x 
b) 3|52| =+x 
c) 2|43| −=−x 
d) 82|1| −=+ xx 
e) 06|||| 2 =−+ xx 
 
Exemplo 84: Encontre a solução das inequações modulares a seguir: 
 
a) 5|| ≥x 
b) 3|| <x 
c) 3|12| >+x 
d) 8|53| ≤−x 
e) 2|43| −≥−x 
f) 1|6| −<− x 
g) 1
3
42 ≥
+−
−
x
x
 
h) 2
1
2 ≤
+
−−
x
x
 
 
 
1.10. Translação de gráficos 
 
Sejam as funções )(xfy = e kxfy += )( . O gráfico de kxfy += )( é o gráfico de 
)(xfy = : 
 
• transladado k unidades para cima se 0>k . 
nribe
Realce
Domínio : RnullImagem : R +
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 40 
• transladado || k unidades para baixo se 0<k . 
 
Observe o gráfico das funções a seguir: 
 
 
 
Sejam agora as funções )(xfy = e )( hxfy += . O gráfico de )( hxfy += é o gráfico 
de )(xfy = : 
 
• transladado h unidades para a esquerda se .0>h 
• transladado || h unidades para direita se .0<h 
 
Observe o gráfico das funções a seguir: 
 
 
 
 
 
Exemplo 85: Tomando como referência o gráfico da função xy = e os conceitos de 
translação vertical e horizontal, determine a equação de cada função representada no 
gráfico abaixo: 
 
 
xxfy == )(
 
3−= xy
 
2+= xy
 
2)( xxfy == 
2)3( −= xy 
2)2( += xy 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 41 
 
 
Exemplo 86: A figura a seguir mostra o gráfico da função 2xy = . Usando o conceito 
de translação, faça o gráfico das seguintes funções: (OBS: Utilize o gráfico abaixo). 
 
a) 4)1()( 21 −−= xxf 
b) 2)2()( 22 ++= xxf 
c) 5)3()( 23 +−= xxf 
d) 5)6()( 24 −+= xxf 
e) 1)5()( 25 +−= xxf 
f) 3)1()( 26 ++= xxf 
 
 
 
−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8
−8
−7
−6
−5
−4
−3
−2
−1
1
2
3
4
5
6
7
8
x
y
 
 
1.11. Funções compostas 
xy =
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 42 
 
Sejam os diagramas: 
 
 
 
Função Simples: y = f(x) 
 
 
 
 
Função composta de f e g: y = f(g(x)) 
 
 
 
 
 
Notações: fog , “f de g”, função composta de f e g. 
 
Exemplo 87: Escreva a expressão da função ))(( xgf sendo 1)( 2 −= xxg e 
7)( −= xxf . 
 
Exemplo 88: Escreva a expressão de ))(( xgf e determine )),2((gf sendo 7)( −= xxf 
e 2)( xxg = . 
 
Exemplo 89: Sejam xxf =)( ,
4
)( xxg = e 84)( −= xxh . Encontre )))((( xfgh . 
 
Exemplo 90: Se 54)( −= xxu , 2)( xxv = e 
x
xf 1)( = , encontre as expressões para as 
seguintes funções: 
 
a) )))((( xfvu b) )))((( xvfu c) )))((( xfuv 
d) )))((( xufv e) )))((( xvuf f) )))((( xuvf 
 
Exemplo 91: Dadas as funções reais 1)( 2 −= xxh , 
x
x
xf
−
−
=
3
2)( e 22)( −= xxg , 
determine: 
 
a) o domínio de ))(( xfh . 
b) a(s) raiz(es) de ))(( xfg . 
 
Exemplo 92: Dadas as funções 3)( += xxf e 1)( 2 −= xxg , calcule o valor de 
)0(fog . 
 
Exemplo 93: Sejam f e g funções de ℜem ℜ , sendo ℜ o conjunto dos números reais, 
dadas por 32)( −= xxf e 14))(( +−= xxgf . Nestas condições, determine )1(−g . 
 
x f y 
x g h f y 
h = g(x) y = f(h) 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 43 
1.12. Funções exponenciais 
 
1.12.1. Definição 
 
Dado um número real a, tal que 0>a e 1≠a , denomina-se função exponencial de base 
a à função xaxf =)( definida para todo x real. O domínio da função exponencial é 
ℜ=D e o conjunto imagem é ∗+ℜ=Im . 
 
Exemplo 94: Por que devemos ter 0>a e 1≠a ? 
 
 
1.12.2. Propriedades 
 
Considerando 0>a , 0>b , 1≠a , 1≠b e ℜ∈yx, , as seguintes propriedades são 
válidas: 
 
P1) 1=xa , se 0=x 
 
P2) ℜ∈∀x , temos 0)( >= xaxf , ou seja, para qualquer valor real de x, 
}0/{Im >ℜ∈= yy *+ℜ= . 
 
P3) xaxf =)( é crescente .1>∀a 
 
P4) xaxf =)( é decrescente .10 <<∀ a 
 
P5) yxyx aaa +=. 
 
P6) yxy
x
a
a
a
−
= 
 
P7) ( ) yxyx aa .= 
 
P8) xxx baba ).(. = 
 
P9) 
x
x
x
b
a
b
a






= 
 
Observações: 
 
O1) xxx baba +≠+ )( 1≠∀x 
O2) yxx aa y )(≠ 
O3) xx 632 ≠⋅ 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 44 
1.12.3. Gráficos 
 
1>a
 – Função Crescente 10 << a – Função Decrescente 
 
 
ℜ=)( fD
 
*)Im( +ℜ=f
 
ℜ=)( fD
 
*)Im( +ℜ=f
 
 
Nos dois gráficos representados, a função não assume o valor zero. Portanto não existe 
raiz real, a menos que a função seja deslocada para baixo. 
 
Uma função exponencial especial amplamente utilizada na engenharia é a função 
exponencial natural xexf =)( , na qual a base é o número e =2,718281828... , chamado 
de número de Euler. 
 
1.12.4. Aplicações 
 
As funções exponenciais aparecem em aplicações que envolvem: 
 
- crescimento populacional; 
- decaimento radioativo; 
- carga e descarga de elementos de circuitos; 
- taxas de juros; 
- resfriamento de corpos; 
- etc. 
 
Exemplos 95: O número de bactérias numa cultura após t horas é dado pela expressão: 
teB .693,0100=
. 
 
a) Qual o número inicial de bactérias presentes? 
b) Quantas bactérias estarão presentes após 6 horas? 
 
Exemplo 96: Estima-se que, daqui a t anos, a população de certa cidade do interior de 
MG será dada, em milhares de habitantes, por ttP 02,0360)( ×= . Pede-se: 
 
a) Qual é a população atual desta cidade? 
b) Daqui a quanto tempo a população desta cidade será de 540 mil habitantes? 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 45 
c) Se utilizarmos a mesma equação para estimar a população desta cidade nos anos 
anteriores, quando sua população era de 20 mil habitantes? 
 
Exemplo 97: Você faz um investimento de R$ 2.000,00 em que a taxa de rendimento é 
de 8 % ao ano. Pede-se: 
 
a) Uma equação que calcula o montante acumulado depois de t anos. 
b) Qual o capital acumulado após 16 anos? 
 
Exemplo 98: O modelo de decaimento radioativo é dado por troeyy .−= , em que: 
 
y � quantidade de elemento radioativo presente em um instante t. 
yo � quantidade inicial de elemento radioativo (t = 0). 
r � constante que mede a velocidade de decaimento, 0>r . 
 
Para o carbono 14, 4102,1 −×=r para t dado em anos. Qual será a porcentagem da 
quantidade inicial de carbono 14 presente após 800 anos? 
 
Exemplo 99: Associe as funções aos gráficos abaixo: 
 
(1) xy 2= (2) xy −= 3 (3) xy −−= 3 
(4) xy −−= 5,0 (5) 22 −= −xy (6) 25,1 −= xy 
 
( ) ( ) ( ) 
( ) ( ) ( ) 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 46 
Uma equação é exponencial quando a variável é expoente de uma ou mais potências dos 
termos desta equação. 
 
Exemplo 100: Encontre a solução das equações exponenciais a seguir: 
 
a) 11 3322 −+ +=+ xxxx 
b) 5,0164 =⋅ x 
c) 01,01000 =x 
d) ( ) 128 2781 =x 
e) 314
9
425,2 =+x 
f) 12 652 =+− xx 
g) 82222 121 −=+−+ −++ xxxx 
h) 



=
=
−
+
42
1282
106
32
yx
yx
 
i) 122223 )()( +− = xxx aa 
j) 008,0)2,0(3 1 =−x 
k) 1221 77205277 ++−− −=+− xxxx 
l) 025512455 2 =−⋅+⋅ xx 
m) 542 25)2(34 ⋅=⋅+ +xx 
n) 0932633 2 =−⋅−⋅ xx 
 
Exemplo 101: Encontre a solução das inequações exponenciais a seguir: 
 
a) 
4
14 >x 
b) 
132
3
1
3
1 −






<





xx
 
c) ( ) ( ) 32224 1,01,0 2 −−− < xxx 
 
d) 15 42 >−x 
 
 
1.13. Funções inversas e funções logarítmicas 
 
1.13.1. Função injetora 
 
Uma função )(xf é injetora no domínio fD se )()( bfaf ≠ sempre que ba ≠ . 
 
Exemplo 102: Considere o gráfico das funções: 31 )( xxf = e 22 )( xxf = . Podemos 
afirmar que as duas são funções injetoras? 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 47 
3
1 )( xxf = 22 )( xxf = 
 
 
Para a função 31 )( xxf = notamos que para todo ba ≠ , a condição )()( bfaf ≠ é 
satisfeita. Já para o gráfico de 22 )( xxf = , isso não acontece. De fato se tivermos 2=a 
e 2−=b , 4)()( == bfaf . Portanto, conclui-se que a função )(1 xf é injetora, já a 
função )(2 xf não é injetora. 
 
Graficamente podemos saber se uma função é ou não injetora fazendo o teste da reta 
horizontal. Traçando diversas retas horizontais no gráfico de uma função )(xf 
qualquer, esta reta só pode interceptar curva da função em um único ponto. Se esta 
condição for satisfeita, dizemos que )(xf é injetora. 
 
1.13.2. Função Inversa 
 
Somente uma função injetora pode ser invertida. A função definida pela inversa de uma 
função injetora )(xf é a inversa de )(xf , cujo símbolo é: )(1 xf − . ATENÇÃO: 
)(1 xf − não significa )(
1
xf . 
 
Dadas duas funções )(xf e )(xg podemos dizer que f e g são inversas uma da outra se 
e somente se: xxgf =))(( ou xxfg =))(( . Nesse caso: )()( 1 xfxg −= e 
)()( 1 xgxf −= . 
 
Se )(xf e )(xg são duas funções inversas, então o domínio de uma é igual à imagem 
da outra, ou seja, gfD Im= e fgD Im= . 
 
Exemplo 103: Verifique se as funções 23)( += xxf e 
3
2)( −= xxg são inversas. 
 
Exemplo 104: Determine a inversa de 1
2
1
+= xy e esboce os gráficos das duas 
funções. Note que o gráfico da função )(xf e o gráfico de sua inversa, )(1 xf − , são 
simétricos em relação à função identidade ( xy = ). 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 48 
Exemplo 105: Determine a inversa, o domínio e a imagem da função 
2
3)(
−
+
=
x
x
xf . 
 
 
1.13.3. Função logarítmica de base a 
 
A função logarítmica de base a, representada por )(log)( xxf a= é a função inversa da 
função exponencial xaxf =)( , em que 0>a e 1≠a . Portanto, 
 
xayx ya =↔=)(log 
 
Vimos anteriormente que o domínio da função )(xf é igual à imagem de sua inversa 
)(1 xf − , e que a imagem de )(xf é o domínio da inversa )(1 xf − . Sendo assim, 
podemos afirmar que a função logarítmica apresenta: 
 
- Domínio: *+ℜ=D 
- Imagem: ℜ=Im 
 
Observe os gráficos abaixo: 
 
1>a 10 << a 
 
 
 
ℜ== − )Im()( 1ffD 
*1)()Im( +− ℜ== fDf 
ℜ== − )Im()( 1ffD 
*1)()Im( +− ℜ== fDf 
 
 
De forma geral, temos: 
 
xxf 2)( = 
)(log)( 21 xxf =− 
xxf )2/1()( = 
)(log)(
2
1
1 xxf =−
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 49 
 
 
As funções logarítmicas que possuem o número de Euler e o valor 10 como bases 
apresentam nomes e notações típicas: 
 
- )ln()(log xxy e == : função logaritmo natural de x ou função logaritmo neperiano de x. 
- )log()(log10 xxy == : função logaritmo decimal de x. 
 
As seguintes propriedades são válidas: 
 
P1) 0)1(log =a 
 
P2) 1)(log =aa 
 
P3) na na =)(logP4) ba ba =)(log 
 
P5) Se b = c, então )(log)(log cb aa = 
 
P6) )(log)(log xpx apa ⋅= 
 
P7) Logaritmo do produto: )(log)(log)(log 2121 xxxx aaa +=⋅ 
 
P8) Logaritmo do quociente: )(log)(loglog 21
2
1 xx
x
x
aaa −=





 
 
P9) Mudança de base: )log(
)log(
)ln(
)ln(
)(log
)(log)(log
b
x
b
x
b
x
x
a
a
b === 
 
 
Exemplo 106: Determine )625(log 51 
 
Exemplo 107: Qual a base a do sistema de logaritmos, em que o logaritmo de 7 é 1/4? 
 
Exemplo 108: Qual é o número cujo logaritmo no sistema de base 3 9 é 0,75? 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 50 
Exemplo 109: Determine o valor de x para: 
 
a) 5)00032,0(log =x 
b) ( ) 3278log −=x 
c) 
12
115255log 3 −=




x 
d) 
P
NNx =)(log 
e) 53)ln( += tx 
f) 
4log
8log
2log
2log
=
+
−
x
x
 
 
Exemplo 110: Num sistema de logaritmos, o logaritmo da base aumentada de 2 é 2. 
Qual é a base do sistema? 
 
Exemplo 111: Um aplicador investe R$ 10.000,00 em um negócio que rende 5,25 % de 
juros compostos ao ano. Em quanto tempo esse aplicador terá um saldo de R$ 
25.000,00? 
 
Exemplo 112: Expresse as relações seguintes em função de um só logaritmo: 
 
a) 3log5log
2
1
22 + 
b) 23log52log +− aa 
c) 12log23log
3
1
55 −+ 
 
Exemplo 113: Determine o domínio das seguintes funções: 
 
a) )1(log 22 −= xy 
b) 





+−
+⋅
=
23
)1(log 2
2
2
1
xx
xxy 
c) 





−= )3(loglog
3
13 xy 
d) [ ])3(loglog 22
2
1 −= xy 
 
Exemplo 114: Encontre a solução das equações a seguir: 
 
a) 





=





−+





+
9
24log
3
1log
3
1log xx 
b) 1)log(
2
1)53log(
2
1
=+− xx 
c) 2)11(log)7(log 22 =−−+ xx 
d) 2)(log )625(5 xx x = 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 51 
e) 4)(log327 xx x = 
f) )5log()1log(1
2
1log3
5
1log2 +−+=




 −
+




 −
x
xx
 
g) 9)(log512 ax xa =+ 
 
Exemplo 115: Dados 30103,0)2log( = , 47712,0)3log( = e 69897,0)5log( = , 
determine: 
 
a) )02,0log( 
b) )300log( 
c) )2000log( 
d) )003,0log( 
e) )500log( 
 
Exemplo 116: Calcule os valores de m para que )76log( 2 +− mm seja: 
 
a) real 
b) positivo 
c) negativo 
d) nulo 
 
Exemplo 117: Esboce o gráfico das funções a seguir indicando o domínio e a imagem 
de cada uma: 
 
a) )(log2 xy = 
b) 1)(log
2
1 −



= xy 
c) )1(log2 −= xy 
 
Exemplo 118: Considere que o nível de álcool no sangue de uma pessoa decresce de 
acordo com a fórmula: 
ttN )5,0.(2)( = 
 
em que N é dado em gramas por litro e t é o tempo medido em horas a partir do 
momento em que o nível de álcool foi constatado. Antes de existir a lei seca, o limite de 
álcool no sangue para dirigir com segurança era de 0,8 gramas por litro e que t em 
minutos era o tempo necessário para que o motorista esperasse até alcançar este nível. 
Determine este valor de t. Considere log (2) = 0,3. 
 
Exemplo 119: Quando um paciente ingere um medicamento, a droga entra na corrente 
sanguínea e, ao passar pelo fígado e pelos rins, é metabolizada e eliminada a uma taxa 
que é proporcional à quantidade presente no corpo. Suponha uma dose única de um 
medicamento cujo princípio ativo é de 250 mg. A quantidade q desse princípio ativo 
que continua presente no organismo t horas após a ingestão é dada pela expressão 
ttq )6,0(250)( ⋅= . Usando 1,1)3ln( = , 6,1)5ln( = e 7,0)2ln( = , pede-se qual o tempo 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 52 
necessário para que a quantidade dessa droga presente no corpo do paciente seja menor 
que 50 mg. 
 
Exemplo 120: Considerando o exemplo 98, qual é o tempo de meia vida do carbono-
14, ou seja, em quanto tempo ocorre o decaimento de metade de sua quantidade inicial? 
 
Exemplo 121: Uma população de mosquitos desenvolve-se segundo o modelo dado 
pela função 0,01t0 e)( ×= PtP , em que o tempo t é dado em dias. Pede-se: 
 
a) Qual é a população inicial de mosquitos, sabendo que após 40 dias a população é de 
aproximadamente 400.000 indivíduos? 
b) Em quantos dias a população de mosquitos triplica? 
 
 
1.14. Funções trigonométricas 
 
1.14.1. Conceitos iniciais 
 
A trigonometria é a área da matemática que estuda relações entre as medidas de lados e 
ângulos de um triângulo retângulo. Um triângulo retângulo é um triângulo que possui 
um ângulo reto (que mede 90º). A figura a seguir mostra um triângulo retângulo e a 
nomenclatura utilizada para seus lados. 
 
 
Para todo triângulo retângulo, a relação de Pitágoras é válida: ²²² bac += 
 
As funções trigonométricas básicas são definidas por: 
 
c
b
sen =)(α 
c
a
=)cos(α 
a
b
tg =)(α 
 
c
a
sen =)(β 
c
b
=)cos(β 
b
a
tg =)(β 
 
De acordo com as definições acima, é fácil notar que quando dois ângulos α e β são 
complementares, o seno de um deles é igual ao cosseno do outro. 
 
Existem duas unidades mais utilizadas para medidas de arcos: o grau e o radiano, cuja 
conversão se dá através de uma regra de três simples, sabendo que 180º correspondem a 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 53 
pi radianos. Um radiano é o ângulo definido em um círculo por um arco de 
circunferência com o mesmo comprimento que o raio do referido círculo. Um grau é a 
medida de um ângulo correspondente a 1/360 de uma circunferência. 
 
Consideremos agora uma circunferência trigonométrica (circunferência de raio unitário 
cujo centro se localiza na origem dos eixos de coordenadas cartesianas) e um arco AM, 
conforme mostrado na figura a seguir. 
 
 
 
 
Observando a circunferência trigonométrica, podemos obter as seguintes relações para 
um determinado ângulo θ: 
 
ysen =)(θ 
x=)cos(θ 
AP
x
y
tg ==)(θ 
 
1.14.2. Valores e sinais do seno, cosseno e tangente de um arco 
 
Faremos agora um estudo do sinal das funções trigonométricas observando cada 
quadrante da circunferência trigonométrica mostrada a seguir. 
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 54 
� 1º Quadrante 
 
0)( >θsen 0)cos( >θ 0)( >θtg 
 
� 2º Quadrante 
 
0)( >θsen 0)cos( <θ 0)( <θtg 
 
� 3º Quadrante 
 
0)( <θsen 0)cos( <θ 0)( >θtg 
 
� 4º Quadrante 
 
0)( <θsen 0)cos( >θ 0)( <θtg 
 
A tabela a seguir traz os valores de seno, cosseno e tangente para alguns arcos 
principais. 
 
θ θ )(θsen )cos(θ )(θtg 
pi20 ≡ o3600 ≡ 0 1 0 
6pi 30º 21 23 33 
4pi 45º 22 22 1 
3pi 60º 23 21 3 
−→ 2piθ , ∞→)(θtg 
2pi 90º 1 0 +→ 2piθ , −∞→)(θtg 
pi 180º 0 1− 0 
−→ 23piθ , +∞→)(θtg 
23pi 270º 1− 0 +→ 23piθ , −∞→)(θtg 
 
Os valores das funções são dados na tabela para os principais arcos pertencentes ao 1º 
quadrante da circunferência trigonométrica (além dos arcos π/2 rad, π rad e 3π/2 rad, 
que dividem os quadrantes). Dessa forma, utilizando a análise do sinal das funções 
trigonométricas vista anteriormente, torna-se fácil obter os valores de seno, cosseno e 
tangente para os principais arcos dos outros três quadrantes. 
 
 
 
 
 
 
 
 
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 55 
1.14.3. Detalhamento das funções trigonométricas 
 
a) Função seno 
 
Na figura a seguir, o segmento Oy' que mede sen(x), é a projeção do segmento OM 
sobre o eixo OY. 
 
 
 
Propriedades da função seno: 
 
• Domínio: A função seno está definida para todos os valores reais.Sendo assim seu 
domínio é dado por ℜ=fD . 
 
• Imagem: O conjunto imagem da função seno é o intervalo 
 
{ } ]1,1[11Im −=≤≤−ℜ∈= yyf 
 
• Periodicidade: A função é periódica de período 2pi. Para todo x em ℜ e para todo k 
em Ζ , temos 
 
)2(sen)(sen pikxx += ℜ∈∀x Ζ∈∀k 
 
Completamos o gráfico da função seno, repetindo seus valores em cada intervalo de 
medida 2pi. 
 
• Simetria: A função seno é ímpar, pois para todo x real, )(sen)(sen xx −−= . 
 
 
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 56 
b) Função cosseno 
 
Na figura a seguir, o segmento Ox' que mede cos(x), é a projeção do segmento OM 
sobre o eixo horizontal OX. 
 
 
 
Propriedades da função cosseno: 
 
• Domínio: A função cosseno está definida para todos os valores reais. Sendo assim 
seu domínio é dado por ℜ=fD . 
 
• Imagem: O conjunto imagem da função cosseno é o intervalo 
 
{ } ]1,1[11Im −=≤≤−ℜ∈= yyf 
 
• Periodicidade: A função é periódica de período 2pi. Para todo x em ℜ e para todo k 
em Ζ , temos 
 
)2cos()cos( pikxx += ℜ∈∀x Ζ∈∀k 
 
Completamos o gráfico da função cosseno, repetindo seus valores em cada intervalo de 
medida 2pi. 
 
 
• Simetria: A função cosseno é par, pois para todo x real, )cos()cos( xx −= . 
 
 
 
 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 57 
c) Função tangente 
 
A função tangente é obtida através da relação entre as funções seno e cosseno: 
 
)cos(
)(sen)(tg
x
x
x = 
 
Na figura a seguir, o segmento AT mede a tg(x). 
 
 
 
Propriedades da função tangente: 
 
• Domínio: Para todo valor inteiro de k, o domínio da função tangente é dado por 
 





 Ζ∈+≠ℜ∈= kkxxD f ,2
)12( pi
 
 
• Imagem: O conjunto imagem da função tangente é o conjunto de todos os reais, ou 
seja, ℜ=fIm . 
 
• Periodicidade: A função é periódica de período pi. Para todo fDx ∈ e para todo k 
inteiro, temos 
 
)(tg)(tg pikxx += fDx ∈∀ Ζ∈∀k 
 
Completamos o gráfico da função tangente, repetindo seus valores em cada intervalo de 
medida pi. 
 
 
• Simetria: A função tangente é ímpar, pois para todo fDx ∈ , )(tg)(tg xx −−= . 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 58 
d) Função cotangente 
 
A função cotangente é obtida através da relação entre as funções cosseno e seno: 
 
)(tg
1
)(sen
)cos()(cotg
xx
x
x == 
 
Na figura a seguir, o segmento BS mede a cotg(x). 
 
 
 
Propriedades da função cotangente: 
 
• Domínio: Para todo valor inteiro de k, o domínio da função cotangente é dado por 
 
{ }Ζ∈≠ℜ∈= kkxxD f ,pi 
 
• Imagem: O conjunto imagem da função cotangente é o conjunto de todos os reais, ou 
seja, ℜ=fIm . 
 
• Periodicidade: A função é periódica de período pi. Para todo fDx ∈ e para todo k 
inteiro, temos 
 
)(cotg)(cotg pikxx += fDx ∈∀ Ζ∈∀k 
 
Completamos o gráfico da função cotangente, repetindo seus valores em cada intervalo 
de medida pi. 
 
 
• Simetria: A função cotangente é ímpar, pois para todo fDx ∈ , )(cotg)(cotg xx −−= . 
 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 59 
e) Função secante 
 
A função secante é obtida definida por 
 
)cos(
1)sec(
x
x = 
 
Na figura a seguir, o segmento OV mede a sec(x). 
 
 
 
Propriedades da função secante: 
 
• Domínio: Para todo valor inteiro de k, o domínio da função secante é dado por 
 





 Ζ∈+≠ℜ∈= kkxxD f ,2
)12( pi
 
 
• Imagem: O conjunto imagem da função secante é o conjunto dado por 
 
{ }1||/Im ≥ℜ∈= yyf 
 
• Periodicidade: A função é periódica de período 2pi. Para todo fDx ∈ e para todo k 
inteiro, temos 
)2sec()(sec pikxx += fDx ∈∀ Ζ∈∀k 
 
Completamos o gráfico da função secante, repetindo seus valores em cada intervalo de 
medida 2pi. 
 
 
• Simetria: A função secante é par, pois para todo fDx ∈ , )sec()(sec xx −= . 
 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 60 
 
f) Função cossecante 
 
A função cossecante é obtida definida por 
 
)(sen
1)(cossesc
x
x = 
 
Na figura a seguir, o segmento OU mede a cossec(x). 
 
 
 
Propriedades da função cossecante: 
 
• Domínio: Para todo valor inteiro de k, o domínio da função cossecante é dado por 
 
{ }Ζ∈≠ℜ∈= kkxxD f ,pi 
 
• Imagem: O conjunto imagem da função cossecante é o conjunto dado por 
 
{ }1||/Im ≥ℜ∈= yyf 
 
• Periodicidade: A função é periódica de período 2pi. Para todo fDx ∈ e para todo k 
inteiro, temos 
 
)2(cossec)(cossec pikxx += fDx ∈∀ Ζ∈∀k 
 
Completamos o gráfico da função cossecante, repetindo seus valores em cada intervalo 
de medida 2pi. 
 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 61 
• Simetria: A função cossecante é ímpar, pois para todo fDx ∈ , 
)(cossec)(cossec xx −−= . 
 
1.14.4. Relações trigonométricas importantes 
 
Relação trigonométrica fundamental 
 



=+→÷
=+→÷
=+ )(cosec)(cotg1)(sen
)(sec)(tg1)(cos
 1)(cos)(sen 222
222
22
xxx
xxx
xx 
 
 
Adição e Subtração de Arcos 
 
1) )()()cos()cos()cos( bsenasenbaba −=+ 
 
2) )()()cos()cos()cos( bsenasenbaba +=− 
 
3) )cos()()cos()()( absenbasenbasen +=+ 
 
4) )cos()()cos()()( absenbasenbasen −=− 
 
5) )).tg(tg(1
)tg()tg()tg(
ba
baba
m
±
=± 
 
 
Duplicação de Arcos 
 
Fazendo a=b e substituindo na relação (1), encontramos: 
 
)()(cos)2cos( 22 asenaa −= 
 
Fazendo a=b e substituindo na relação (3), encontramos: 
 
)cos()(2)2( aasenasen = 
 
Somando as relações (1) e (2), encontramos: 
 
)cos()cos(2)cos()cos( bababa =−++ 
 
Adotando 
qba
pba
=−
=+
⇔


 −
=
+
=
22
qpbqpa 
 
Assim, teremos 
 





 −





 +
=+
2
cos
2
cos2)cos()cos( qpqpqp 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 62 
 
Somando as relações (3) e (4), encontramos: 
 
)cos()(2)()( basenbasenbasen =−++ 
 
Adotando 
qba
pba
=−
=+
⇔


 −
=
+
=
22
qpbqpa 
 
Assim, teremos 
 





 −





 +
=+
2
cos
2
2)()( qpqpsenqsenpsen 
 
Várias outras relações trigonométricas podem ser obtidas através das apresentadas 
anteriormente. Como exercício, tente obter as relações para a diferença de dois senos e 
para a diferença de dois cossenos. 
 
 
Bissecção de Arcos 
 
2
)cos(1
2
sen
aa −±=





 
2
)cos(1
2
cos
aa +±=





 
)cos(1
)cos(1
2
tg
a
aa
+
−±=





 
 
 
Exemplo 122: Converta os seguintes ângulos de radianos para graus: 
 
a) 6pi 
b) 35pi 
c) 47pi 
d) 67pi 
 
Exemplo 123: Determine o domínio das funções a seguir no universo [ [pi2,0 : 
 
a) )(xseny = 
b) 1)cos( −= xy 
c) )2( pi+= xtgy 
 
Exemplo 124: Determine o período das funções a seguir: 
 
a) )3( pi−= xseny 
Inatel – Instituto Nacional de Telecomunicações 
Curso de Matemática 63 
b) 





+=
42
cos3 pixy 
c) )4(2 xseny = 
d) 1
3
cos3 −





=
xy 
 
Exemplo 125: Determine p de modo que a equação 13)( 2 +−= ppxsen tenha solução. 
 
Exemplo 126: Determine o valor de m sabendo-se que o período da função 






=
m
xy cos é 
3
7pi
. 
 
Exemplo 127: Esboce o gráfico (para x variando de 0 a pi2 ) das funções a seguir. Em 
seguida determine o período e o conjunto imagem de cada uma delas. 
 
a) )cos(xy = 
b) )2sen(1 xy +=

Continue navegando