Buscar

Conceitos em Materiais e Ensaios Mecânicos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 6 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 6 páginas

Prévia do material em texto

PERGUNTA 1
1. As discordâncias são defeitos associados à deformação mecânica, sendo estes do tipo linear ou unidimensional em torno do qual alguns átomos estão desalinhados. A maioria das discordâncias encontradas nos materiais cristalinos provavelmente não são nem puramente aresta (cunha) tampouco puramente espiral (hélice), mas exibirão componentes de ambos os tipos, sendo  denominadas de discordâncias mistas. 
 
Com base no apresentado, assinale a alternativa correta:
	
	
	As unidades das distorções são expressas usualmente em litros e o tratamento térmico pode diminuir a densidade das discordâncias em uma ordem de 100.000 litros.
	
	
	O vetor de Burgers não é uma teoria usual e adequada para expressar a magnitude e a direção da distorção nos materiais cristalinos.
	
	
	As discordâncias estão presentes em todos os materiais cristalinos e podem ser observadas através de técnicas de microscopia eletrônica.
	
	
	A discordância do tipo de aresta ou cunha pode ser considerada como consequência da tensão cisalhante que é aplicada para produzir a distorção.
	
	
	As discordâncias estão presentes em todos os materiais, porém há pouca interferência nas propriedades mecânicas dos mesmos.
1 pontos   
PERGUNTA 2
1. Na natureza, um metal constituído tão somente por um tipo de átomo, é simplesmente impossível. Impurezas ou átomos diferentes estarão sempre presentes e alguns existirão como defeitos pontuais nos cristais. Mesmo com métodos requintados e sofisticados, dificilmente conseguirá refinar metais até uma pureza superior a 99,9% A maioria dos metais não são altamente puros, ao invés disso, eles são ligas.  
 
Sobre ligas metálicas e tipos de defeitos, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). 
 
1. ( ) Há quatro tipos distintos de defeitos (puntiforme, de linha, bidimensional e volumétricos) e estes geralmente são gerados por processo de fabricação, mas nunca por agitação térmica ou solidificação.
2. ( ) A inclusão de átomos de impurezas a um metal acarretará na formação de uma solução sólida e/ou de uma nova segunda fase, dependendo dos tipos de impurezas, das suas concentrações e da temperatura da liga.
3. ( ) As impurezas também podem trazer benefícios para uma liga, uma vez que o carbono forma uma solução substitucional com o ferro, aumentando a resistência mecânica.
4. ( ) Em uma solução sólida substitucional, a solubilidade de um elemento em outro (soluto e solvente) será elevada dependendo de quatro fatores: estruturas cristalinas igualitárias, valências igualadas, eletronegatividades próximas e raios atômicos com valores próximos.
 
Assinale a alternativa que apresenta a sequência correta:
	
	
	V, V, F, F.
	
	
	V, V, V, V.
 
 
 
	
	
	F, F, F, F.
	
	
	F, V, F, V.
	
	
	V, V, V, F.
1 pontos   
PERGUNTA 3
1. A compreensão dos diagramas de fases para sistemas de ligas é imprescindível, pois existe uma notável correlação entre a microestrutura e as propriedades mecânicas, sendo o desenvolvimento da microestrutura em uma liga relacionada às características do seu diagrama de fases. Os diagramas de fases, por conseguinte, fornecem informações valiosas sobre os fenômenos da fusão, fundição e cristalização. 
 
Com relação aos conceitos elementares, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s).
                                               
1. (   ) A solução sólida consiste em pelo menos dois tipos diferentes de átomos; onde os átomos de solvente ocupam posições substitutivas ou intersticiais no retículo cristalino do soluto.
2. (   ) O conceito de limite de solubilidade é importante, pois a adição de soluto em excesso pode resultar na formação de uma outra solução sólida de outro composto.
3. (  ) Defini-se uma fase como uma parte homogênea de um sistema que possui características físicas e químicas uniformes. Assim, todo material que é puro pode ser considerado como sendo uma fase, mas toda liga metálica é heterogênea (mais de uma fase).
4. (  ) Ligas binárias são mais usualmente trabalhadas, devido à simplicidade das mesmas, onde três regiões estão presentes nesses diagramas: um campo alfa, um campo líquido e um campo bifásico.
 
Assinale a alternativa que apresenta a sequência correta:
	
	
	F, V, V, F.
	
	
	F, V, F, V.
	
	
	V, V, V, F.
	
	
	V, V, F, F.
	
	
	F, V, V, V
 
 
 
1 pontos   
PERGUNTA 4
1. Você está prestando uma consultoria de engenharia mecânica. Na hipotética fábrica em análise, o portfólio de produtos é grande, porém não é feito um ensaio prévio de materiais nos produtos finais. Tração, dureza, torção e cisalhamento são ensaios típicos que precisam ser feitos para atender à aplicação e qualidade de peças mecânicas. A partir do exposto, associe o tipo de material (em quatro linhas de produção diferente) ao ensaio adequado:
 
1. Tração
2. Dureza
3. Torção
4. Cisalhamento
  
( ) Material que é necessário medir satisfatoriamente a sua resistência, principalmente acompanhando as deformações distribuídas em toda a sua extensão.
(  ) Material em que é necessário conhecer a sua deformação plástica localizada.
(  ) O produto é o virabrequim de automóvel (recebe as forças geradas pelo movimento dos pistões, transformando-as em torque onde o esforço é aplicado no sentido de rotação).
(  ) Produtos dessa linha são acabados como pinos, rebites, parafusos e chapas.
 
A partir das relações feitas anteriormente, assinale a alternativa que apresenta a sequência
correta:
	
	
	3, 2, 4, 1.
	
	
	2, 1, 3, 4.
	
	
	2, 3, 1, 4.
	
	
	1, 2, 3, 4.
 
 
	
	
	3, 4, 1, 2.
1 pontos   
PERGUNTA 5
1.  A maioria das estruturas é projetada para certificar que ocorra apenas deformação elástica quando uma tensão for submetida. Uma estrutura ou componente que tenha sido deformado plasticamente, ou que tenha sofrido mudança permanente em sua forma, pode não ser capaz de funcionar como planejado pela equipe de engenharia. Torna-se, por conseguinte, desejável conhecer o nível de tensão no qual tem início a deformação plástica, ou no qual ocorre o fenômeno chamado escoamento.
 
 
 
Fonte: Autoria própria 
 
A respeito do ensaio de tração mostrado no gráfico tensão-deformação, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). 
 
1. ( ) O ponto A é conhecido como o escoamento do material e há diferença física entre o corpo de prova com relação ao ponto B.
2. ( ) O ponto C corresponde ao limite de resistência à tração.Se essa tensão for aplicada e mantida, ocorrerá a fratura do corpo de prova.
3. ( ) O ponto C apresenta constrição ou empescoçamento e a lei de Hooke é válida apenas até esse ponto, conhecido como “ponto máximo”.
4. ( ) Entende-se por resistência à fratura o correspondente à tensão no ponto D, isto é, ponto em que ocorrerá a ruptura do corpo de prova.
 
 Assinale a alternativa que apresenta a sequência correta:
	
	
	F, V, V, F
 
	
	
	F, V, V, V.
	
	
	V, V, F, F.
	
	
	V, V, V, F.
	
	
	F, V, F, V.
1 pontos   
PERGUNTA 6
1. Em projetos de engenharia, ao se deparar com uma situação em que pilares são submetidos a esforços de compressão, faz-se necessário que o engenheiro avalie a flambagem. A flambagem ocorre quando a peça sofre uma flexão transversalmente em decorrência de uma compressão axial. Esta, por sua vez, é considerada uma instabilidade elástica. Se pegarmos uma régua, por exemplo, e submetermos a tensões de compressão, a depender da régua ela poderá flambar apresentando uma encurvadura.  
 
 
Fonte: Adaptada de Olga Popova / 123RF.
 
Acerca desse ponto, assinale a alternativa correta:
	
	
	A falta de homogeneidade e retilineidade da peça pode influenciar significativamente na flambagem, mas esses fatores não decorrem do processo de fabricação da mesma.
	
	
	A flambagem pode ocorrer não somente em ensaios de compressão, mas também em ensaios de tração.
	
	
	Os parâmetros mais importantes para a flambagem são a tensão no ponto de proporcionalidade e o limite de ruptura do material.
	
	
	A tensão crítica para a ocorrência da flambagem nãodepende da tensão de escoamento do material, mas sim do seu módulo de Young e do seu comprimento. 
 
	
	
	A flambagem depende de três principais fatores: ductilidade, tenacidade e do módulo de Young.
1 pontos   
PERGUNTA 7
1. Você foi chamado para avaliar dois materiais para a construção de uma mola. Esses materiais, denominados A e B, possuem as seguintes propriedades mecânicas: material A, o limite de elasticidade ocorre para uma deformação de 0,01 (u.a), e o módulo de elasticidade é 1000 MPa; material B, o limite de elasticidade ocorre para uma deformação de 0,05 (u.a), e o módulo de elasticidade é 200 MPa. Ambos os materiais evidenciam um comportamento linear-elástico até o limite de elasticidade (limite de proporcionalidade). Nesse sentido, assinale a alternativa que estime qual o material em que a mola terá a maior capacidade de armazenar energia:
	
	
	B, que é capaz de armazenar uma energia de magnitude 20.000  J/m3 .
	
	
	A, que é capaz de armazenar uma energia de magnitude 5.000.000 J/m3.
	
	
	B, que é capaz de armazenar uma energia de magnitude 250.000 J/m3.
 
 
	
	
	A, que é capaz de armazenar uma energia de magnitude 1.250.000 J/m3.
	
	
	B, que é capaz de armazenar uma energia de magnitude 100.000 J/m3.
1 pontos   
PERGUNTA 8
1. Analise as estruturas a seguir:
 
 
    
                                     Fonte: Adaptada de Kuno Toming / 123RF. 
 
Os materiais sólidos e metálicos presentes em nosso cotidiano (alumínio, ferro, magnésio, cobre) são categorizados segundo a regularidade pela qual seus átomos estão arranjados uns em relação aos outros. Assim, essas disposições de átomos podem ser encontradas como tipo (1), (2) e (3) nas imagens acima. Nesse contexto, analise as afirmativas a seguir:
 
1. As estruturas 1, 2 e 3 referem-se, respectivamente, à CCC, CFC e HC.
2. As três estruturas explanadas acima são exemplos de diferentes células unitárias, isto é, representações mais simples de uma pequena unidade da rede cristalina de um sólido metálico.
3. O fator de empacotamento, que pode variar de 0 a 1, depende essencialmente de três fatores: Número de átomos (modelo esfera rígida), volume dos átomos e o raio dos mesmos.
4. As propriedades dos sólidos cristalinos do nosso cotidiano não dependem da estrutura cristalina destes materiais.
 
Está correto o que se afirma em:
	
	
	II e III, apenas.
	
	
	I, II e IV, apenas.
 
 
	
	
	I e II, apenas.
	
	
	I, II e III, apenas.
	
	
	II, III e IV, apenas.
1 pontos   
PERGUNTA 9
1. A lei de Hooke, equação importante para o âmbito de projetos, consiste em uma relação entre tensão e a deformação de engenharia para uma deformação exclusivamente elástica. O módulo de elasticidade, também conhecido como módulo de  Young,  representa a constante de proporcionalidade dessa equação. 
 
A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas.
 
I. Quanto maior a magnitude do módulo de elasticidade, mais rígido será o  material, ou menor será a deformação elástica resultante da aplicação de uma dada tensão.
 
Pois
 
II. A grandeza do módulo de elasticidade é uma variável de resistência à separação de átomos circunvizinhos, ou seja, das forças de ligação interatômicas, não sendo este parâmetro  alterado com o aumento de temperatura.
 
A seguir, assinale a alternativa correta:
	
	
	As asserções I e II são proposições verdadeiras, mas a II não é uma justificativa correta da I.
	
	
	A asserção I é uma proposição falsa, e a II é uma proposição verdadeira.
	
	
	As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I.
	
	
	As asserções I e II são proposições falsas.
 
 
 
	
	
	A asserção I é uma proposição verdadeira e a asserção II é uma proposição falsa.
1 pontos   
PERGUNTA 10
1. Alguns conceitos-chave da física e da ciência dos materiais são muito empregados no meio corporativo e até em nosso dia a dia. Por exemplo, “ser uma pessoa resiliente”, ou ser alguém “tenaz” e até mesmo “ser alguém frágil” são frases corriqueiras. Importante entendê-las na origem e nas suas aplicações técnicas. Nesse contexto, associe cada conceito ao seu respectivo sentido físico:
 
1. Resiliência
2. Tenacidade
3. Ductilidade
 
(  ) Capacidade de absorver  energia por unidade de volume em regime elástico, retornando ao estado inicial ao cessar a carga.
(  ) Quantidade de energia absorvida até a tensão de ruptura do material.
(  ) Grau de alongamento provocado até a ruptura do material.
  
A partir das relações feitas anteriormente, assinale a alternativa que apresenta a sequência correta:
 
	
	
	2, 1, 3.
	
	
	2, 3, 1.
	
	
	3, 2, 1.
	
	
	1, 2, 3.
 
	
	
	3, 1, 2.

Continue navegando