Buscar

Apostila de Estatística Descritiva

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 102 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 102 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 102 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade do Estado do Rio de Janeiro - UERJ
Faculdade de Forma o de Professores - FFPçã
Departamento de Matem ticaá
Material de apoio ao aprendizado das disciplinas 
de 
Estat stica e Bioestat sticaí í
Professora: Viviane C tia K hlerá ö
S o Gon alo-RJã ç
1
Introdução
A Estatística encontra-se presente em todas as áreas do conhecimento humano: ciências 
sociais, ciências humanas, ciências exatas, etc. Isso ocorre porque cresce cada vez mais a utilização 
de suas ferramentas com a finalidade de encontrar respostas a perguntas do tipo:
✔ Qual o consumo médio mensal de combustível de uma determinada região do Estado?
✔ Qual o índice de preços ao consumidor do mês de dezembro?
✔ Qual a proporção de peças defeituosas da linha de produção de uma empresa X?
✔ Será que o índice de reprovação foi reduzido com a introdução de novas técnicas de ensino?
✔ Que porcentagem de determinado elemento químico está presente numa amostra de dejetos 
da empresa X?
✔ Qual deverá ser o possível valor médio de retorno financeiro de um determinado evento?
✔ Qual a preferência do eleitorado em relação aos candidatos à Presidência da República?
O que é Estatística?
De acordo com o dicionário Aurélio, Estatística pode ser definida como:
“parte da matemática em que se investigam os processos de obtenção, 
organização e análise de dados sobre uma população ou sobre uma 
coleção de seres quaisquer, e os métodos de tirar conclusões ou predições 
com base nesses dados”. 
O termo estatísticas, no plural, tem o significado de dados numéricos representativos de uma 
variável analisada, enquanto estatística, no singular, é o método utilizado na manipulação de 
dados, isto é, o método de coleta, de elaboração, de análise e de interpretação dos dados 
numéricos.
Apesar de sua simplicidade, essas definições nos permitem enxergar os vastos campos de 
ação da Estatística. Podemos dizer que não há praticamente nenhum ramo do conhecimento humano 
em que ela não tenha utilização. Estatística é uma ferramenta que nos ensina procedimentos lógicos 
de observação e de análise, necessários para aproveitar ao máximo os conhecimentos de outras 
ciências.
Com base nos conceitos de Estatística apresentados anteriormente, daremos, a seguir, a 
definição que será adotada como base para o seu aprendizado.
A Estatística consiste em um conjunto de métodos e processos quantitativos 
que nos auxiliam a coletar, analisar e interpretar dados de acontecimentos 
coletivos e tirar conclusões em situações em que a variação e a incerteza estão 
presentes.
2
Dados
Um trabalho estatístico envolve um levantamento e uma análise de dados. O que são dados?
Dados são informações obtidas através de observações, contagens ou respostas 
fornecidas por pessoas.
Exemplos:
• 25% dos eleitores da cidade do Rio de Janeiro votarão no candidato do partido XY. 
Isso significa que, através de uma pergunta feita a eleitores da cidade do Rio de Janeiro, 
obteve-se a resposta de que 25% do total votaria no candidato do partido XY.
• Apenas 11% dos consumidores preferem consumir um produto de marca ou empresa 
que possui propaganda mais chamativa e envolvente. (Fonte: Instituto EM Data, julho 
de 2004)
Pode-se dizer que, a partir de um levantamento da opinião dos consumidores que foram 
entrevistados pelo Instituto EM Data, apenas 11% preferem adquirir um produto de marca ou 
empresa que possui propaganda mais chamativa.
Depois que os dados são coletados, devem passar por algum tratamento. Esse tratamento 
permite ordená-los, por exemplo, em ordem crescente, tornando-os mais fáceis de serem 
trabalhados. Os dados que não sofrem qualquer tratamento são denominados dados brutos. 
Dados brutos são informações obtidas através de observações, contagens ou 
respostas fornecidas por pessoas, mas que não sofreram nenhum tratamento 
estatístico.
Exemplos:
• Será realizada uma pesquisa eleitoral com 2.400 eleitores da cidade de São Gonçalo. 
Os dados brutos são as respostas da preferência dos eleitores sem nenhum tratamento 
estatístico, ou seja, os dados de respostas não estão em ordem crescente nem 
organizados de acordo com as respostas dadas pelos entrevistados. Isto é, o que se tem 
são apenas as respostas dos eleitores entrevistados, mas não há nenhuma informação 
tratada sobre eles. Não se sabe quantos votarão no candidato X ou no candidatoY.
• Foi realizado um levantamento das idades de 1.000 estudantes do ensino médio em 
Niterói. Não foi determinado o número de alunos em cada idade. Tem-se apenas um 
número de alunos e valores referentes às idades, porém sem nenhum tratamento 
estatístico mais detalhado, ou seja, somente o resultado de uma contagem.
Etapas da Estatística
O estudo da Estatística pode ser conduzido dividindo-se todo o conteúdo em 4 etapas: 
determinação do objetivo, coleta de dados, análise dos dados e conclusões e inferências. 
Determinação do objetivo 
A determinação do objetivo é a etapa inicial de um trabalho estatístico. Pode-se dizer que é 
3
uma das etapas mais importantes da Estatística, pois nela está concentrado todo o formato que a 
pesquisa deverá tomar. Se o objetivo da pesquisa estatística não estiver bem definido, de forma bem 
clara e detalhada, os dados coletados poderão não indicar as verdadeiras características daquilo que 
será analisado. Nesse caso, a coleta de dados estará comprometida, assim como o processo de 
análise de dados e, conseqüentemente, as conclusões que serão utilizadas para se fazer inferências. 
A coleta de dados, etapa seguinte no processo estatístico, pode demandar muito tempo e, 
conseqüentemente, alto custo, caso o objetivo não tenha sido pré-definido. Essa coleta pode não ser 
útil ou ser insuficiente, por exemplo quando a determinação dos objetivos leva à definição de outros 
dados que devem ser coletados. O ideal é que se faça um levantamento de todos os fatores que 
poderão influenciar o trabalho de pesquisa para que este possa ser executado rapidamente e com o 
menor custo possível.
Os principais objetivos são, em geral, voltados para o desenvolvimento de novos produtos, 
investigação de problemas que porventura estejam atrapalhando o processo de produção de uma 
empresa, inspeção para a garantia da qualidade de um produto, avaliação do relacionamento 
existente entre alguns itens e melhoria dos resultados de um processo.
Exemplos:
✔ Objetivos de uma pesquisa eleitoral - determinar a região em que o candidato tem maior 
aceitação, a faixa de renda dos eleitores, bem como idade, nível de escolaridade, etc. 
Após a determinação dos objetivos, poderemos fazer o levantamento de dados 
referentes a nível de escolaridade, taxa de renda, idade, etc. 
✔ Objetivos de uma pesquisa de aceitação de um produto no mercado - determinar a faixa de 
renda do consumidor, região onde mora, ponto de venda do produto, o que o consumidor 
mais gosta e o que menos gosta no produto etc.
Após a definição dos objetivos, ficam mais fáceis a elaboração do questionário e a definição 
de quem serão os entrevistados. Ganha-se tempo para a coleta de informações.
Depois de definirmos os objetivos, passamos à etapa seguinte, que é a de coleta de dados.
Coleta de dados
Após a determinação do objetivo da pesquisa estatística, devem-se coletar os dados ou 
informações que serão necessárias para a análise. Para que os dados possam realmente representar o 
objetivo especificado, deve-se escolher o método de apresentação mais adequado, de forma que as 
conclusões obtidas possam apresentar um alto grau de confiabilidade.
O levantamento de dados pode ser realizado com todo o material coletado ou apenas com uma parte 
representativa dele. O conjunto de todos os dados é chamado de populaçãoe a parte que o 
representa é chamada de amostra. 
População é o conjunto de todos os dados sobre os quais desejamos obter 
informações. É o conjunto de todos os itens produzidos, todas as pessoas de 
uma localidade, todas as peças analisadas, enfim, de tudo o que é objeto de 
uma pesquisa estatística. Pode também ser definida como o conjunto de 
elementos com determinadas características em comum.
Observe que população não é necessariamente formada por moradores de uma cidade e que a 
população em um problema depende da informação que queremos obter.
4
Se o objetivo de uma pesquisa é conhecer o nível social de cada um dos moradores de uma 
cidade do interior de Minas Gerais, então a coleta de dados será o levantamento dos rendimentos de 
todos os moradores da cidade. Essa coleta pode ser realizada através de questionários entregues à 
população, por telefone (o que tornaria o custo da pesquisa muito alto) ou através de pesquisadores 
que entrevistariam todos os moradores de casa em casa.
A população de dados dessa pesquisa seria a renda de todos os moradores, isto é, o conjunto 
de todos os dados da pesquisa.
Se o objetivo de uma pesquisa é determinar quantas peças produzidas por uma pequena 
empresa, em um dia, apresentaram defeito, a população será toda a produção de peças daquele dia. 
Por exemplo, se a empresa produz 5.000 peças, por dia, então a população é de 5.000 peças.
Se o objetivo de uma pesquisa é determinar quantos automóveis a cidade X possui circulando 
em suas vias, a população é constituída de todos os automóveis da cidade X que estão em 
circulação.
Censo é a contagem de todos os elementos de uma população. O censo não se 
refere somente ao Censo realizado pelo IBGE, mas também a qualquer 
levantamento de todas as informações de uma população de dados. Por isso, o 
censo proporciona informações mais detalhadas sobre a população, mas, na 
maioria das vezes, é caro e difícil de ser realizado.
A população pode ser considerada finita e infinita. Vamos ver a diferença.
População finita: quando todos os itens de uma população são conhecidos e 
fixos, isto é, permanecem inalterados.
O Censo da população brasileira é realizado periodicamente pelo IBGE – 
Instituto Brasileiro de Geografia e Estatística. Os censos produzem 
informações imprescindíveis para a definição de políticas públicas estaduais e 
municipais e para a tomada de decisões de investimento, sejam eles 
provenientes da iniciativa privada ou de qualquer órgão do governo. 
Exemplos:
•O número de peças de plástico de um automóvel da marca X.
•Uma sala de aula com 50 alunos.
• Um hotel da rede XYZ, que apresenta 100 unidades habitacionais.
Exemplos:
• As bolas de uma urna utilizada para sorteios.
Se elas são retiradas e repostas repetitivamente após cada sorteio, então as bolas podem ser retiradas 
infinitas vezes.
• Todas as peças possíveis de serem manufaturadas.
Nesse caso, tem-se uma população de peças que serão manufaturadas, mas é impossível obter 
5
a lista de todas elas, pois a produção não tem fim.
• Todas as visitas possíveis de clientes a uma loja.
É impossível contabilizar a população de clientes, pois não se sabe quantos irão visitar tal 
loja. 
EXERCÍCIO:
Elaborar um exemplo de pesquisa em que se descreve seu objetivo e se indique quais seriam os 
dados coletados.
Amostra
Na maior parte das situações, a população, mesmo finita, é grande demais para que seja 
prático levantar todos os dados. Por isso, utilizamos uma parte que represente a população. Essa 
parte é chamada de amostra. 
Amostra: é uma parte representativa da população. Pode também ser definida 
como um subconjunto de uma população por meio do qual se estabelecem ou 
se estimam as propriedades e características dessa população.
A amostra é utilizada quando necessitamos de uma resposta mais rápida sobre a população 
ou quando a realização do levantamento de dados de uma população é muito dispendiosa. Por 
exemplo, é preferível pesquisar as respostas de uma parte representativa dos eleitores de uma cidade 
a ter que fazer o levantamento das respostas de todos os seus eleitores. Com isso, ganha-se tempo 
nos resultados obtidos e consegue-se um custo de pesquisa muito inferior ao que seria gasto com 
toda a população.
Exemplos:
• Uma fábrica possui 1.000.000 de peças em estoque. Se estamos interessados em 
analisar a espessura das peças, podemos, por exemplo, tomar uma amostra de apenas 
500 peças. 
A opção pela escolha da análise de uma amostra é melhor neste caso, pois ganha-se em tempo e em 
custo da pesquisa.
• Uma amostra da opinião de 2.000 moradores de uma cidade sobre a economia do país. 
Observe a expressão “parte representativa da população” na definição de amostra. O que quer 
dizer?
Quer dizer que, se tomarmos uma parte muito pequena da população, o levantamento de 
dados pode ser muito diferente da população como um todo. Por exemplo, fazer uma pesquisa 
eleitoral com apenas 10 eleitores em uma cidade com 1.000.000 de eleitores não é representativo. 
Mas qual número ou percentual da população total é representativo?
Essa é uma questão um pouco mais complexa. Uma análise detalhada não consta dos 
objetivos desta disciplina. Os métodos e técnicas utilizados para se realizar uma amostragem serão 
analisados com maiores detalhes em Técnicas de Amostragem.
A opção por trabalhar com toda a população ocorre em virtude de se desejar obter 
informações sobre todo o universo objeto de pesquisa, que é o caso do censo demográfico, ou 
6
quando a população é pequena (a população pode ser considerada pequena quando os custos e o 
tempo de análise das informações não são empecilho para tal realização).
EXERCÍCIO
1) Definir amostra.
2) Dar exemplos de amostra.
3) Em que situações é preferível trabalhar com uma amostra ao invés de com a população?
4) Determinar uma amostra para cada uma das populações mencionadas a seguir:
a) 25.000 é o total de peças produzidas pela empresa X;
b) duas toneladas da substância XYZ estão infectando o solo de um lixão;
c) todos os consumidores de cereais do país;
d) os salários de todos os 1.000 funcionários de uma empresa.
5) Dadas as sentenças abaixo, indicar falso (F) ou verdadeiro (V).
( ) A amostra é um subconjunto da população.
( ) A população é uma parte representativa da amostra.
( ) A amostra é a melhor opção quando a análise de todos os dados da população toma 
muito tempo e é considerada de alto custo.
( ) A análise de todas as peças produzidas por uma pessoa, durante um dia, pode ser 
considerada uma amostra.
Análise dos Dados
Após determinar o método de levantamento de dados mais adequado, é necessário fazer uma 
análise dos dados, colhendo informações relativas ao objetivo especificado. Para uma melhor 
análise dos dados, é usual organizá-los sob a forma de tabelas e gráficos e, então, sintetizá-los 
através de medidas. Essa organização e resumo das informações em medidas é chamada Estatística 
Descritiva.
Estatística Descritiva: é a parte da Estatística que utiliza métodos gráficos e 
numéricos para organizar, resumir e simplificar as informações para que 
possam ser interpretadas e utilizadas com maior facilidade.
Estudaremos, nas próximas aulas, algumas ferramentas utilizadas pela Estatística Descritiva, tais 
como:
• Representações gráficas e tabulares da Distribuição de Freqüência;
• Medidas de Posição;
• Medidas de Dispersão;
• Medidas de Assimetria. 
Exemplos:
• A média de idade dos alunos que estão matriculados na disciplina de Estatística é de 
34 anos. 
 • A média é uma das medidas de posição mais utilizadas para representação dos dados.
7
• 30% dos estados brasileiros estão sem verbas para educaçãoe saúde.
A representação percentual é uma forma bastante utilizada para descrever os dados 
estatísticos.
• O desvio padrão das aplicações financeiras analisadas é muito alto.
O desvio padrão é uma medida de dispersão muito utilizada para descrever a variação dos 
dados estatísticos.
• O coeficiente de assimetria para a distribuição de freqüência dos pesos de uma peça é 
muito pequeno. 
O coeficiente de assimetria é uma medida que nos informa sobre o formato, simétrico ou não, 
das curvas representativas de uma distribuição de freqüências.
Conclusões e Inferências
Essa é a parte final do processamento estatístico, em que os resultados obtidos nas análises 
são dispostos e avaliados com relação ao objetivo proposto no início da pesquisa. Essa parte da 
Estatística é chamada Estatística Indutiva ou Inferencial. 
Estatística Indutiva ou Inferencial: é a parte da Estatística que interpreta os 
dados amostrais e faz generalizações sobre um experimento em estudo. Ela vai 
determinar, também, a precisão e a confiabilidade dos resultados obtidos.
Os resultados de uma estatística inferencial são induções ou estimativas sobre as variáveis 
obtidas da amostra. Elas podem ser conclusivas e podem levar o pesquisador a uma tomada de 
decisão sobre toda a população. Por exemplo, com base em uma amostra de 2.000 eleitores, o 
instituto de pesquisa pode generalizar o resultado obtido para todos os eleitores, isto é, se um 
candidato obteve 32% de escolha entre os 2.000 eleitores, pode-se dizer que 32% de todos os 
eleitores da cidade pesquisada votariam nesse candidato. Mas, como o resultado é baseado em uma 
amostra, a estimativa do resultado vem acompanhada de uma margem de erro. A margem de erro 
ocorre porque a pesquisa não foi realizada com todos os eleitores.
O cálculo exato da margem de erro é um assunto matematicamente complexo e foge dos 
objetivos deste curso.
A ferramenta básica no estudo da Estatística Inferencial é a probabilidade, pois lida com a 
incerteza.
Variáveis Quantitativas 
Os principais tipos de variáveis e as séries estatísticas utilizadas na representação de dados 
estatísticos. As variáveis são classificadas em quantitativas e qualitativas, e as séries estatísticas são 
representações gráficas de acordo com o tipo de variável utilizada.
Variáveis Quantitativas: como a própria palavra diz, são variáveis que indicam 
uma quantidade. São o resultado de uma contagem de itens, dados ou 
informações sobre o objeto em questão.
8
As variáveis quantitativas se dividem em dois subgrupos: discretas e contínuas.
Variáveis Quantitativas Discretas: quando seus valores são, em geral, uma 
contagem do número de itens de uma determinada característica, isto é, 
assumem valores inteiros. 
Exemplos:
• 25 funcionários trabalham no setor de compras de uma empresa.
• A inspeção da produção acusou que apenas 10 peças apresentaram algum defeito.
• 40 alunos fizeram matrícula em Geografia no semestre passado.
• 1.200 pessoas fizeram inscrição para o concurso público.
Em todos os exemplos apresentados tem-se apenas o resultado de uma contagem, ou seja, 
valores inteiros.
Variáveis Quantitativas Contínuas: quando seus valores podem assumir 
qualquer valor real dentro de um intervalo contínuo. Isto é, assumem todos os 
valores intermediários entre dois valores reais ou entre dois limites. As 
variáveis contínuas estão associadas a: altura, peso, comprimento, espessura, 
temperatura, pressão sanguínea, velocidade, tempo, etc.
As variáveis contínuas também podem ser consideradas como aquelas cujo valor somente 
poderá pertencer a um intervalo.
Exemplos:
• A temperatura prevista para a cidade de Belo Horizonte, durante um certo dia, variou 
de 25º C a 28º C.
• O paciente pesava entre 120 e 140 quilos.
• As peças inspecionadas na revisão têm espessuras que variam de 2 a 5 milímetros.
• A velocidade do automóvel utilizado na viagem de Belo Horizonte ao Rio de Janeiro 
variou de 10 a 110 quilômetros por hora.
• As pessoas presentes em um seminário têm alturas que variam de 1,60 metros a 1,92 
metros
• A idade das pessoas presentes em um evento variou entre 40 e 45 anos.
A diferença entre variáveis quantitativas discretas e as contínuas é que numa variável 
discreta, todo valor é exato, enquanto a variável contínua assume um valor dentro de um intervalo 
contínuo, isto é, todo valor é aproximado. 
Exemplos da diferença entre variável contínua e discreta: 
9
1) Discreta: 10 pessoas com 25 anos.
 Contínua: o peso das 10 pessoas.
2) Discreta: 100 peças na cor preta.
 Contínua: as espessuras de 100 peças variam de 1,5 a 3,0 milímetros.
3) Discreta: 25 moradores de uma localidade.
 Contínua: cor de pele dos moradores.
4) Discreta: 200 tubulações de PVC.
 Contínua: os diâmetros das tubulações compradas pela empresa X variam de 1,5 a 10 
polegadas.
Variáveis Qualitativas
Vimos que variáveis quantitativas expressam quantidades. No entanto, muitas vezes 
precisamos expressar atributos ou qualidades.
Variáveis Qualitativas: variáveis que indicam uma classificação, consistindo 
em atributos ou registros não-numéricos.
As variáveis qualitativas se dividem em dois subgrupos: ordinais e nominais.
Variáveis Qualitativas Ordinais: variáveis que estão classificadas por uma ordem.
Exemplos:
• Os filmes listados a seguir estão classificados por ordem de preferência do público.
1º – Van Helsing
2º – Tróia
3º – Diário de uma motocicleta
A variável é a ordem de preferência.
• A equipe X terminou o campeonato em 4º lugar.
• O 1º colocado do concurso. 
A variável é a ordem de chegada.
• Os cinco primeiros colocados no campeonato de futebol estarão classificados para a 
próxima fase.
A colocação é a variável.
Os exemplos ilustram bem a ordem em que as variáveis analisadas estão dispostas. Fica bem 
claro que a variável ordinal tem a principal característica de indicar uma ordem ou seqüência.
Variáveis Qualitativas Nominais: variáveis que indicam uma classificação. Os 
dados podem ser classificados em categorias, grupos ou marcas.
10
Exemplos:
• Cores dos automóveis de certo modelo.
• Marcas de refrigerante: Coca-Cola, Sprite, Fanta, Mate-Couro, etc.
• Partidos políticos: PMDB, PSDB, PT, PV, PSTU, etc.
• Classificação dos itens de um estoque: A, B, C, D, etc.
Estes exemplos mostram que os dados podem ser classificados sem a necessidade de um 
número, ou seja, podem simplesmente ser mencionados de acordo com uma classe ou categoria a 
que pertencem.
Atividades 
1) Dados os exemplos a seguir, determinar a classificação de cada um deles de acordo com o tipo de 
variável quantitativa (discreta ou contínua) ou qualitativa (nominal ou ordinal).
a) Consumo dos refrigerantes da marca Coca-Cola e Pepsi;
b) 1500 eleitores;
c) Camisas tamanho P;
d) Descrição das classificações dos tenistas pelo ranking da ATP:
1º - Rogerio Federer
2º - Guilhermo Gaudio
3º - Andre Agassi
e) Temperatura em São Gonçalo para hoje: mínima de 28º C e máxima de 35º C;
f) 2.000 pessoas inscritas para as provas do concurso.
2) Elaborar alguns exemplos de variáveis quantitativas discretas e contínuas.
3) Elaborar alguns exemplos de variáveis qualitativas nominais e ordinais.
Planejamento de um estudo Estatístico
Para o planejamento de um estudo estatístico, é de extrema importância considerar os 
seguintes itens:
1 - OBJETIVO
É de grande importância a definição clara do objetivo para um levantamento estatístico, pois 
facilitará a análise dos resultados obtidos.
2 - POPULAÇÃO
É o todo para efeito de análise; é o universo de dados que será analisado. A população deverá 
ser especificada claramente pelo pesquisador. Quanto maior a quantidade de informações 
conhecidas sobre a população,mais fácil será o processo de amostragem.
11
3 - A COLETA DOS DADOS
Deve-se evitar a inclusão de dados desnecessários no processo de amostragem. Essa inclusão 
poderá atrapalhar a análise dos dados, o tempo gasto será maior e o resultado obtido não terá 
finalidade. Os dados ou informações coletadas fazem parte do que é chamado banco de dados, que 
é composto por características numéricas − as variáveis.
Um banco de dados de um levantamento estatístico terá, em geral, várias tabelas com 
múltiplas variáveis.
Banco de dados é uma coleção organizada e inter-relacionada de dados 
persistentes. É o registro de conceitos e informações organizado.Programas de 
computador são utilizados para gerenciar um banco de dados.
4 - GRAU DE PRECISÃO 
Ao iniciar o processo de amostragem, deve-se especificar o grau de precisão desejado nos 
resultados. Deve-se considerar que elevar a precisão da pesquisa implica aumentar o tamanho da 
amostra, o que aumenta também o tempo e o custo. Quanto maior a amostra, maior a precisão do 
resultado, isto é, menor a margem de erro. Por exemplo, uma pesquisa realizada com 10.000 
eleitores para determinar a preferência eleitoral em uma cidade apresenta resultado mais preciso do 
que outra realizada com apenas 1.000 eleitores.
5 - ANÁLISE DOS DADOS
A análise dos dados é realizada através de medidas estatísticas que descrevem o 
comportamento dos dados. É usual organizá-los, primeiramente, em gráficos e tabelas.
6 - CONCLUSÃO
A conclusão é a fase final do processo estatístico, em que os resultados são dispostos e 
avaliados com relação ao objetivo proposto. Os resultados são interpretados de acordo com o 
objetivo da pesquisa, e decisões são tomadas acerca das populações, utilizando-se a inferência 
estatística.
Técnicas de amostragem
O grande problema encontrado para a escolha dos elementos da amostra dentro da população 
está em determinar qual técnica de amostragem deverá ser utilizada. Isto é, qual técnica ou método 
será utilizado para se escolher quais elementos dentro da população serão selecionados para a 
amostra. Existem dois métodos para a seleção da amostra: métodos probabilísticos ou aleatórios e 
métodos não-probabilísticos.
Os métodos probabilísticos são aqueles nos quais todos os itens da população têm a mesma 
probabilidade de ser incluídos na amostra, independentemente da pessoa que realiza a pesquisa. 
12
Já os métodos não-probabilísticos são aqueles em que todos os itens da população têm uma 
oportunidade conhecida de ser incluídos na amostragem. Esses métodos são muito utilizados quer 
pela sua simplicidade, quer pela impossibilidade de se usar os métodos probabilísticos. São também 
conhecidos como amostragem subjetiva ou amostragem por julgamento.
Se o tamanho da amostra é bem pequeno, com menos de 10 itens, por exemplo, a 
amostragem probabilística pode não dar resultados representativos da população, ao passo que uma 
pessoa com conhecimento mais profundo da população pode especificar os elementos que melhor 
representariam a população.
Exemplo: O proprietário de uma rede de 10 postos de gasolina deseja implementar um novo 
serviço de pagamento, com cartão fidelidade para a sua rede de postos. Problemas de custo podem 
fazer com que essa implementação seja experimentada em apenas 3 postos, talvez por apresentarem 
maior número de consumidores, melhor localização e maior faturamento. Em vez de utilizarmos 
uma técnica estatística para a escolha dos postos usados como teste para a implementação do 
serviço de pagamento, é melhor confiar no julgamento e conhecimento do proprietário para fazer a 
escolha. 
Diante de situações como essa, a ênfase será dada aos tipos de amostragens probabilísticas, 
pois tem-se o conhecimento da probabilidade de todas as combinações possíveis e é possível fazer 
uma estimativa do erro da amostra.
Os métodos probabilísticos podem ser com reposição ou sem reposição. 
Amostragem com reposição: cada elemento da população pode ser escolhido 
mais de uma vez na amostra.
Exemplos: 
- Amostragem dos eleitores de uma cidade.
- Amostragem dos consumidores de um determinado produto.
- Amostragem dos moradores de um bairro.
Em todos esses exemplos de amostragem, as pessoas poderão ser entrevistadas novamente, 
ou seja, todos têm a mesma probabilidade de ser escolhidos novamente.
Amostragem sem reposição: cada elemento da população pode ser escolhido 
apenas uma vez na amostra.
Exemplos: 
- Testes de balística. É um teste muito utilizado pela polícia. É um teste destrutivo.
- Testes de resistência de um equipamento eletrônico.
- Verificação da resistência de um copo de vidro.
- Verificação da qualidade de um pára-brisa blindado.
Os itens destrutíveis podem ser escolhidos apenas uma vez, pois torna-se impossível a sua 
reposição.
É importante destacar que, em estudos estatísticos, em que o processo de amostragem 
apresenta um custo elevado, é aconselhável evitar o exame repetido dos elementos.
13
Quatro técnicas de amostragem probabilística serão abordadas:
a) amostragem aleatória simples; 
b) amostragem estratificada; 
c) amostragem por conglomerado;
d) amostragem sistemática.
Essas técnicas se diferenciam pela maneira como a amostra é escolhida dentro da população. 
Amostragem Aleatória Simples
Esta é a técnica mais comumente utilizada para a seleção de amostras. Os processos de amostragem 
aleatória podem ser realizados pela utilização de Tabelas de Números Aleatórios ou por sorteio. 
Tabela de Números Aleatórios é uma tabela que contém todos os algarismos 
de 0 a 9 dispostos isoladamente ou em grupos; podem ser lidos de cima para 
baixo, na mesma coluna, ou da esquerda para a direita. A principal 
característica da tabela é que os algarismos estão dispostos aleatoriamente, isto 
é, não têm uma ordem ou seqüência de aparição.
Para a obtenção de amostras aleatórias utilizando as Tabelas de Números Aleatórios
(TNA)2 adota-se a seguinte seqüência: 
a) Enumeram-se os itens da população de 1 a N.
b) Seleciona-se aleatoriamente um ponto onde iniciar a linha e a coluna da tabela de 
números aleatórios com o mesmo número de algarismos quantos forem os de N.
c) Escolhe-se uma direção, por exemplo, na mesma coluna, de cima para baixo, ou na 
mesma linha, da esquerda para a direita, e anotam-se os números obtidos, descontando 
os números maiores do que N. Prossegue-se na direção escolhida até que se complete a 
amostra.
d) Se a amostragem for com reposição, registram-se as repetições; se for sem reposição, 
abandonam-se as repetições.
O exemplo a seguir ilustra a seleção de uma amostra utilizando uma tabela de números aleatórios.
Exemplo: Há 500 pessoas participando de um seminário sobre Administração de Negócios. Uma 
amostra de 20 participantes deverá ser selecionada para responder a algumas questões. 
Solução:
- De acordo com a seqüência acima, devem-se enumerar todos os participantes do 
seminário de 1 a 500, o que pode ser feito através da distribuição de senhas para cada 
um. 
- Deve-se, agora, escolher aleatoriamente um ponto na Tabela de Números Aleatórios 
onde iniciar a contagem dos 20 números que farão parte da amostra. 
- O próximo passo é anotar os números de três algarismos (porque o maior número de 
14
participantes é 500, isto é, apresenta três algarismos) que forem menores do que 500. A 
leitura dos números deve ser realizada de cima para baixo, da esquerda para a direita. 
- A amostragem não será com reposição, pois a mesma pessoa não poderá responder ao 
mesmo questionário mais de uma vez. Portanto, os números que forem repetidos 
deverão ser descartados, assim como os números maioresdo que 500.
Suponha que o lugar escolhido aleatoriamente na tabela tenha sido a linha 3, coluna 1. O número 
obtido foi o 582. Como não existe uma pessoa com a senha 582, esse número é, então, descartado e 
passa-se ao próximo, na linha imediatamente abaixo. O número 642 também não existe, nem 573 .... 
O primeiro número escolhido é o 347, o segundo é o 196.
O processo deverá continuar até que todos os 20 participantes sejam selecionados. 
Acompanhe a escolha dos 20 números na tabela de Números Aleatórios abaixo:
893 964 947 369 482 587 856 599 617
940 983 628 998 504 083 295 538 421
582 029 022 132 059 193 876 829 600
642 788 787 347 197 306 466 051 514
573 839 569 413 053 345 018 757 998
962 321 451 807 903 573 305 269 102
347 094 672 434 526 648 484 880 950
196 543 307 103 980 243 496 958 835
914 858 766 581 106 386 300 587 490
429 358 059 011 836 405 516 152 484
244 491 061 181 615 372 524 884 762
048 558 743 360 179 586 270 682 234
034 050 200 713 238 039 562 510 134
904 115 097 965 315 753 150 385 593
780 267 433 206 038 568 380 210 111
871 887 982 521 239 209 122 247 780
046 890 074 929 895 174 405 899 497
588 025 444 041 776 785 704 693 233
347 359 725 317 149 796 838 208 545
966 278 274 615 596 414 727 128 406
680 033 223 664 596 469 770 976 981
316 822 520 177 873 567 801 336 665
818 143 839 906 067 276 648 676 961
073 926 758 366 355 831 059 087 227
768 504 733 678 531 024 653 489 120
15
455 231 232 136 542 723 954 290 929
137 955 235 659 752 864 986 774 530
488 342 017 718 957 968 651 743 791
095 481 572 088 631 562 909 456 436
656 094 681 647 161 050 113 977 797
252 554 383 520 287 621 948 327 992
317 347 250 597 127 523 458 717 425
125 609 094 627 370 228 578 600 762
597 039 980 114 989 907 456 550 767
181 938 680 761 416 722 336 348 694
010 541 515 694 281 873 936 621 911
002 605 333 155 824 486 541 393 356
273 587 952 261 273 470 276 026 489
786 587 952 261 273 470 276 026 489
786 879 421 623 217 108 073 414 707
Tem-se uma amostra de 20 participantes com os seguintes números: 
347; 196; 429; 244; 048; 034; 046; 316; 073; 455; 137; 488; 095; 252; 317; 125; 181; 010; 002 e 
273.
Repare que o número 347 aparece duas vezes e, na segunda vez, é descartado, pois já havia 
sido escolhido, e o processo de escolha não permite que o entrevistado responda ao mesmo 
questionário mais de uma vez.
EXERCÍCIO
1) Uma empresa possui 250 funcionários. Escolher uma amostra aleatória simples composta de 
30 pessoas para fazer um levantamento e descrever os passos que serão adotados.
2) Descrever os passos para a escolha aleatória simples de 20 estudantes dentro de uma 
faculdade com 1.000 alunos.
Amostragem Aleatória por sorteio
Outra maneira de realizar uma amostragem simples é por sorteio. 
Exemplo: Deseja-se fazer uma pesquisa de opinião com os eleitores de Salvador. Eles serão 
submetidos a um questionário sobre as propostas dos novos candidatos ao governo.
Torna-se impraticável entrevistar todos os eleitores de um bairro de Salvador sobre as 
propostas dos novos candidatos ao governo, pois a análise tomaria muito tempo e o custo dessa 
pesquisa seria altíssimo. Então, utiliza-se uma amostragem aleatória. Serão escolhidos, 
aleatoriamente, 500 eleitores para a pesquisa. Se o número de moradores do bairro é conhecido e 
todos podem ser listados, então, a escolha desses eleitores pode ser realizada por sorteio.
16
A amostragem aleatória por sorteio é mais simples. Todos os elementos da população 
deverão estar enumerados ou listados. Pode-se utilizar uma urna que contenha todos os números dos 
elementos e, então, iniciar o sorteio. Esse sorteio é realizado de forma semelhante à forma como são 
sorteados os números de jogos da Loteria Federal. Da mesma forma que o exemplo anterior, os 
moradores que já foram entrevistados não deverão participar novamente da pesquisa. Assim, diz-se 
que o processo foi realizado sem reposição, ou seja, todos os itens já escolhidos numa primeira 
amostragem serão descartados quando aparecerem pela segunda vez. Essa é bastante simples, não é 
mesmo?
Amostragem Estratificada
Esta técnica de amostragem é utilizada quando é necessário que haja um representante de 
cada segmento da população incluído na amostra. Por exemplo, para coletar uma amostra dos 
moradores de uma cidade, podem-se dividir as residências por níveis socioeconômicos e depois 
escolher, aleatoriamente, uma amostra dos moradores. É importante que uma característica comum 
seja escolhida para a coleta das informações amostrais. No caso do exemplo, a característica é o 
nível socioeconômico. Dependendo do objetivo da pesquisa, os elementos da população podem ser 
divididos em subgrupos maiores com características similares, como idade, peso, nível social, 
localização geográfica, raça, etc.
Portanto, uma amostragem estratificada é obtida separando-se a população em subgrupos 
com características homogêneas ou similares e selecionando-se, independentemente, uma amostra 
aleatória simples em cada um desses subgrupos.
Existem dois tipos de amostragem estratificada: 
a) as que têm o mesmo tamanho;
b) as proporcionais. 
Na amostragem estratificada de mesmo tamanho sorteia-se um número igual de elementos 
em cada subgrupo. Esse processo é utilizado quando o número de elementos por subgrupo for igual 
ou aproximadamente o mesmo.
Quando cada subgrupo apresenta números diferentes de elementos utiliza-se, então, a 
amostragem estratificada proporcional, em que o número de elementos que devem ser escolhidos 
em cada grupo é proporcional ao número de elementos do grupo. O processo de amostragem é 
realizado da seguinte maneira:
S - é o número de subgrupos;
Ni - é o número de elementos de amostragem no subgrupo i;
N - é o número de elementos da população;
n - é o número de elementos da amostra. 
17
Cada subgrupo possui características similares.
Com isso, têm: N = N1 + N2 + N3 + ... + NS 
Determina-se a fração de amostragem f dada por: f =
n
N
Fração de amostragem é a razão entre o número de elementos da amostra e o 
número total de elementos da população.
O número de elementos sorteados em cada subgrupo é definido pelo produto deste fator f e 
do número de elementos de amostragem em cada subgrupo: 
N1.f, N2.f, ... NS.f
Exemplo: 
Deseja-se obter uma amostra de 20 participantes de um seminário, para aplicação de um 
questionário sobre o tema abordado nas palestras da série “Violência nas Grandes Cidades”. Sabe-
se que a informação que as pessoas prestam está relacionada à região onde moram. O seminário 
possui participantes de 4 Estados brasileiros, sendo assim compostos: 
50 do Rio de Janeiro;
100 de São Paulo;
30 de Minas Gerais e
20 da Bahia.
Como deverá ser realizada a amostragem para se escolher os participantes do seminário?
Solução:
Deve-se utilizar a técnica de amostragem estratificada, pois é importante que se tenham 
representantes de todos os 4 Estados em número proporcional ao número de representantes de cada 
Estado.
O primeiro passo é separar os participantes em subgrupos de Estados. Depois, deve-se fazer a 
amostragem dentro de cada subgrupo.
A população do seminário em questão é de 200 participantes.
18
Os subgrupos serão: 
Rio de Janeiro: N1 50 participantes
São Paulo: N2 100 participantes
Minas Gerais: N3 30 participantes
Bahia: N4 20 participantes.
O tamanho da população é: 
N = N1 + N2 + N3 + N4
N = 50 + 100 + 30 + 20 = 200 participantes
A fração de amostragem será: f=
n
N
= 20
200
=0,10
O número de elementos sorteados em cada subgrupo será definido pelo produto desse fator 
de amostragem f pelo número de elementos de amostragem em cada subgrupo.N1 . f = 50 . 0,10 = 5 participantes escolhidos aleatoriamente no subgrupo 1.
N2 . f = 100 . 0,10 = 10 participantes escolhidos aleatoriamente no subgrupo 2.
N3 . f = 30 . 0,10 = 3 participantes escolhidos aleatoriamente no subgrupo 3.
N4 . f = 20 . 0,10 = 2 participantes escolhidos aleatoriamente no subgrupo 4.
O total de participantes escolhidos por amostragem estratificada foi de 20, sendo 5 do Rio de 
Janeiro, 10 de São Paulo, 3 de Minas Gerais e 2 da Bahia.
Exemplos: 
Deseja-se realizar uma amostra de 1.000 moradores de uma certa cidade para a aplicação de um 
questionário sobre consumo. É necessário que sejam entrevistadas pessoas com rendas baixa, média 
e alta. A cidade possui 2 milhões de habitantes divididos da seguinte maneira:
Renda baixa: 1.400.00 habitantes
Renda média: 500.000 habitantes
Renda alta: 100.000 habitantes
Como deverá ser o plano de amostragem para esta pesquisa?
Solução: 
Deve-se utilizar a técnica de amostragem estratificada, pois é importante que se obtenham 
respostas dos três níveis de renda. Como o número de pessoas em cada nível de renda é diferente, 
utiliza-se a amostragem estratificada proporcional.
O primeiro passo é separar as pessoas em subgrupos de nível de renda e, então, fazer a 
amostragem dentro de cada subgrupo.
A população do cidade é de 2.000.000 de pessoas.
O subgrupos são divididos da seguinte forma: 
Renda baixa: N1 = 1.400.000 pessoas
Renda média: N2 = 500.000 pessoas
Renda alta: N3 = 100.000 pessoas
19
O tamanho da população: 
N = N1 + N2 + N3 
N = 1.400.000 + 500.000 + 100.000 = 2.000.000 pessoas
A fração de amostragem será: f=
n
N
= 1.000
2.000.000
=0,0005
O número de elementos sorteados em cada subgrupo será definido pelo produto do fator de 
amostragem f pelo número de elementos de amostragem em cada subgrupo. Tem-se:
N1 . f = 1.400.000 . 0,0005 = 700 pessoas devem ser escolhidas, aleatoriamente, no subgrupo de 
baixa renda.
N2 . f = 500.000 . 0,0005 = 250 pessoas devem ser escolhidas, aleatoriamente, no subgrupo de 
renda média.
N3 . f = 100.000 . 0,0005 = 50 pessoas devem ser escolhidas, aleatoriamente, no subgrupo de renda 
alta.
O total de pessoas escolhidas nesta amostragem estratificada é de 1.000, sendo 700 de baixa 
renda, 250 de renda média e apenas 50 de renda alta. Viu que não é difícil entender essa história de 
amostragem estratificada proporcional? Agora é só usar sempre que você precisar. 
Amostragem por conglomerado
A amostragem por conglomerado é uma amostra aleatória simples em que cada unidade de 
amostragem é um subgrupo com características heterogêneas, ou um conglomerado de elementos 
representativos da população. São minipopulações. Geralmente são grupos que se acham ligados 
por um pequeno contato físico. Ex.: casas, quarteirões, bairros, etc.
Primeiramente, devem-se especificar adequadamente os conglomerados. O número de 
elementos num conglomerado deverá ser pequeno em relação ao tamanho da população, e o número 
de conglomerados deverá ser razoavelmente grande.
Neste tipo de amostragem, a população é dividida em subgrupos com características 
heterogêneas, e são selecionadas amostras aleatórias simples de subgrupos. Com isso, todos os 
elementos dos subgrupos (conglomerados) selecionados farão parte da amostra.
A amostragem por conglomerado pode ser utilizada quando não se tem uma lista com todos 
os elementos da população ou quando a obtenção dessa listagem é uma tarefa muito longa e cara.
Exemplo 1:
Deseja-se fazer uma pesquisa com os moradores de um bairro da cidade. O objetivo é saber a 
opinião deles sobre a construção de um grande centro de compras.
Como o bairro é grande e não se tem a listagem completa de todos os moradores e sua 
obtenção tornaria a pesquisa muito cara e demorada, utiliza-se uma amostragem por 
conglomerados. Para a realização da amostragem por conglomerados, deve-se separar o bairro em 
subgrupos de características heterogêneas, como, por exemplo, quarteirões. Nos quarteirões tem-se 
uma representação da população de moradores do bairro. O quarteirão pode ser considerado uma 
mini população, pois os moradores de cada quarteirão têm as mesmas características dos moradores 
do bairro.
20
Área do bairro
01 02 03 04 05
06 07 08 09 10
11 12 13 14 15
Essa imagem mostra a área do bairro, composta por 15 quarteirões. Para a escolha dos 
quarteirões, utiliza-se uma amostragem aleatória, e todos os moradores selecionados são 
entrevistados.
Uma amostragem de 4 quarteirões pode ser realizada por sorteio. Colocam-se todos os 
números correspondentes a cada quarteirão dentro de uma urna, de onde serão tirados apenas 4. 
Suponha que tenham sido escolhidos os quarteirões 3, 7, 9 e 15. A todos os moradores desses 
quarteirões serão aplicados os questionários sobre a construção do centro de compras.
Exemplo 2: 
O prefeito de uma cidade deseja realizar uma pesquisa sobre as despesas familiares de seus 
habitantes. 
Uma forma de extrair uma amostra nesta situação consiste em dividir a área total da cidade 
em diversas áreas menores, como quarteirões ou bairros. Selecionam-se, então, aleatoriamente, 
alguns desses quarteirões, com a amostra final constituída de todas as famílias residentes em alguns 
deles.
Nesse tipo de amostragem, torna-se muito menos dispendioso, em termos de custo e tempo, 
trabalhar com uma amostra em que as famílias estão mais próximas, em conglomerados, do que 
com famílias selecionadas aleatoriamente sobre toda a área de uma cidade. 
Se a amostra aleatória fosse realizada em toda a cidade, o custo e o tempo de análise das 
respostas seriam muito maiores, pois os pesquisadores teriam que rodar distâncias mais longas para 
realizar as entrevistas com as famílias.
Diante dos conceitos e características apresentados sobre amostragem por conglomerados, é 
a sua vez de colocar em prática o que aprendeu.
EXERCÍCIO
1) Suponha que uma pesquisa seja realizada na cidade de Petrópolis-RJ. O objetivo é determinar as 
principais marcas de preferência de consumo de determinado produto pelos moradores de cada 
bairro. Elaborar um plano de amostragem dos moradores dos bairros por conglomerados.
21
Amostragem sistemática
A amostragem sistemática consiste em escolher os elementos da população de forma 
periódica, isto é, os elementos da população serão escolhidos em intervalos regulares. Esses 
intervalos serão determinados pela fórmula que definiremos a seguir.
É utilizado um sistema de seleção semelhante ao da amostragem aleatória simples. A 
diferença entre a amostragem aleatória simples e a amostragem sistemática é que esta última utiliza 
um fator periódico para a escolha dos elementos, enquanto a aleatória simples não utiliza critério 
algum. 
Não é aconselhável a utilização deste método nos casos em que os itens estão agrupados ou 
listados em caráter periódico, pois a amostra poderá apresentar características tendenciosas, 
contendo apenas elementos com características semelhantes.
Para obter uma amostragem sistemática é necessário:
1) obter uma lista da população e numerá-la de 1 a N;
2) calcular k=
N
n , onde N é o tamanho da população e n é o tamanho da amostra. O k é 
chamado de passo da escolha;
3) dividir a população em grupos de k elementos;
4) escolher aleatoriamente um número na TNA para determinar onde começar. Os elementos 
seguintes serão escolhidos somando-se ou subtraindo-se k ao número anterior.
Exemplo 1: A tabela a seguir apresenta os lucros líquidos, em reais, obtidos por uma empresa de 
eventos na realização de 30 apresentações de uma mesma banda. Queremos obter uma amostra 
sistemática de 5 valores de lucros líquidos, em reais.
01 02 03 04 05 06 07 08 09 10
20.000 17.500 12.000 10.000 8.000 12.500 11.000 14.000 18.000 15.200
11 12 13 14 15 16 1718 19 20
16.200 15.000 11.000 19.000 28.000 16.800 17.000 11.200 19.600 14.800
21 22 23 24 25 26 27 28 29 30
10.000 15.000 14.000 10.000 9.000 11.500 14.000 13.000 15.000 19.200
Solução: 
• A lista de todos os lucros obtidos na realização dos 30 eventos já está na tabela exibida.
• Deve-se escolher o passo que será utilizado para a escolha dos valores de lucro. O fator passo será:
k=N
n
=30
5
=6
• Então, devem ser escolhidos os lucros com passos de 6 em 6.
• Escolher, na TNA, um número aleatório de apenas um algarismo.
• Suponha que o número escolhido tenha sido o 3; então, o primeiro elemento da amostra de lucro 
22
líquido é o 3. Somando-se k = 6 a esse número obtido na tabela, tem-se uma amostra de 5 itens.
3º + 6 = 9º + 6 = 15º + 6 = 21º + 6 = 27º
01 02 03 04 05 06 07 08 09 10
20.000 17.500 12.000 10.000 8.000 12.500 11.000 14.000 18.000 15.200
11 12 13 14 15 16 17 18 19 20
16.200 15.000 11.000 19.000 28.000 16.800 17.000 11.200 19.600 14.800
21 22 23 24 25 26 27 28 29 30
10.000 15.000 14.000 10.000 9.000 11.500 14.000 13.000 15.000 19.200
Então, os valores de lucro escolhidos pela amostragem sistemática são:
12.000; 18.000; 28.000; 10.000 e 14.000
EXERCÍCIO: Deseja-se selecionar uma amostra sistemática de 10 aparelhos, de um total de 200, 
que estão guardados no estoque. Qual seria o plano de amostragem adotado?
Casos em que uma Amostragem não se justifica
Existem três ocasiões em que é preferível analisar todos os itens de uma população. 
1 - Quando a população é muito pequena. Uma população pode ser considerada pequena 
quando o custo e o tempo de análise dos dados são pouco maiores do que seriam para a realização 
de uma amostra. 
Exemplo: A análise dos dados dos 10 funcionários de uma empresa.
Neste caso, como a população é pequena, torna-se desnecessária a aplicação de uma técnica 
de amostragem. A análise dos dados obtidos de 10 funcionários toma muito pouco tempo e tem 
baixo custo.
2 - Quando há uma grande variação entre as respostas obtidas. A amostra deverá ser muito 
grande para ser representativa da população; uma amostragem pequena pode levar a erros de 
interpretação dos resultados.
Exemplo: Se as respostas dadas a um questionário aplicado a 2.000 moradores de um bairro forem 
muito diferentes umas das outras, é essencial que se trabalhe com uma amostragem muito alta. Essa 
amostragem pode estar próxima do tamanho da população. Nesse caso, opta-se por trabalhar com 
toda a população, pois obtém-se um resultado mais confiável.
3 - Quando é necessária uma precisão muito alta. Nesse caso, a análise da população é a 
opção mais adequada.
Exemplo: Censo demográfico
23
EXERCÍCIO
1) Dar exemplos de amostragem aleatória simples e de amostragem sistemática.
2) Quais são as diferenças que você pode notar entre as amostragens aleatória simples e a 
sistemática?
3) Em que situações é preferível adotar o levantamento e a análise de toda a população, ao 
invés de utilizar uma técnica de amostragem?
4) Uma empresa possui 400 funcionários. Determinar um plano de amostragem aleatória para a 
escolha de 40 funcionários.
5) Você é responsável por determinar a opinião dos profissionais graduados em Administração 
de Empresas e que atuam no mercado de trabalho de uma determinada cidade, sobre a 
produção industrial. Identificar a técnica de amostragem que deverá ser utilizada para cada 
uma das amostras representadas nos itens a, b e c, a seguir.
a) Selecionar aleatoriamente uma empresa e aplicar o questionário aos administradores 
que nela trabalham.
b) Dividir a população de administradores em relação ao ramo de atividade da empresa, 
realizar uma amostra aleatória dos profissionais e fazer perguntas a alguns 
administradores de cada ramo.
c) Listar o nome de todos os profissionais e escolher, aleatoriamente, um certo número 
deles. Os administradores escolhidos serão entrevistados no que diz respeito à produção 
industrial.
Séries Estatísticas 
Não é conveniente apresentar os dados para uma análise exatamente da forma como são 
coletados. Um dos objetivos da Estatística é resumir os dados de forma clara para se ter uma visão 
global das características das variáveis. O principal objetivo desta nossa aula é mostrar as formas de 
apresentação de dados mais utilizadas, de acordo com a variável de interesse.
Após a coleta dos dados, torna-se necessária a disposição deles em tabelas ou gráficos, para 
que haja um melhor entendimento. Na maioria das vezes, eles se encontram na forma bruta, isto é, 
sem qualquer ordenação ou classificação. Portanto, é necessário colocá-los em ordem crescente ou 
decrescente, ou até mesmo classificá-los de acordo com as variáveis que os representam. 
Exemplo: Uma amostra da altura de 122 pessoas presentes em um evento.
Os valores referentes às alturas podem ser colocados em ordem crescente e estar associados a 
um grupo de pessoas que apresentam a mesma altura. Isto é, os valores de alturas estarão 
posicionados em ordem crescente, como apresentado na tabela abaixo.
Alturas, em centímetros Nº de pessoas
150 ├── 160 5
160 ├── 170 25
170 ├── 180 48
180 ├── 190 32
190 ├── 200 10
200 ├── 210 2
Total 122
24
A forma como essa tabela é construída será estudada com maiores detalhes em Distribuição 
de Freqüência.
A disposição dos dados em tabelas evita uma análise errônea, principalmente se os dados e 
informações coletados forem muito extensos.
Com a utilização de tabelas e gráficos, é possível fornecer informações rápidas sobre as 
variáveis em estudo. A tabela é uma apresentação numérica de dados coletados e ordenados de 
forma bem clara; o gráfico é uma apresentação geométrica mais rápida e mais clara de ser 
visualizada. Veja o exemplo de representação gráfica da tabela das alturas, mostrada anteriormente.
Observe que toda representação tabular usa um dos 3 fatores seguintes:
• Fator cronológico ou temporal - determina a época ou o período do tempo em que 
ocorre.
• Fator espacial ou geográfico - determina o local onde ocorre.
• Fator Especificativo ou a espécie do fato - tem somente a espécie do fato ou a 
categoria.
De maneira geral, as representações tabulares são chamadas Séries Estatísticas.
A Série Estatística é um agrupamento dos dados referentes a uma mesma 
ordem de classificação.
Assim, as séries estatísticas podem ser classificadas em:
- Série Temporal
- Série Geográfica
- Série Específica
Vamos aos exemplos de cada um desses 3 tipos de série.
1. Série Temporal
Apresenta somente o fator cronológico ou temporal como variável de análise.
 
25
Exemplo: 
 
 Produção Brasileira de Motos 
 1996-1998 
 Ano Produção (unidades) 
 1996 288.073 
 1997 426.547 
 1998 476.655 
 Fonte: Revista ISTO É – no1546 
 
 
 
Apresentação do tempo: 
 
• Toda série temporal consecutiva deve ser apresentada, em uma tabela, por seus 
períodos inicial e final ligados por um hífen (-). 
Exemplos: 
1991 – 1995 apresenta dados numéricos para os anos de 1991, 1992, 1993, 
1994, 1995; 
Out 1991 – Mar 1992 apresenta dados numéricos para os meses de outubro, 
novembro e dezembro de 1991 e janeiro, fevereiro e março de 1992. 
 
• Toda série temporal não consecutiva deve ser apresentada, em uma tabela, por 
seus períodos inicial e final ligados por barra (/). 
Ex: 1991/1995 apresenta dados para os anos entre 1991 e 1995, deixando de 
apresentar dados numéricos para algum (ns) dos anos desta série. 
 
Série Geográfica: usada para apresentar dados de diferentes regiões geográficas, 
em determinado tempo. 
 
Exemplo: 
 
 Vacinação contra a Poliomielite 
 1993 
 Regiões Quantidade 
 Norte 211.209 
 Nordeste 631.040 
 Sudeste 1.119.708 
 Sul 418.785 
 Centro-Oeste 185.823 
 Fonte: Ministério da Saúde26
Série Categórica: usada para apresentar dados que se distribuem em diferentes 
categorias, em determinado tempo e local. 
Exemplo: 
 
 Avicultura Brasileira 
 1992 
 Espécies Número 
(1.000 cabeças) 
 
 Galinhas 204.160 
 Galos, frangos, frangas e pintos 435.465 
 Codornas 2.488 
 Fonte: IBGE 
 
Séries Mistas ou Conjugadas (tabela de dupla entrada): quando são feitas 
combinações de duas ou mais séries. 
 
Exemplo: 
 
 Exportação Brasileira 
 1985/1995 
Importadores 1985 1990 1995 
América Latina 13,0 13,4 25,6 
EUA e Canadá 28,2 26,3 22,2 
Europa 33,9 35,2 20,7 
Ásia e Oceania 10,9 17,7 15,4 
África e Oriente Médio 14,0 8,8 5,5 
Fontes: MIC e SECEX 
Nota: Valores em percentagem 
 
 
REPRESENTAÇÃO GRÁFICA DAS SÉRIES ESTATÍSTICAS 
 
Os gráficos produzem uma visão mais rápida e viva do fenômeno em estudo, 
ajudando a visualizar as tendências e a interpretar os valores representativos deste 
fenômeno. 
 
Requisitos Fundamentais na Representação Gráfica: 
 
• O gráfico deve ser simples, claro e deve expressar a verdade sobre o fenômeno 
em estudo; 
• Todo gráfico deve ter título e escala, para que possa ser interpretado sem que 
haja necessidade de esclarecimentos adicionais no texto; 
• O título do gráfico pode ser escrito acima ou abaixo do gráfico. O IBGE 
escreve o título acima do gráfico; 
27
 
• As variáveis devem ser claramente identificadas; 
• A escala deve iniciar-se na origem do sistema de eixos cartesianos. Quando os 
valores iniciais dos dados são muito altos, deve ser feita uma interrupção no 
eixo, com indicação clara da posição do zero; 
• O sistema de eixos cartesianos e as linhas auxiliares devem ter traçado mais 
leve do que a parte do gráfico que se pretende evidenciar; 
• Para facilitar a leitura, podem ser feitas linhas auxiliares. Nesses casos, o 
gráfico é feito dentro de um retângulo. 
 
 
Principais Tipos de Gráficos: •••• Diagramas 
 •••• Cartogramas 
 •••• Pictogramas 
 
Cartogramas: São representações através de mapas (cartas geográficas). Este 
gráfico é empregado quando o objetivo é o de relacionar os dados estatísticos 
diretamente com áreas geográficas ou políticas. 
 
Pictogramas: É a representação gráfica através de figuras. Por se tratar de uma 
apresentação atraente, é um gráfico que desperta muito a atenção do leitor. 
 
Diagramas: São gráficos geométricos construídos, em geral, no sistema 
cartesiano. 
 
Principais Diagramas: Gráfico em Linha, Gráfico em Colunas, Gráfico em 
Barras, Gráfico em Colunas ou em Barras Múltiplas e Gráfico em Setores. 
 
Gráfico em Linha: Usado para apresentar as séries temporais. Representado num 
sistema de coordenadas cartesianas, cada par de valores da série corresponde a um 
ponto. Estes pontos são unidos por segmentos de reta. 
Exemplo: 
 
Tabela 1 
 PRODUÇÃO BRASILEIRA DE CAFÉ 
 1991-1995 
 ANOS PRODUÇÃO (1.000 t) 
 1991 2.535 
 1992 2.666 
 1993 2.122 
 1994 3.750 
 1995 2.007 
 FONTE: IBGE 
28
 
PRODUÇÃO BRASILEIRA DE CAFÉ
 1991-1995
0
500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
1991 1992 1993 1994 1995
ANOS
P
R
O
D
U
Ç
Ã
O
 (
1.
00
0t
)
 
 
Regras para a elaboração de um gráfico em linhas: 
 
• Fixe a largura (l) do gráfico; 
• Determine a altura máxima e a altura mínima de acordo com as normas a 
seguir: 
hmín = 60% da largura e hmáx = 80% da largura 
• Determine os limites da escala, dividindo o maior valor a representar pela altura 
máxima e pela altura mínima; 
• Determine a escala, escolhendo um valor, de preferência inteiro, entre os 
valores encontrados para limites; 
• Trace um sistema de coordenadas cartesianas; 
• Determine, graficamente, todos os pontos da série; 
• Ligue esses pontos, dois a dois, por segmentos de reta; 
• Identifique, claramente, as variáveis nos dois eixos; 
• Acrescente o Título, a Fonte e a Legenda (quando necessária). 
 
 
Gráfico em Colunas: Usado para representar as séries cronológicas, geográficas e 
categóricas. Representado por meio de retângulos de mesma base, dispostos 
verticalmente (em colunas). 
 
Exemplo: 
29
 
Tabela 1 
 PRODUÇÃO BRASILEIRA DE CAFÉ 
 1991-1995 
 ANOS PRODUÇÃO (1.000 t) 
 1991 2.535 
 1992 2.666 
 1993 2.122 
 1994 3.750 
 1995 2.007 
 
 
FONTE: IBGE 
 
 
PRODUÇÃO BRASILEIRA DE CAFÉ
 1991-1995
0
500
1.000
1.500
2.000
2.500
3.000
3.500
4.000
1991 1992 1993 1994 1995
ANOS
P
R
O
D
U
Ç
Ã
O
 (
1.
00
0t
)
 
 
 
 
Gráfico em Barras: Usado para representar as séries geográficas e categóricas. 
Representado por meio de retângulos dispostos horizontalmente (em barras). 
 
Exemplo: 
 
30
 
Tabela 2 
 EXPORTAÇÕES BRASILEIRAS 
 MARÇO – 1995 
 ESTADOS VALOR (US$ milhões) 
 São Paulo 1.344 
 Minas Gerais 542 
 Rio Grande do Sul 332 
 Espírito Santo 285 
 Paraná 250 
 Santa Catarina 202 
 FONTE: SECEX 
 
 
E X P O R T A Ç Õ E S B R A S I L E I R A S
 M A R Ç O - 1 9 9 5
0 5 0 0 1 . 0 0 0 1 . 5 0 0
S ã o P a u l o
M i n a s G e r a i s
R i o G r a n d e d o S u l
E s p í r i t o S a n t o
P a r a n á
S a n t a C a t a r i n a 
V a l o r ( U S $ m i l h õ e s )
 
 
 
OBSERVAÇÕES: 
 
1) O procedimento para a construção de um gráfico em colunas (ou barras) é 
análogo ao do gráfico em linhas, observando que no gráfico em barras deve-se 
fazer a inversão nos eixos cartesianos (o eixo x corresponde a altura e o eixo y 
corresponde a largura). 
2) Sempre que os dizeres a serem inscritos forem extensos, deve-se dar preferência 
ao gráfico em barras (séries geográficas e específicas). 
 
 
Gráfico em Colunas ou em Barras Múltiplas: Usado para representar as séries 
conjugadas. 
 
Exemplo: 
31
 
Tabela 3 
 BALANÇA COMERCIAL DO BRASIL 
 1989 – 1993 
ESPECIFICAÇÕES VALOR (US$ 1.000.000) 
 1989 1990 1991 1992 1993 
Exportação (FOB) 34.383 31.414 31.620 35.793 38.783 
Importação 18.263 20.661 21.041 20.554 25.711 
FONTE: Ministério da Fazenda 
 
 
 
BALANÇA COMERCIAL DO BRASIL
 1989-1993
0
5.000
10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
1989 1990 1991 1992 1993
V
al
o
r 
(u
s$
 1
.0
00
.0
00
)
Exportação (FOB) Importação
 
 
 
 
Gráfico em Setores: Construído com base em um círculo, este gráfico é usado 
para comparar proporções. 
 
Exemplo: 
 
32
 
Tabela 4 
 REBANHO SUINO DO SUDESTE DO BRASIL 
 1992 
 ESTADOS QUANTIDADE (mil cabeças) 
 Minas Gerais 3.363,7 
 Espírito Santo 430,4 
 Rio de Janeiro 308,5 
 São Paulo 2.035,9 
 Total 6.138,5 
 FONTE: IBGE 
 
 
REBANHO SUÍNO DO SUDESTE DO BRASIL 1992
55%
33%
5%
7%
Minas Gerais Espírito Santo Rio de Janeiro São Paulo
 
 
 
Regras para a elaboração de um gráfico em setores: 
• Trace uma circunferência. A área do círculo representa o total, isto é, 100%, 
devendo ser dividida em tantos setores quantas sejam as partes. 
• Lembre-se de que uma circunferência tem 360°. Então, se ao total 
correspondem 360°, a cada parte corresponderá um setor cujo ângulo x é dado 
por: 
TOTAL
PARTE
x
360×
= 
• Marque os valores dos ângulos calculados na circunferência e trace os raios, 
separando os setores. 
• Para facilitar a distinção, faça um tracejado diferente em cada setor. 
• Coloque título e legenda no gráfico. 
OBS.: Para clareza dos dados, deve-se usar no máximo sete setores. 
33
 
DISTRIBUIÇÃO DE FREQUÊNCIAS 
 
Freqüentemente, ao coletar dados, o pesquisador se depara com uma grande 
massa de valores numéricos, que se repetem algumasvezes, dificultando sua 
análise e interpretação. Surge então a necessidade de organizar esses dados em 
uma tabela onde os valores observados se apresentam associados individualmente 
ou em classes com os números de suas repetições, isto é, com suas respectivas 
freqüências. Esta tabela recebe o nome de Distribuição de Freqüências. 
 
De acordo com a disposição dos dados têm-se dois tipos de distribuição: 
 
 Distribuição de Freqüências Simples (dados não agrupados ou não 
tabulados em classes de valores) 
 
É uma tabela onde os valores da variável analisada aparecem individualmente 
correlacionados com os números de suas repetições (freqüências). 
 
Esse tipo de distribuição é normalmente usado para representar variáveis 
discretas. 
 
Exemplo: 
 
Tabela 1 
 
Número de Acidentes Registrados na ponte Rio-Niteroi em Janeiro de 2009 
Nº de Acidentes Nº de Dias 
0 18 
1 5 
2 2 
3 2 
4 3 
5 1 
Total 31 
 FONTE: Dados Hipotéticos 
 
 
 Distribuição de Freqüências por Classes (dados agrupados ou 
tabulados em classes de valores) 
 
Quando a variável analisada apresenta um grande número de valores torna-se 
mais vantajoso o agrupamento destes em classes de freqüência, evitando assim 
grande extensão da tabela e facilitando a visualização do fenômeno como um todo. 
 
34
 
A distribuição de freqüências por classes é uma tabela onde os valores 
observados são agrupados em classes, isto é, em intervalos de variações da variável 
em questão. 
Esse tipo de distribuição é normalmente usado para representar variáveis 
contínuas. É utilizada também para representar variáveis discretas em um grande 
número de valores observados. 
 
Exemplo: 
Tabela 2 
Salários dos funcionários da UERJ
Salários (R$) Nº de funcionários 
1000 1200 2 
1200 1400 6 
1400 1600 10 
1600 1800 5 
1800 2000 2 
Total 25 
 FONTE: Dados Hipotéticos 
 
 
A seguir são apresentados alguns conceitos fundamentais para a compreensão 
dessas séries. 
 
 
Dados Brutos 
 
É a apresentação dos dados observados na seqüência em que foram coletados, isto 
é, sem nenhuma ordenação numérica. 
 
Exemplo: 
O número de peças defeituosas obtidas da produção de uma máquina durante vinte 
dias foi: 
2 – 4 – 2 – 1 – 2 – 3 – 1 – 0 – 5 – 1 – 0 – 1 – 1 – 2 – 0 – 1 – 3 – 0 – 1 – 2 
 
 
Rol 
 
É a organização dos dados brutos em ordem crescente ou decrescente. 
 
Exemplo: 
O rol do exemplo anterior é: 
0 – 0 – 0 – 0 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 2 – 2 – 2 – 2 – 2 – 3 – 3 – 4 – 5 
 
 
35
 
Amplitude Total (AT) 
 
É a diferença entre o maior valor e o menor valor da seqüência dos dados 
observados. 
 
AT = valor máximo – valor mínimo 
 
Exemplo: 
A amplitude total do rol apresentado é: AT = 5 – 0 = 5 
 
 
Freqüência Absoluta Simples (ou simplesmente freqüência) 
 
Denotada por Fi, a freqüência indica o número de ocorrências de cada valor ou o 
número de valores pertencentes a uma classe. 
 
 Na Tabela 1: F6 = F(5) = 1 
 
Na Tabela 2: F2 = 6 
 
 
 
a) Escreve-se, ordenadamente, os dados observados na coluna indicadora. 
b) Obtém-se as freqüências absolutas simples dos dados (Fi). Essas freqüências 
constituem o corpo da tabela. 
 
Exemplo: 
 
Sejam os dados abaixo representativos de uma pesquisa sobre o número de irmãos 
de 20 alunos da Turma Biologia/Geografia. 
 
Dados Brutos: 
1 – 3 – 0 – 5 – 2 – 1 – 1 – 0 – 0 – 1 – 4 – 3 – 1 – 0 – 1 – 2 – 2 – 1 – 3 – 1 
 
Rol: 
0 – 0 – 0 – 0 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 2 – 2 – 2 – 3 – 3 – 3 – 4 – 5 
 
A distribuição de freqüências do rol apresentado é: 
 
Regras para a elaboração de uma Distribuição de Freqüências Simples
36
 
Tabela 3 
 
Número de Irmãos de 20 alunos da Turma Geo/Bio 
i Número de Irmãos (xi) Repetições (Fi) 
1 0 4 
2 1 8 
3 2 3 
4 3 3 
5 4 1 
6 5 1 
 Total � Fi = 20 
 
1ª Coluna (i) – número de ordem dos valores distintos da variável número de 
irmãos. 
2ª Coluna (xi) – valores distintos da variável número de irmãos. 
3ª Coluna (Fi) – número de repetições dos valores distintos da variável número de 
irmãos. 
 
Nota: 
k
i
i 1
F n
=
=� , onde n é igual ao número de dados observados (n = 20) 
 
Observa-se que neste tipo de tabela não há perda de informação, podendo os dados 
originais serem reconstituídos a partir da distribuição elaborada. 
 
 
1.6.4 Tipos de Freqüências 
 
Para a interpretação dos resultados de uma pesquisa, conforme os tipos de 
informações requeridas utilizam-se diversos tipos de freqüências de dados. 
 
A seguir serão apresentados os tipos de freqüências, derivados da distribuição de 
freqüências absolutas, bastante úteis na interpretação de dados. 
 
 
 
Freqüência Total 
 
É a soma de todas as freqüências absolutas simples em uma tabela. 
 
k
i
i 1
F n
=
=� 
 
37
 
A freqüência total de uma distribuição de freqüências é igual ao número total de 
observações (n). 
 
Exemplo: 
 
Na Tabela 3, temos: 
 
6
i 1 2 3 4 5 6
i 1
F F F F F F F 4 8 3 3 1 1 20
=
= + + + + + = + + + + + =� 
 
 
 
Freqüência Relativa Simples, ou simplesmente, Freqüência Relativa 
 
Simbolizada por fi, a freqüência relativa simples fornece a proporção de cada valor 
ou de casos ocorridos em cada classe, em relação ao número total de observações. 
Portanto, é um número relativo. Para calcular a freqüência relativa, basta dividir a 
freqüência absoluta da ordem em questão pelo número de observações. 
 
n
F
f ii = 
 
As comparações expressas através de porcentagem são mais usuais. Para obter a 
porcentagem de cada valor ou de casos ocorridos em cada classe, multiplica-se o 
quociente obtido por 100, ou seja: 
i
i
F
f 100
n
= × 
 
Nota: 
k
i
i 1
f 1
=
=� ou 100% 
Exemplo: 
 
Na Tabela 3, temos: 
 
1
1
F 4
f 0,20 100 20
20 20
= = = × = % 
 
2
2
F 8
f 0,40 100
20 20
= = = × = 40% 
 
3
3
F 3
f 0,15 100 15
20 20
= = = × = % 
38
 
4
4
F 3
f 0,15 100 15
20 20
= = = × = % 
 
5
5
F 1
f 0,05 100 5
20 20
= = = × = % 
 
6
6
F 1
f 0,05 100 5
20 20
= = = × = % 
 
 
Freqüência Absoluta Acumulada 
 
Denotada por Faci, a freqüência absoluta acumulada fornece a informação de 
quantos elementos se situam até determinado valor. A freqüência acumulada do i-
ésimo valor ou i-ésima classe (freqüência acumulada de ordem i) é obtida 
somando-se a freqüência desse valor ou classe com as freqüências anteriores, ou 
seja, é a soma de todas as freqüências de ordens menores ou igual a da ordem em 
questão. 
 
Exemplo: 
Fac3 = 
3
i 1=
� Fi = F1 + F2 + F3 
 
Fac4 = 
4
i 1=
� Fi = F1 + F2 + F3 + F4 
 
Exemplo: 
 
Na tabela 3, temos: 
 
Fac1 = F1 = 4 Fac4 = F1 + F2 + F3 + F4 = 15 + 3 = 18 
 
Fac2 = F1 + F2 = 4 + 8 = 12 
 
Fac5 = F1 + F2 + F3 + F4 + F5 = 18 + 1 = 19 
Fac3 = F1 + F2 + F3 = 12 + 3 = 15 Fac6 = F1 + F2 + F3 + F4 + F5 + F6 = 19 + 1 = 20 
 
Freqüência Acumulada Relativa 
 
Denotada por faci, fornece a proporção de elementos situados até determinado 
valor. Consiste na soma da freqüência relativa de cada valor ou classe com as 
freqüências relativas dos valores ou classes anteriores, ou seja, é a soma das 
freqüências simples relativas de ordens menores ou iguais a da ordem em questão. 
. 
39
 
Exemplo: 
fac3 = 
3
i 1=
� fi = f1 + f2 + f3 
 
Exemplo: 
Na tabela 3, temos: 
 
fac1 = f1 = 0,20 = 20% 
 
fac2 = f1 + f2 = 0,20 + 0,40 = 0,60 = 60% 
 
fac3 = f1 + f2 + f3 = 0,60 + 0,15 = 0,75 = 75% 
 
fac4 = f1 + f2 + f3 + f4 = 0,75 + 0,15 = 0,90 = 90% 
 
fac5 = f1 + f2 + f3 + f4 + f5 = 0,90 + 0,05 = 0,95 = 95% 
 
fac6 = f1 + f2 + f3 + f4 + f5 + f6 = 0,95 + 0,05 = 1 = 100%A freqüência relativa acumulada de ordem i pode ser também calculada através do 
quociente: 
= �
�
���
���
�
 
Exemplo: 
 
3
15
fac 0,75 75
20
= = = % 
 
Com relação à Tabela 3, utilizando todos os tipos de freqüências definidas 
anteriormente, podemos construir a seguinte distribuição de freqüências: 
 
 
Tabela 4 
Número de Irmãos de 20 alunos da Turma Geo/Bio 
i xi Fi fi fi (%) Faci faci faci(%) 
1 0 4 0,20 20 4 0,20 20 
2 1 8 0,40 40 12 0,40 40 
3 2 3 0,15 15 15 0,75 75 
4 3 3 0,15 15 15 0,90 90 
5 4 1 0,05 5 5 0,95 95 
6 5 1 0,05 5 5 1,00 100 
Total 20 1,00 100 − − − 
FONTE: Dados Fictícios 
40
 
Interpretação: 
 
• f3 = 0,15; 15% dos alunos responderam que têm 2 irmãos. 
• F2 = 8; 8 alunos responderam que têm 1 irmão; 
• fac3 = 0,75; 75% dos alunos responderam que têm entre 0 e 2 irmãos. 
Representação Gráfica de uma Distribuição de Freqüências Simples 
 
A distribuição de Freqüências Simples é representada graficamente por um Gráfico 
em Hastes, um diagrama onde as freqüências são representadas por segmentos de 
retas perpendiculares ao eixo das abcissas. Cada segmento é determinado pelos 
pontos (xi,Fi) e (xi,0). 
 
 
Exemplo: Representação gráfica da Tabela 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCÍCIOS COMPLEMENTARES
 
1. Considere a seguinte distribuição de freqüências correspondente aos diferentes 
preços de um determinado produto pesquisados em 20 lojas. 
 
Preços do Produto A 
i Preço (R$) Número de Lojas 
1 50 2 
2 51 5 
3 52 6 
4 53 6 
5 54 1 
Total 20 
FONTE: Dados Fictícios 
0 1 2 3 4 5 xi (numero de irmãos) 
Fi 
1 
3 
4 
8 
41
 
a) Quantas lojas apresentam preços de R$ 52,00? 
b) Determine as freqüências relativas simples e as freqüências absolutas 
acumuladas. 
c) Quantas lojas apresentaram um preço de até R$ 52,00 (inclusive)? 
d) Qual é a percentagem de lojas com preços de até R$ 53,00 (inclusive)? 
 
2. A distribuição de freqüências a seguir apresenta o número de acidentes por dia, 
durante 40 dias, em determinado cruzamento. 
 
Número de Acidentes no Cruzamento X 
i Nº de Acidentes por dia 
(xi) 
Número de Dias 
(Fi) 
1 0 30 
2 1 5 
3 2 3 
4 3 1 
5 4 1 
 Total 40 
FONTE: Dados Fictícios 
 
a) Determine as freqüências absolutas acumuladas, as freqüências simples 
relativas e as freqüências acumuladas relativas. 
b) Após ter determinado as freqüências acima, interprete todos os resultados da 3ª 
linha da distribuição de freqüências. 
 
 
3. Em uma amostra de 30 milheiros de telhas recebidas pela Construtora ABC 
Ltda, constatou-se os seguintes números de unidades defeituosas por milheiro: 
 
5 – 20 – 10 – 5 – 40 – 30 – 20 – 5 – 10 – 15 – 10 – 30 – 40 – 10 – 50 – 10 – 
30 – 15 − 20 – 40 – 10 – 20 – 20 – 50 – 10 – 40 – 30 – 20 – 0 – 30 
 
a) Agrupar estes dados em uma distribuição de freqüências simples. 
b) Representá-la através de um gráfico conveniente. 
c) Calcular todos os tipos de freqüências conhecidos. 
d) Qual a percentagem de milheiros com mais de 30 telhas defeituosas? 
e) Quantos milheiros tiveram menos de 10 telhas defeituosas? 
f) Qual a proporção de milheiros com menos de 20 telhas defeituosas? 
 
 
42
 
4. Dada a distribuição de freqüências: 
 
Indústria de Equipamentos Eletrônicos – IEE 
Número de Falhas em Componentes durante o período 
de garantia 
Janeiro de 2009 
i Nº de Falhas 
(xi) 
Número de Equipamentos 
(Fi) 
1 0 148 
2 1 52 
3 2 34 
4 3 26 
5 4 13 
6 5 7 
 Total 280 
FONTE: Dados Fictícios 
 
a) Determinar as freqüências relativas percentuais, as freqüências acumuladas e as 
freqüências relativas acumuladas percentuais. 
b) Através das freqüências calculadas, responder qual a porcentagem de: 
b.1) equipamentos que não apresentaram falha em seus componentes; 
b.2) equipamentos que apresentaram pelo menos uma falha em seus componentes; 
b.3) equipamentos trocados, sabendo-se que a indústria se compromete a trocar o 
equipamento que apresente 4 ou mais falhas em seus componentes. 
 
 
5. Considere os seguintes números. 
 
1 3 5 7 9 2 4 6 8 10 15 20 25 
0 1 2 3 4 5 6 7 8 9 9 8 7 
8 6 5 4 3 2 1 0 10 15 20 25 12 
8 11 6 4 2 1 3 5 7 9 11 
 
a) Construa a distribuição de freqüências simples. 
b) Representá-la através de um gráfico conveniente. 
c) Calcular todos os tipos de freqüências conhecidos. 
 
 
 
 
 
 
 
 
43
 
Intervalo de Classe ou Classe 
 
Classes são intervalos de variações da variável, ou seja, é cada um dos grupos de 
valores em que se subdivide a amplitude total do conjunto de valores observados 
da variável. 
 
Uma determinada classe pode ser identificada por seus extremos ou pela ordem em 
que ela se encontra na tabela (valor do índice i) 
 
O número de classes de uma distribuição de freqüências será denotado por k. 
 
A notação indica intervalo fechado à esquerda. Assim, na Tabela 2, um 
funcionário que apresentou salário de R$ 1400,00 pertence à classe 
1400 1600, ou terceira classe (i = 3). 
 
Existem diversas maneiras de expressar as classes: 
a) a b compreende todos os valores entre a e b, incluindo a e b 
b) a b compreende todos os valores entre a e b, excluindo a 
c) a b compreende todos os valores entre a e b, excluindo b 
d) a b compreende todos os valores entre a e b, excluindo a e b 
 
Em nosso curso usaremos a forma expressa em “c)”. 
 
 
Limites de Classe 
 
São os valores extremos de cada classe. O menor valor denomina-se limite inferior 
da classe i (li) e o maior, limite superior da classe i (Li). 
 
Assim, na quarta classe da Tabela 2 tem-se l4 = 1600 e L4 = 1800. 
 
 
Amplitude do Intervalo de Classe (h) 
 
A amplitude do intervalo de classe é o comprimento da classe, sendo definida 
como a diferença entre o limite superior e o limite inferior da classe. 
 
hi = Li − li 
 
Exemplo: 
 
Na Tabela 2, temos: 
h1 = 1200 – 1000 = 200 
h2 = 1400 – 1200 = 200 
44
 
Em geral h1 = h2 = h3 = ... = h k = h, e determina-se a amplitude do intervalo 
fazendo: 
 T
A
h
k
= 
Exemplo: Dados: AT = 64 e k = 7. Temos: h = 
64
7
 = 9,14 ≈ 10 
 
Nota: Sugere-se sempre aproximar o valor encontrado para o inteiro superior. 
 
Número de Classes (k) 
 
Não existe uma regra fixa que forneça o número de classes. No entanto, como o 
objetivo da distribuição de freqüências é facilitar a compreensão dos dados, é 
importante que a distribuição contenha um número adequado de classes. Se este 
número for escasso, os dados originais ficarão tão comprimidos que pouca 
informação poderá ser extraída da tabela. Se por outro lado forem utilizadas várias 
classes, haverá algumas com freqüências nulas ou muito pequenas e o resultado 
será uma distribuição irregular e prejudicial à interpretação do fenômeno como um 
todo. Na prática esse número não deve ser superior a 20 nem inferior a 5. Se a 
quantidade de dados for pequena não se justifica a construção de uma tabela, e se 
for grande, mais de 20 classes dificulta a análise. 
 
Em função do total de observações existem vários métodos que orientam a escolha 
de um número de classes conveniente. Seguem-se os dois mais utilizados: 
 
a) Regra da Raiz Quadrada 
 
k = 5 para n ≤ 25 
k = n para n > 25, onde n é o número de observações. 
 
 Exemplo: 
 Para n = 30, o número de classes será 48,530 = ≈ 5. 
 
 
b) Regra de Sturges 
k = 1 + 3,3 log n, 
 
onde: n = número de observações. 
 
Exemplo: 
 
Para n = 30, tem-se: k = 1 + 3,3 log 30 ≈ 6. 
 
45

Continue navegando