Buscar

Aula 2 Estrutura Atômica

Prévia do material em texto

Docente: Shirlene Kelly Santos Carmo
Pau dos Ferros, 25 de outubro de 2018.
Aula 2 – Estrutura Atômica
Universidade Federal Rural do Semi-Árido
Disciplina: Química Geral 
shirlene@ufersa.edu.br
O Átomo
O ÁTOMO
Atomismo Filosófico Cultura Grega
Demócrito de Abdera (470-390 a.C)
Batizou o conceito de átomo como partículas indivisíveis muito pequenas que constituiam a matéria.
Foi largamente combatido.
Atomismo Filosófico Cultura Grega
Aristóteles (384 a 322 a.C)
Defendia a continuidade da matéria;
A matéria para ele era composta de quatro elementos: terra, ar, água e fogo.
Para ele, a matéria pode ser dividida infinitamente, sendo sempre possível fazer uma nova divisão.
Suas idéias prevaleceram até o século XVI.
A descoberta da Estrutura Atômica – Modelos Atômicos
Cada elemento é composto de átomos.
Todos os átomos de um elemento são idênticos. Átomos de elementos diferentes tem massas diferentes.
Nas reações químicas, os átomos não são alterados, porém trocam de parceiros para produzir novas substâncias.
Os compostos são formados quando átomos de mais de um elemento se combinam.
	
Dalton (1803) – Modelo da bola de bilhar
Modelos Atômicos
J. J. Thomson (1897)
		J. J. Thomson (1897) descobriu os elétrons em experimentos do Raios Catódicos. Para Thomson, os átomos são divisíveis. Através de uma experiência, ele comprovou a natureza elétrica da matéria, considerou que o átomo contêm minúsculas partículas com carga negativa chamadas elétrons. 
Modelos Atômicos
Thomsom (1897) – Tubos de raios catódicos
Modelos Atômicos
e e m, carga e massa do elétron;
k e k’, constantes definidas pelas características do aparelho;
x e y são os desvios do feixe de elétron, sobre a ação de cada campo aplicado.
Thomsom (1897) – Proporção carga-massa do elétron
-1,76 x 108 C/g
Modelos Atômicos
Millikan (1909) – Experimento da gota de óleo
Modelos Atômicos
q, r, u’ e d, respectivamente, carga, raio, velocidade e densidade das gotículas de óleo;
h, viscosidade do ar;
g, aceleração da gravidade;
E, intensidade do campo aplicado.
Carga com múltiplos de -1,60 x 10-19 C
me = 9,1 x 10 -31 Kg 
Massa e carga do elétron 
Modelos Atômicos
Thomson, então, propôs um modelo para o átomo que levava em consideração essas novas propriedades
Este modelo para o átomo foi conhecido por “pudim de passas” 
Como a matéria no estado normal se apresenta neutra, deveria haver uma quantidade de carga positiva para neutralizar a carga desses elétrons
Modelos Atômicos
Como o átomo no estado normal é neutro, deveria haver uma quantidade igual de elétrons (carga negativa) e de carga positiva. 
A carga positiva se encontrava diluída e seria a maior parte do átomo e responsável por toda a sua massa praticamente
Modelos Atômicos
E. Rutherford (1911) 
		Rutherford, descobriu o núcleo e propôs a base para a estrutura atômica moderna através de seu experimento do desvio da partícula alfa. Para Rutherford, os átomos são compostos de duas partes: o núcleo e a parte extra-nuclear. Seus experimentos provaram que o átomo é amplamente vazio e que possui um corpo altamente carregado positivamente em seu centro chamado núcleo. O núcleo central é carregado positivamente e os elétrons, com carga negativa, revolvem ao redor do núcleo. 
Experimento da partículas a
Modelos Atômicos
Geiger e Marsden (dois colaboradores de Rutherford) elaboraram um experimento no qual partículas α incidiam sobre uma lâmina de ouro 
De acordo com o Modelo de Thomson para o átomo era esperado que
As partículas α deveriam sofrer pequenos desvios na sua trajetória!
Modelos Atômicos
Modelos Atômicos
Experimento de Rutherford
Modelos Atômicos
Conclusão
	Rutherford demonstrou também a existência de uma partícula de massa muito maior que a do elétron, de carga de igual grandeza, mas de sinal contrário, portanto, positiva, que compõe o núcleo dos átomos, denominada próton.
	Rutherford sugeriu uma estrutura planetária, semelhante ao sistema solar, onde o núcleo corresponde ao sol e os elétrons aos planetas que se movimentas num espaço vazio em órbitas fixas.
Modelos Atômicos
Núcleo de carga positiva (constituído por prótons e nêutrons assim por ele denominadas) que continha praticamente toda a massa do átomo.
Elétrons com cargas negativas girando ao redor do núcleo em trajetórias circulares.
Conhecido como modelo “Planetário”
Teoria atômica de Bohr: Origens da Teoria Quântica
	Quando os átomos reagem, são os elétrons que interagem. A distribuição dos elétrons no átomo é chamada estrutura eletrônica. O melhor entendimento sobre a estrutura eletrônica é resultado da teoria quântica.
	Havia um problema sério com o modelo atômico de Rutherford: de acordo com todos os princípios da física conhecidos em 1911, um átomo contendo um núcleo pequeno positivamente carregado deveria ser instável.
	Dois anos depois de Rutherford ter lançado sua proposta, Niels Bohr tentou resolver o aparente paradoxo analisando a estrutura atômica utilizando a Teoria quântica da energia, o qual havia sido desenvolvido por Max Plank, em 1900.
Origem da Teoria Quântica
Teoria Clássica da Radiação
	Vemos a maioria dos objetos devido à luz que é refletida por eles. A Idéia que a luz é constituída por ondas eletromagnéticas deslocando-se no espaço foi aceita sem contestação, até 1900. Ou seja, todos os experimentos que utilizassem a luz poderiam ser explicados, imaginando-a como uma combinação de campos elétricos e magnéticos oscilantes propagando-se pelo espaço (ondas eletromagnéticas). 
	
	
Natureza Ondulatória da Luz
Natureza Ondulatória da Luz
Natureza Ondulatória da Luz
c=λ . ν
Velocidade da luz
Comprimento de onda
frequência
	A radiação eletromagnética se movimenta através do vácuo com uma velocidade de 3,00 x 108 m/s.
Natureza Ondulatória da Luz
Natureza Ondulatória da Luz
Espectro Eletromagnético 
A radiação visível tem comprimentos de onda entre 400 nm (violeta) e 750 nm (vermelho).
	O espectro elétromagnético é o conjunto de radiações eletromagnéticas conhecidas. De todas as radiações eletromagnéticas, apenas a luz é captada pelo olho humano. Existem contudo outras radiações muito importantes, mas que o nosso olho não consegue captar:
26
Espectro Eletromagnético 
	Todo composto químico, quando levado à chama emite luz com cor característica. Por exemplo, na figura abaixo podem ser vistas as cores para diversos compostos metálicos quando levados à chama.
Espectro Eletromagnético 
- Quem apresenta menor frequência?
- Quem apresenta maior frequência?
Li
K
Energia Quantizada e fótons
Plank (1900)
	Apesar de o modelo ondulatório da luz explicar muitos aspectos de seu comportamento, existem vários fenômenos que ele não pode explicar.
Planck: a energia só pode ser liberada (ou absorvida) por átomos em certos pedaços de tamanhos mínimos, chamados quantum. 
 A relação entre a energia e a frequência (v) , onde h é a constante de Planck (6,626 X 10-34 J.s).
 E = h v Energia do Fóton
Para entender a quantização, considere a subida em uma rampa versus a subida em uma escada:
 Para a rampa, há uma alteração constante na altura, enquanto na escada há uma alteração gradual e quantizada na altura.
A radiação que varre uma matriz completa de diferentes comprimentos de onda é chamada de contínua.
Energia Quantizada e fótons
A Luz
É a energia radiante em forma de partícula emitida sob certas circunstâncias pelos átomos e que pode ser detectada pela nossa retina. 
O Quantum
A emissão dessa energia pelos átomos não se dá de uma maneira contínua, mas aos saltos, em pequenas quantidades denominadas ‘quanta’. É o chamado salto quântico da Física quântica; logo, dizemos que a energia é quantizada ou discreta ao invés de contínua. 
O Fóton 
Em 1905, Einstein desenvolveu a idéia, proposta por Planck, de que a energia de um feixe de luz concentrava-se em pacotes, os fótons. O quantumde energia luminosa é o fóton.
Energia Quantizada e fótons
Espectro de Linhas
	O espectro produzido constitui-se de uma faixa contínua de cores. O arco-íris por exemplo, contendo luz de todos os comprimentos de onda, é chamado de espectro contínuo.
Espectro de Linhas
	O espectro descontínuo de cada elemento serve para identificá-lo e cada uma das linhas ou raias é caracterizado por um λ (comprimento de onda).
A visão moderna da estrutura Atômica 
Bohr(1913) 
Rutherford supôs que os elétrons orbitavam o núcleo da mesma forma que os planetas orbitam em torno do sol;
Entretanto, uma partícula carregada movendo em uma trajetória circular deve perder energia;
Isso significa que o átomo deve ser instável de acordo com a teoria de Rutherford;
Bohr observou o espectro de linhas de determinados elementos e admitiu que a luz emitida por substâncias químicas quando levadas à chama ou sob efeito de um campo elétrico, ocorre porque os elétrons absorvem energia (térmica ou elétrica) e depois emitem a energia recebida na forma de luz.
34
	De acordo com o modelo de Bohr, o elétron no átomo de hidrogênio percorre uma órbita circular de raio r, concêntrica em relação ao núcleo. Ele admitiu ainda, que o núcleo consiste de um único próton, cuja massa era muito superior à do elétron. Neste caso, pode-se considerar que o centro de massa do átomo esteja em cima do núcleo, isto é, toda a massa do átomo está centrada no núcleo.
Modelos Atômicos
Modelos Atômicos
	Após muita matemática, Bohr mostrou que a energia de cada orbita é dada por:
	onde n é o número quântico principal (por exemplo, n = 1, 2, 3, … ).
Modelos Atômicos
	O novo modelo de Bohr pode ser resumido nos seguintes postulados:
Um elétron descreve órbitas circulares ao redor do núcleo;
As orbitas diferem entre si pelo raio e pela quantidade de energia;
Um elétron pode encontrar-se em uma série limitada de orbitas;
A passagem de um elétron de uma orbita para outra envolve absorção ou emissão de energia, conforme o elétrons se mova para a órbita mais externa ou mais interna, respectivamente;
Enquanto permanecer em uma orbita, o elétrons é dito estacionário e não emite energia;
Cada órbita é caracterizada por um número quântico(n), que pode assumir valores inteiros(1,2,3,....).
Modelos Atômicos
Conceito Atômico Atual
Pode-se imaginar um átomo como uma partícula com duas regiões diferentes: o núcleo, no qual encontramos prótons e neutros, e a eletrosfera, na qual estão os elétrons conforme figura a seguir.
Em azul claro está representada a eletrosfera, na ficam os elétrons (círculos azuis). Os prótons (círculos vermelhos) e os nêutrons (círculos pretos) encontram-se no núcleo.
Conceito Atômico Atual
Conceito Atômico Atual
	Costuma-se representar um elemento químico (X) em termos de duas grandezas: o número atômico (Z) e a massa atômica (A), juntamente com o símbolo do elemento, conforme esquema a seguir.
O número atômico representa o número de prótons que o átomo possui;
A massa atômica representa a massa total do átomo, ou seja, basicamente a soma do número de prótons e de nêutrons, expressa em u.m.a..
A diferença entre a massa atômica e o número atômico é igual ao número de nêutrons no núcleo. 
Conceito Atômico Atual
	Por convenção, o número atômico aparece sempre escrito como, por exemplo:
	O significa que o átomo de carbono tem numero atômico a 6 (6 prótons) e massa atômica igual a 12 (6 prótons + 6 nêutrons).
Conceito Atômico Atual
Isótopos	
	Todos os isótopos de um átomo têm em comum o número atômico (Z) e consequentemente o mesmo número de elétrons, produzindo assim uma carga total nula. Eles diferem uns dos outros apenas pela massa atômica.
Conceito Atômico Atual
Isóbaros	
	São átomos com a mesma massa atômica (A), mas com diferentes números de prótons (elementos diferentes). 
Conceito Atômico Atual
Isótonos	
	São átomos que possuem a mesma diferença entre a massa atômica(A) e o número atômico (Z). Eles possuem, portanto, o mesmo número de nêutrons (n).
Conceito Atômico Atual
Mecânica Quântica
	Em 1926 Erwin Schrödinger formulou a equação de onda de Schrödinger, que descreve o comportamento ondulatório como o de uma partícula do elétron. Seu trabalho abriu uma nova maneira de lidar com partículas subatômicas, conhecida como Mecânica Quântica ou Mecânica Ondulatória.
	A resolução da equação de Schrödinger leva a uma série de funções matemáticas, chamadas funções de onda, que descrevem a questão ondulatória do elétron.
A função de onda  ( psi).
 A mecânica quântica altera a maneira de pensarmos sobre o movimento das partículas. No cotidiano, a trajetória de uma bola, a cada instante, é dada pela sua posição e velocidade (ou momento, massa x velocidade).
 Pensamos assim, numa trajetória contínua para corpos em movimento. Na teoria de Bohr, o elétron, assim se imagina, orbitando em torno do núcleo, da maneira parecida com o movimento da Terra em torno do Sol. 
 A mecânica quântica altera em muito esta visão. 
 Em 1927, Werner Heisenberg mostrou que era impossível conhecer, simultaneamente, com absoluta exatidão, a posição e o momento de uma partícula como o elétron.
Mecânica Quântica
Mecânica Quântica
Mecânica Quântica
Mecânica Quântica
O modelo atômico ATUAL
 Se sabe que os elétrons possuem carga negativa, massa muito pequena e que se movem em órbitas ao redor do núcleo atômico.
 O núcleo atômico é situado no centro do átomo e constituído por prótons que são partículas de Carga elétrica positiva, cuja massa é aproximadamente 1.837 vezes superior a massa do elétron, e por nêutrons, partículas sem carga e com massa ligeiramente superior a dos prótons.
 O átomo é eletricamente neutro, por possuir números iguais de elétrons e prótons.
 O número de prótons no átomo se chama número atômico, este valor é utilizado para estabelecer o lugar de um determinado elemento na tabela periódica.
 A tabela periódica é uma ordenação sistemática dos elementos químicos conhecidos.
 Cada elemento se caracteriza por possuir um número de elétrons que se distribuem nos diferentes níveis de energia do átomo correspondente.
 Os níveis energéticos ou camadas, são denominados pelos símbolos K, L, M, N, O, P e Q.
Mecânica Quântica
O número de massa é equivalente à soma do número de prótons e nêutrons presentes no núcleo. 
 O átomo pode perder elétrons, carregando-se positivamente, é chamado de íon positivo (cátion). E o átomo se torna negativo ganhando elétrons, sendo chamado íon negativo (ânion).
 Os isótopos são átomos de um mesmo elemento com mesmo número de prótons (podem ter quantidade diferente de nêutrons).
 Os isóbaros são átomos que possuem o mesmo número de massa.
 Os isótonos são átomos que possuem o mesmo número de nêutrons.
Erwin Schrödinger, Louis Victor de Broglie e Werner Heisenberg, reunindo os conhecimentos de seus prodecedores e contemporâneos, acabaram por desenvolver uma nova teoria do modelo atômico, além de postular uma nova visão, chamada de Mecânica ondulatória.
Mecânica Quântica
Orbitais e números atômicos
	Cada elétron, num átomo, é descrito por quatro números quânticos diferentes, três dos quais (n, l e m) especificam a função de onda do elétron.
	A função de onda de um elétron num átomo é um Orbital Atômico. Um orbital atômico pode ser imaginado como a descrição qualitativa das regiões do espaço onde é elevada a probabilidade de se encontrar elétrons.
NÚMEROS QUÂNTICOS
1) Número Quântico Principal (n): este número quântico é o que determina, em grande parte, a energia do elétron no átomo. Pode ter qualquer valor inteiro positivo: 1, 2, 3, ....Quanto menor n, mais baixa a energia.
Orbitais e números atômicos
	O tamanho do orbital também depende de ‘n’. Quanto maior for o valor de n, maior será o orbital. Os orbitais que têm o estado quântico com o mesmo n constituem uma camada. As camadas são identificadas pelas letras:
Orbitais e números atômicos
2) Número Quânticodo Momento Angular (l): Este número quântico caracteriza orbitais que têm o mesmo n, mas formas diferentes; pode ter qualquer valor inteiro entre 0 e n-1. Esse número define a forma do orbital.
Orbitais e números atômicos
	Para identificar uma subcamada numa certa camada escrevesse o valor do número quântico n da camada seguido pela identificação da subcamada. Assim, 2p identifica a subcamada com os números quânticos n = 2 e l = 1.
3) Número Quântico Magnético (ml): este número quântico diferencia orbitais com o mesmo n (energia) e mesmo l (forma), mas tendo orientações diferentes no espaço. Os valores permitidos são inteiros desde –l até +l.
Para l = 0 (subcamada s), o número quântico permitido m é
apenas 0, isto é, só há um orbital na subcamada s. Para l =1
(subcamada p), m = -1, 0, +1, há três orbitais. Cada orbital, numa
mesma subcamada, têm a mesma energia.
Orbitais e números atômicos
4) Número Quântico do Spin (ms): este número quântico refere-se a duas orientações possíveis para o eixo do spin de um elétron.
Orbitais e números atômicos
Orbitais e números atômicos
Para o átomo de hidrogênio, os orbitais de mesmo nível tem o mesmo nível de energia, como podemos ver no gráfico abaixo:
	O movimento de cada elétron é perfeitamente definido pelos seus quatro números quânticos:
número quântico principal (n) 	 distância de maior probabilidade do elétron ao núcleo;
b) número quântico secundário ou azimutal ()		orientação do orbital no espaço;
c) número quântico magnético (m)				forma do orbital
d) número quântico de spin (ms)				rotação do elétron em torno do seu eixo
Orbitais e números atômicos
Representado ψ2 frente a distancia do núcleo (r) vemos que a probabilidade de encontrar o elétron diminuindo conforme aumenta r . Isto indica que no estado fundamental a atração eletrostática do núcleo é suficientemente forte para manter o eletron em um raio próximo do núcleo. 
Representações dos Orbitais
ORBITAIS ‘S’
É o orbital de mais baixa energia e tem forma esférica, como mostrado ao lado:
Representações dos Orbitais
Representações dos Orbitais
ORBITAIS ‘P’
ORBITAIS ‘D e F’
Representações dos Orbitais
Representações dos Orbitais
Figura 6.22 - Forma do orbital f
	Um dos objetivos vistos até aqui foi determinar as estruturas eletrônicas dos átomos. Visto que a mecânica quântica conduz a uma descrição muito elegante do átomo de hidrogênio. Entretanto, ele tem apenas um elétron. Como nossa descrição da estrutura eletrônica atômica mudaria quando considerássemos átomos com dois ou mais
Átomos Polieletrônicos
Orbitais e suas energias
Átomos Polieletrônicos
A idéia importante é esta: em um átomo polieletrônico, para certo valor de n, a energia de um orbital aumenta como aumento do valor de ‘l’. Você pode ver isso ilustrado. Observe, por exemplo, que os orbitais com n = 3 aumentam sua energia na ordem s < p < d. A Figura ao lado é um diagrama de níveis de energia qualitativo.
Átomos Polieletrônicos
Spin do Elétron e Princípio de Exclusão de Pauli
O princípio da exclusão de Pauli afirma que dois elétrons em um átomo não podem ter o conjunto de quatro números quânticos n, l,ml e ms. Iguais. Para um dado orbital (1s, 2pz, etc.), os valores de n, l e m são fixos. Se quisermos colocar mais de um elétron em um orbital e satisfazer o princípio da exclusão de Pauli, nossa única escolha é assinalar diferentes valores de ms para os elétrons. Como existem apenas dois desses valores, concluímos que um orbital pode receber o máximo.
Átomos Polieletrônicos
Diagrama de Pauling
Átomos Polieletrônicos
Configurações Eletrônicas
	Uma orbital só pode conter no máximo, dois elétrons e estes devem ter números quânticos de spin opostos. Quando preenchemos orbitais da mesma energia (como são as três orbitais de p) devemos fazer primeiro o semi-preenchimento de cada uma, mantendo os elétrons com o mesmo spin, e só depois proceder ao emparelhamento de spins (colocar electrões com spins opostos.
Exemplo:
Configurações Eletrônicas
Regra de HUND
Configurações Eletrônicas
	Como podemos observar o Lítio é o primeiro membro dos metais alcalinos (grupo IA). O elemento posterior ao lítio é o berílio; sua configuração eletrônica é 1s22s2. O boro, número atômico 5, tem configuração eletrônica 1s22s2 2p1. O quinto elétron deve ser colocado em um orbital 2p porque o orbital 2s está preenchido. Como todos os três orbitais 2p estão com energias iguais, não importa qual orbital 2p é ocupado. 
	Com o próximo elemento, o carbono, deparamos com uma situação nova. Sabemos que o sexto elétron tem de ir para um orbitaI 2p. Entretanto, esse novo elétron vai para o orbital2p, que já tem um elétron, ou para um dos outros?
		
	
Essa pergunta é respondida pela regra de Hund, que afirma que para orbitais degenerados, a menor energia será obtida quando o número de elétronscom o mesmo spin for maximizado. Isso significa que os elétrons ocuparão individualmente os orbitais até a máxima extensão possível, com o mesmo número.
Configurações Eletrônicas
	A regra de Hund é baseada em parte no fato de que os elétrons se repelem. Ocupando orbitais diferentes, os elétrons permanecem afastados quando possível um do outro, assim minimizando as repulsões elétron-elétron.
Configurações Eletrônicas Condensadas
	O sódio tem o número atômico 11, e ele tem um único elétron 3s além da configuração estável do neônio. Pode-se, mos abreviar a configuração eletrônica do sódio como a seguir: 
				Na: [Ne]3s1
	O símbolo Ne representa a configuração eletrônica dos 10 elétrons do Neônio, 1s22s2 2p6.

Continue navegando