Buscar

08GERENCIA E ANALISE DE REDES

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 17 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 1/17
Gerência e Análise de Redes
Aula 8 - Estudo e depuração de protocolos da
camada de rede e de enlace
INTRODUÇÃO
Nesta aula, aplicaremos o conceito de modelagem em camadas de redes para estudarmos a análise e depuração do
processo de repasse de pacotes da camada de rede, juntamente com os protocolos de camada de enlace necessários
para que o repasse da camada de rede funcione. 
Para a análise de cada um dos protocolos, será usado o software Wireshark. Com ele, capturaremos PDUs (packet data
units), IP, Ethernet e ARP (glossário), e realizaremos uma depuração passo a passo do signi�cado de cada PDU, bem
como de sua relação com o processo de repasse de pacotes para um destino localizado na mesma rede que o
remetente e para um destino localizado em uma rede diferente da rede do remetente.
Bons estudos!
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 2/17
OBJETIVOS
Aplicar a depuração do protocolo ARP para repasse de pacotes para destinos que se encontram na mesma rede que o
remetente;
Aplicar a depuração do protocolo ARP para repasse de pacotes para destinos que não se encontram na mesma rede
que o remetente.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 3/17
DEPURAÇÃO DO PROTOCOLO ARP PARA REPASSE DE PACOTES PARA
DESTINOS QUE SE ENCONTRAM NA MESMA REDE QUE O REMETENTE
O primeiro objetivo desta aula consiste em depurar a interação entre a camada de rede e a camada de enlace, e seus
respectivos protocolos em um cenário, como o descrito na �gura abaixo; onde o host 10.0.2.15 deseja enviar um
pacote destinado ao host 10.0.2.10, localizado na mesma rede IP que o remetente.
Fonte: Figura 1: Primeiro cenário proposto – Envio de pacote para destino na mesma rede
Atenção
, Antes de continuarmos, é importante que você se acostume com a ideia de que sempre que um pacote vai ser transmitido, a
tabela de roteamento local é necessariamente consultada. 
Portanto, seu laptop possui uma tabela de roteamento e seu desktop também. Até mesmo seu smartphone possui uma tabela
roteamento. Na verdade, todo equipamento conectado à Internet necessariamente possui uma tabela de roteamento, já que ela
tem que ser consultada sempre que um pacote precisar ser transmitido.
Abaixo listamos um exemplo de uma tabela de roteamento em um Desktop Windows 10. O comando route print
imprime a tabela de roteamento. Como a da Figura 2, onde cada linha da tabela de roteamento representa uma rota.
Fonte: Figura 2: Tabela de Roteamento do host 10.0.2.15
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 4/17
Fonte da Imagem:
Podemos observar no exemplo anterior que:
A coluna “Endereço de Rede” indica qual é a rede destino (A) para a qual a rota em questão aponta.
A coluna “Máscara” indica qual é a máscara de rede da rede destino (B) indicada na coluna “Endereço de Rede”.
Por �m, a coluna “Ender. Gateway” indica qual é o endereço IP do próximo salto (C) para o qual o pacote deve ser
repassado para que chegue até o destino apontado por “Endereço de Rede”.
Exemplo
, Recorde que, no cenário apresentado na Figura 1, estamos supondo que o host 10.0.2.15 deseja enviar um pacote de dados
destinado ao host 10.0.2.3 (ambos estão na mesma rede/LAN).
Ao gerar um pacote, a aplicação informa ao S.O. que o endereço IP destino do pacote é 10.0.2.3.
A camada de rede, localizada no S.O., deve olhar para a tabela de roteamento (Figura 2) para consultar se alguma de
suas rotas (linhas) gerará um match (equivalência) com o endereço de destino do pacote.
O S.O. do host cliente tentará encontrar um match (explicado em detalhes logo abaixo) para todas as rotas (linhas) da
tabela de roteamento. Entretanto, em nosso exemplo, a única rota que gerará um match com o endereço IP de destino
do pacote (10.0.2.3) é a rota para a rede 10.0.2.0 (D) (Figura 2).
A máscara de uma rota (255.255.255.0 para a rota 10.0.2.0) pode ser vista como uma instrução de como realizar a
comparação entre o endereço IP de destino do pacote e o endereço de rede da rota, com o objetivo de testar se há um
match.
Veja, a seguir, como é feita a tentativa de obter um match.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 5/17
Passo 1
O roteador realiza um AND Lógico bit-a-bit entre o endereço IP de destino do pacote
(10.0.2.3) e a máscara da rota que está sendo testada (255.255.255.0):
 
Passo 2
O roteador compara o resultado obtido (10.0.2.0) com o endereço de rede destino (D) da
rota que está sendo testada na tabela de roteamento (10.0.2.0).
Passo 3
O roteador percebe que ambos são iguais, ou seja, ocorreu um match. Então, o roteador lê a
coluna “Ender. de Gateway” (C), apontada pela rota (D). No caso em questão, o valor é “No
vínculo”. 
 
Isso quer dizer que o destino se encontra na própria rede do remetente. Portanto, o pacote
destinado ao IP (10.0.2.3) pode ser encapsulado em um quadro da camada de enlace que
será entregue diretamente à interface de rede do destino. 
 
Esse quadro terá que ter o endereço MAC da interface de rede de 10.0.2.3 preenchido no
campo de cabeçalho End. Mac Destino.
Qual é o endereço MAC de destino que o S.O. deve preencher no cabeçalho do quadro de camada de enlace a ser
gerado?
Agora o S.O. tem um novo problema em mãos, mas, em princípio, ele não sabe essa resposta. Então, ele usa o
protocolo ARP (Address Resolution Protocol, Protocolo de Resolução de Endereço) para enviar uma consulta ARP a
todas as interfaces da LAN perguntando qual é o endereço MAC da interface de rede que está con�gurada com o
endereço IP 10.0.2.3. Essa solicitação é denominada consulta ARP (ARP Request), conforme indicado na Figura 3. 
Na Figura 3, o pacote de Número 1, em destaque, capturado pelo Wireshark, mostra a consulta ARP enviada pelo host
10.0.2.15 no exemplo em questão.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 6/17
Figura 3: Host 10.0.2.15 envia consulta ARP a todas as interfaces da LAN
Na parte inferior da �gura, é possível depurar a consulta ARP, extraindo todas as informações necessárias para
entendermos o que se passa. Veja a seguir.
CABEÇALHOS ETHERNET (CAMADA DE ENLACE)
O campo Type preenchido com o valor 0x806 informa ao receptor que este quadro carrega uma mensagem do
protocolo ARP. Assim, ao receber este quadro e notar que o campo Tipo está preenchido com o valor 0x806, o receptor
sabe que deve entregar o conteúdo do quadro do processo ARP do receptor.
O Campo Destination está preenchido com o valor ff:ff:ff:ff:ff:ff, o que quer dizer que este quadro é destinado a todas
as interfaces de rede da LAN. Ou seja, é um quadro de difusão (broadcast).
CABEÇALHOS ARP
OPCODE=1
O Valor 1 no campo OPcode indica que essa é uma requisição ARP (solicitação de mapeamento IP->MAC).
SENDER IP ADDRESS=10.0.2.15 E SENDER MAC ADDRESS=08:00:27:83:5B:C1
Esses campos indicam o End. MAC e End. IP do host solicitante.
TARGET IP ADDRESS=10.0.2.3
Esse campo indica qual é o endereço IP que a consulta ARP deseja mapear em endereço MAC. Ou seja, deseja-se saber qual é o
endereço MAC da interface de rede que está con�gurada com o IP 10.0.2.3.
Todas as interfaces de rede da LAN ao qual o host solicitante pertence receberão e processarão essa consulta ARP.
Entretanto, somente o host con�gurado com o endereço IP 10.0.2.3 enviará uma resposta ARP (ARP Reply), conformeilustrado pelo pacote de número 2, capturado usando o software Wireshark, apresentado em detalhes na Figura 4.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 7/17
Figura 4: Detalhes da resposta ARP enviada pelo host 10.0.2.3
Na parte inferior da �gura, é possível depurar a resposta ARP, extraindo todas as informações necessárias para
entendermos o que se passa. Veja a seguir.
CABEÇALHOS ETHERNET (CAMADA DE ENLACE)
O campo Type preenchido com o valor 0x806 informa ao receptor que este quadro carrega uma mensagem do
protocolo ARP. Assim, ao receber este quadro e notar que o campo Tipo está preenchido com o valor 0x806, o receptor
da resposta ARP sabe que deve entregar o conteúdo do quadro do processo ARP.
O Campo Destination está preenchido com o valor 08:00:27:83:5b:c1, o que quer dizer que este quadro é destinado
especi�camente à interface de rede do host que transmitiu a consulta ARP.
CABEÇALHOS ARP
Opcode=2
O Valor 2 no campo OPcode indica que essa é uma resposta ARP (ARP Reply), que contém o
mapeamento IP->MAC solicitado.
Sender IP address=10.0.2.3 e Sender Mac address=52:54:00:12:35:03
Esses campos indicam o End. MAC e End. IP do host que gerou essa resposta ARP. Esses
são os campos que permitem ao receptor da resposta ARP aprender qual é o endereço MAC
da interface de rede con�gurada com o IP 10.0.2.3.
Target IP Address=10.0.2.15
Esse campo indica o end. IP e o end. MAC do host ao qual essa resposta ARP é destinada.
Ao receber essa resposta ARP, o host 10.0.2.15 realiza a leitura dos campos do quadro, conforme �zemos acima e
registra o mapeamento IP->MAC em sua tabela ARP (Figura 5).
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 8/17
Figura 5: Tabela ARP em 10.0.2.15 contendo o mapeamento IP<->MAC informado pela resposta ARP
Saiba mais
, O comando “arp –a” pode ser usado em qualquer host Windows para listar a tabela ARP local. 
Na implementação da tabela ARP do S.O. Windows 7, 8 e 10, o tempo em que o mapeamento IP<->MAC �ca registrado na tabela
ARP é de cerca de 15 a 45 segundos (Fonte: https://support.microsoft.com/pt-br/kb/949589 (https://support.microsoft.com/pt-
br/kb/949589)). 
Se um mapeamento IP<->MAC não for usado por um tempo maior do que esse, então, o mapeamento é removido da tabela, e o
host terá que enviar outra consulta ARP se desejar enviar pacotes ao end. IP em questão.
Após registrar o mapeamento IP<->MAC em sua tabela ARP, o host está �nalmente pronto para encapsular o pacote
destinado a 10.0.2.3 em um quadro da camada de enlace destinado a 52:54:00:12:35:03, e transmitir o quadro para a
LAN, conforme ilustrado pelo pacote de número 3 capturado pelo Wireshark na Figura 6.
Figura 6: Finalmente um pacote de dados (ping, em nosso exemplo) é enviado de 10.0.2.15 diretamente para
10.0.2.3
Atenção
, Note que na Figura 6 os pacotes de número 3, 5, 7 e 9 são pacotes ping enviados por 10.0.2.15 e destinados a 10.0.2.3. Esses
pacotes estão encapsulados em quadros da camada de enlace destinados a 52:54:00:12:35:03.
Por �m, os pacotes 4, 6, 8 e 10 são pacotes ping reply enviados pelo host 10.0.2.3 e destinados ao host 10.0.2.15. Ao
receber essas respostas ping, o aplicativo ping �nalmente mostra o resultado de sua execução ao usuário, conforme
ilustrado pela Figura 7. 
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMess… 9/17
 
Note que o comando “arp –d” foi dado antes de “ping 10.0.2.3” para que a tabela ARP do host fosse apagada. Com
isso, garantimos que o mapeamento IP<->MAC necessário não estaria presente na tabela ARP, e uma consulta ARP
teria que ser necessariamente gerada.
Figura 7: Após todo o processo que depuramos, o aplicativo ping apresenta seus resultados ao usuário.
DEPURAÇÃO DO PROTOCOLO ARP PARA REPASSE DE PACOTES PARA
DESTINOS QUE NÃO SE ENCONTRAM NA MESMA REDE QUE O
REMETENTE
O segundo objetivo desta aula consiste em depurar a interação entre a camada de rede e a camada de enlace, e seus
respectivos protocolos em um cenário como o descrito na Figura 8, onde o host 10.0.2.15 deseja enviar um pacote
(exemplo ping) destinado ao host 8.8.8.8, que NÃO está localizado na mesma rede IP que o remetente.
Figura 8: Primeiro cenário proposto – Envio de pacote para destino na mesma rede.
Veja, a seguir, como acontece esse processo. 
1 - Ao gerar um pacote, a aplicação informa ao S.O. que o endereço IP destino do pacote é 8.8.8.8. 
2 - A camada de rede, localizada no S.O., deve olhar para a tabela de roteamento (Figura 9) para consultar se alguma de
suas rotas (linhas) gerará um match (equivalência) com o endereço de destino do pacote. 
3 - O S.O. do host cliente tentará encontrar um match (explicado em detalhes logo abaixo) para todas as rotas (linhas)
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 10/17
da tabela de roteamento. Entretanto, em nosso exemplo, a única rota que gerará um match com o endereço IP de
destino do pacote (8.8.8.8) é a rota para a rede 0.0.0.0 (D) (Figura 9). 
4 - A máscara (B) 0.0.0.0 para a rota (D) 0.0.0.0, também é vista como uma instrução de como realizar a comparação
entre o endereço IP de destino do pacote e o endereço de rede da rota, com o objetivo de testar se há um match.
Veja, a seguir, como é feita a tentativa de obter um match.
Fonte da Imagem:
O roteador realiza um AND Lógico bit-a-bit entre o endereço IP de destino do pacote (8.8.8.8) e a máscara da rota que
está sendo testada (0.0.0.0). Veja na imagem abaixo.
Atenção
, A rota 0.0.0.0 é uma rota muito especial, e é chamada de rota default, ou rota padrão. Essa rota é automaticamente criada
quando o administrador con�gura um endereço IP de default gateway (gateway padrão) no host. Em nosso exemplo, o host do
remente foi con�gurado com default gateway=10.0.2.2. 
Para entender porque a rota padrão é especial, repare novamente, na Figura 9, na máscara (B) da rede destino. A máscara possui
valor 0.0.0.0. 
Como todos os bits da máscara são iguais a zero, o resultado do AND Lógico bit-a-bit sempre dará 0.0.0.0 seja qual for o
endereço IP de destino de um pacote. Ou seja, qualquer endereço IP destino de um pacote SEMPRE gerará um match com a rota
default. 
A intuição é a seguinte: Se a consulta à tabela de roteamento não gerou match para nenhuma rota, dado o end. IP de destino de
um pacote, então a rota default será usada., , 
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 11/17
, ,
Figura 9: Tabela de Roteamento do host 10.0.2.15 - Rota Default em destaque
Fonte da Imagem:
O roteador compara o resultado obtido (0.0.0.0) com o endereço de rede destino 0.0.0.0 (D) da rota que está sendo
testada na tabela de roteamento.
Fonte da Imagem:
O roteador percebe que ambos são iguais, ou seja, ocorreu um match. Então, o roteador lê a coluna “Ender. de
Gateway” (C), apontada pela rota (D). No caso em questão, o valor é “10.0.2.2”. 
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 12/17
Isso quer dizer que o destino NÃO se encontra na mesma rede do remetente. Portanto, o pacote destinado ao IP
(8.8.8.8) deve ser encapsulado em um quadro da camada de enlace que será entregue à interface 10.0.2.2 do roteador.
Saiba mais
, Esse quadro terá que ter o endereço MAC 52:54:00:12:35:02 da interface de rede do roteador que liga a LAN do host remetente
ao restante do mundo. Podemos citar como exemplo a Internet.
Qual é oendereço MAC de destino que o S.O. deve preencher no cabeçalho do quadro de camada de enlace a ser
gerado?
Agora, o S.O. tem um novo problema em mãos, mas, em princípio, ele não sabe essa resposta. Então, ele usa o
protocolo ARP (Address Resolution Protocol, Protocolo de Resolução de Endereço) para enviar uma consulta ARP a
todas as interfaces da LAN perguntando qual é o endereço MAC da interface de rede que está con�gurada com o
endereço IP 10.0.2.2.
Fonte da Imagem:
Essa solicitação é denominada consulta ARP (ARP Request), conforme indicado na Figura 10. 
Nessa �gura, o pacote de Número 1 em destaque, capturado pelo Wireshark, mostra a consulta ARP enviada pelo host
10.0.2.15 no exemplo em questão.
Fonte: Figura 10: Host 10.0.2.15 envia consulta ARP a todas as interfaces da LAN.
Na parte inferior da �gura, é possível depurar a consulta ARP, extraindo todas as informações necessárias para
entendermos o que se passa. Veja a seguir.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 13/17
CABEÇALHOS ETHERNET (CAMADA DE ENLACE)
O campo Type preenchido com o valor 0x806 informa ao receptor que este quadro carrega uma mensagem do
protocolo ARP. Assim, ao receber este quadro e notar que o campo Tipo está preenchido com o valor 0x806, o receptor
sabe que deve entregar o conteúdo do quadro do processo ARP do receptor.
O Campo Destination está preenchido com o valor ff:ff:ff:ff:ff:ff, o que quer dizer que este quadro é destinado a todas
as interfaces de rede da LAN. Ou seja, é um quadro de difusão (broadcast).
CABEÇALHOS ARP
OPCODE=1
O Valor 1 no campo OPcode indica que essa é uma requisição ARP (solicitação de mapeamento IP->MAC).
SENDER IP ADDRESS=10.0.2.15 E SENDER MAC ADDRESS=08:00:27:83:5B:C1
Esses campos indicam o End. MAC e End. IP do host solicitante.
TARGET IP ADDRESS=10.0.2.2
Este campo indica qual é o endereço IP que a consulta ARP deseja mapear em endereço MAC. Ou seja, deseja-se saber qual é o
endereço MAC da interface de rede do roteador con�gurada com endereço IP 10.0.2.2. Esse será o próximo salto (next hop) do
pacote destinado a 8.8.8.8.
Todas as interfaces de rede da LAN ao qual o host solicitante pertence receberão e processarão essa consulta ARP.
Entretanto, somente o host con�gurado com o endereço IP 10.0.2.2 enviará uma resposta ARP (ARP Reply), conforme
ilustrado pelo pacote de número 2, capturado usando o software Wireshark, apresentado em detalhes na Figura 11.
Figura 11: Detalhes da resposta ARP enviada pelo roteador
Na parte inferior da �gura, é possível depurar a resposta ARP, extraindo todas as informações necessárias para
entendermos o que se passa. Veja a seguir.
CABEÇALHOS ETHERNET (CAMADA DE ENLACE)
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 14/17
O campo Type preenchido com o valor 0x806 informa ao receptor que esse quadro carrega uma mensagem do
protocolo ARP. Assim, ao receber esse quadro e notar que o campo Tipo está preenchido com o valor 0x806, o receptor
da resposta ARP sabe que deve entregar o conteúdo do quadro do processo ARP.
O Campo Destination está preenchido com o valor 08:00:27:83:5b:c1, o que quer dizer que esse quadro é destinado
especi�camente à interface de rede do host que transmitiu a consulta ARP.
CABEÇALHOS ARP
OPCODE=2
O Valor 2 no campo OPcode indica que essa é uma resposta ARP (ARP Reply), que contém o mapeamento IP->MAC solicitado.
SENDER IP ADDRESS=10.0.2.2 E SENDER MAC ADDRESS=52:54:00:12:35:02
Estes campos indicam o End. MAC e End. IP do host que gerou essa resposta ARP. Esses são os campos que permitem ao
receptor da resposta ARP aprender qual é o endereço MAC da interface de rede con�gurada com o IP 10.0.2.2.
TARGET IP ADDRESS=10.0.2.15
Este campo indica o end. IP e o end. MAC do host ao qual essa resposta ARP é destinada.
Ao receber essa resposta ARP, o host 10.0.2.15 realiza a leitura dos cabeçalhos do quadro, conforme �zemos acima, e
registra o mapeamento IP->MAC em sua tabela ARP (Figura 12). O comando “arp –a” pode ser usado em qualquer host
Windows para listar a tabela ARP local.
Figura 12: Tabela ARP em 10.0.2.15 contendo o mapeamento IP<->MAC informado pela resposta ARP vinda
do roteador.
Após registrar o mapeamento IP<->MAC em sua tabela ARP, o host está �nalmente pronto para encapsular o pacote
destinado a 8.8.8.8 em um quadro da camada de enlace destinado a 52:54:00:12:35:02, e transmitir o quadro para a
LAN, conforme ilustrado pelo pacote de número 3 capturado pelo Wireshark na Figura 13.
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 15/17
Figura 13: Finalmente um pacote de dados (ping, em nosso exemplo) é enviado de 10.0.2.15 ao roteador
10.0.2.2
Atenção
, Note que na Figura 13 os pacotes de número 3, 5, 7 e 9 são pacotes ping enviados por 10.0.2.15 e destinados a 8.8.8.8.
Entretanto, diferentemente do cenário anterior, os pacotes estão encapsulados em quadros da camada de enlace destinados à
interface do roteador (52:54:00:12:35:02), que será responsável por repassar o pacote adiante. 
O pacote seguirá sendo repassado de roteador a roteador, usando um processo análogo ao que depuramos aqui, até que
eventualmente chegue ao seu destino �nal. 
Por �m, os pacotes 4, 6, 8 e 10 são pacotes ping reply enviados pelo host 8.8.8.8 e destinados ao host 10.0.2.15. Ao receber essas
respostas ping, o aplicativo ping �nalmente mostra o resultado de sua execução ao usuário.
1 - Considere a rede abaixo. Suponha que o host 10.0.2.15 deseja enviar um pacote de dados destinado ao host
10.0.2.3. Suponha que a tabela ARP do remetente esteja vazia. 
Sabendo que o host 10.0.2.15 emitirá uma consulta ARP (ARP Request) à sua LAN, com o objetivo de realizar um
mapeamento IP<->MAC, marque a opção que representa o endereço IP que será consultado pela ARP Request enviada.
10.0.2.2
10.0.2.3
10.0.2.15
10.0.2.255
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 16/17
8.8.8.8
Justi�cativa
2 - Considere a rede abaixo. Suponha que o host 10.0.2.15 deseja enviar um pacote de dados destinado ao host
10.0.2.3. Suponha que a tabela ARP do remetente já contenha o mapeamento IP<->MAC necessário. 
Sabendo que o pacote IP será encapsulado em um quadro da camada de enlace, marque a opção que representa o
endereço MAC de destino a ser preenchido no cabeçalho Ethernet.
08-00-27-83-5B-C1
52:54:00:12:35:02
A1-A2-BC-10-28-F4
52-54-00-12-35-03
FF-FF-FF-FF-FF-FF
09/04/2019 Disciplina Portal
http://estacio.webaula.com.br/Classroom/index.html?id=1979387&classId=1118909&topicId=0&enableForum=S&enableMe… 17/17
Justi�cativa
Exercícios
, Você poderá, também, exercitar os conhecimentos que aprendeu nesta aula através de uma lista de exercícios que preparamos. 
Para acessar à lista de exercícios, clique aqui (galeria/aula7/docs/A8_t5.pdf).
Glossário
ARP
Address Resolution Protocol.

Continue navegando