Buscar

How to make DI

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 55 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

How to Produce Ductile Iron 
Some Basic Counsels
How to Produce Ductile Iron 
Some Basic Counsels
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Pierre-Marie CABANNE -- RIO TINTO Iron & Titanium 
ThicknessThickness
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
A casting:A casting: A GradeA Grade
CompositionComposition
+
C, Si, Mg,Ni, Cu, S, P, Mn
ThicknessThickness
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
A casting:A casting: A GradeA Grade+
CompositionComposition
C, Si, Mg,Ni, Cu, S, P, Mn
12 25 50 100 150 12 25 50 100 150
S Max 0.012 0.012 0.012 0.012 0.012
P Max 0.03 0.03 0.03 0.03 0.03 C 3.7 3.6 3.45 3.4 3.3
Cr Max 0.05 0.05 0.05 0.05 0.05 Si 2.45 2.35 2.25 2.15 2
Ce Max 0.025 0.025 0.025 0.025 0.025 Mn Max 0.25 0.3 0.3 0.3 0.3
Ni Max 0.1 0.1 0.1 0.3 0.4 Cu 0.5 0.6 0.7 0.8 0.9
C 3.7 3.55 3.4 3.35 3.3 C 3.7 3.6 3.45 3.4 3.3
Si 2.6 2.5 2.35 2.25 1.9 Si 2.45 2.35 2.25 2.15 2
Mn Max 0.2 0.2 0.2 0.2 0.2 Mn Max 0.25 0.3 0.3 0.3 0.3
Cu Max 0.1 0.1 0.1 0.1 0.1 Cu 0.8 1 1.2 1.4 1.6
C 3.7 3.55 3.4 3.35 3.3 C 3.7 3.6 3.45 3.4 3.3
Si 2.6 2.5 2.35 2.25 1.9 Si 2.45 2.35 2.25 2.15 2
Mn Max 0.2 0.25 0.25 0.25 0.25 Mn Max 0.3 0.3 0.3 0.3 0.3
Cu Max 0.25 0.3 0.35 0.4 0.5 Cu 0.8 1 1.2 1.4 1.6
Ni 0.4 0.7 1 1.3 1.6
Overall thickness : mm
In general, except otherwise states
Overall thickness : mm
EN-GJS-600 - GGG 60 - 600-4
EN-GJS-700 - GGG 70 - 700-3
EN-GJS-800 - GGG 80 - 800-2
EN-GJS-400 - GGG 40 - 400-12
EN-GJS-500 - GGG 50 - 500-7 
ThicknessThickness
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
A casting:A casting: A GradeA Grade+
CompositionComposition
C, Si, Mg,Ni, Cu, S, P, Mn12 25 50 100 150 12 25 50 100 150
S Max 0.012 0.012 0.012 0.012 0.012
P Max 0.03 0.03 0.03 0.03 0.03 C 3.7 3.6 3.45 3.4 3.3
Cr Max 0.05 0.05 0.05 0.05 0.05 Si 2.45 2.35 2.25 2.15 2
Ce Max 0.025 0.025 0.025 0.025 0.025 Mn Max 0.25 0.3 0.3 0.3 0.3
Ni Max 0.1 0.1 0.1 0.3 0.4 Cu 0.5 0.6 0.7 0.8 0.9
C 3.7 3.55 3.4 3.35 3.3 C 3.7 3.6 3.45 3.4 3.3
Si 2.6 2.5 2.35 2.25 1.9 Si 2.45 2.35 2.25 2.15 2
Mn Max 0.2 0.2 0.2 0.2 0.2 Mn Max 0.25 0.3 0.3 0.3 0.3
Cu Max 0.1 0.1 0.1 0.1 0.1 Cu 0.8 1 1.2 1.4 1.6
C 3.7 3.55 3.4 3.35 3.3 C 3.7 3.6 3.45 3.4 3.3
Si 2.6 2.5 2.35 2.25 1.9 Si 2.45 2.35 2.25 2.15 2
Mn Max 0.2 0.25 0.25 0.25 0.25 Mn Max 0.3 0.3 0.3 0.3 0.3
Cu Max 0.25 0.3 0.35 0.4 0.5 Cu 0.8 1 1.2 1.4 1.6
Ni 0.4 0.7 1 1.3 1.6
Overall thickness : mm
In general, except otherwise states
Overall thickness : mm
EN-GJS-600 - GGG 60 - 600-4
EN-GJS-700 - GGG 70 - 700-3
EN-GJS-800 - GGG 80 - 800-2
EN-GJS-400 - GGG 40 - 400-12
EN-GJS-500 - GGG 50 - 500-7 
J.Fargue (CTIF, PEM)
C + Si/3 = 4,3
Graphite segregation
Ségrégation du Graphite
microshrinkage
risk of primary chill
shrinkage
brittleness
fragilité
3,4 3,6 3,8 4,0 4,2 % C
% Si
1,5
2,0
2,5
3,0
3,5
Metallurgical Quality of the Iron:
C & Si effects
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
ThicknessThickness
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
A casting:A casting: A GradeA Grade
CompositionComposition
+
% Mg
Pouring T°C
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Riser
Modulus
1 1.2 1.4
Modulus
1 1.2 1.4
Modulus
1 0.5 0.7
Modulus
1 0.5 0.7
For Steel and / or first trials of DI
For normal DI production
Graphite Expansion
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Riser 
or 
Chill
h > =e
e
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Gate System
Modulus
1 0.5 0.7 0.1
Modulus
1 0.5 0.7 0.1
a
2a
b
4b
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Gate System
1
0.8 – 0.9
0.9 -1
1
1,2 – 1,4
1,4 - 2
0.8 – 0.9
De-pressure system
Pressure system
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Molding Process
Resin Molding process:
Strong Mold: vibrations
Weight charge ~ casting 
weight
Green Sand Molding process:
Increase Nb of Risers
Use pressure control riser 
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Melting Process
Casting CompositionCasting Composition
C, Si, Mg,Ni, Cu, S, P, Mn
Charge 
Composition
Returns: 0 > 33 > 40
Good Steel: 30 > 33 > 40
HPI-Sorelmetal: 70 > 33 > 20
Graphite & FeSi & SiC
Depending of the grade, 
the quality request and 
the casting design
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Melting Process
Returns: need to be well know (letter, painting, good storage, …)
Steel Scrap: no dust, low Zn coating, very well know, low bad 
elements ( segregate, carbide, pearlite, poison, … as V, Nb, Ti, W, 
Bo, Cr, Mn, P, … )
Graphite: pay attention to S (Mg recovery), N & H (pinholes), ash 
& grain size (C recovery), water (price), origin & crystallography 
HPI as Sorelmetal:pay attention “low price don’t say good quality, 
long collaboration, technical service & assistance, good delivery, 
…. & low level of bad elements”
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Sequence for charging raw materials:
 start by laying out a small 
steel charge, 
introduce a part ( ¼) of the 
HPI, to increase the melting’s 
beginning 
Then, add good steel 
scraps and returns
And finish by the HPI ( ¾ ) 
to achieve maximum 
nucleation efficiency
Melting Process
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Charging the Induction Furnace:
Sequence for charging alloying materials:
 Graphite and SiC should be added at 40 to 70 % of the 
charge: 
To have enough time for melting or dilution
To avoid the reduction of the liner or crown formation
To have better yield
Melting Process
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Recarburisers:
Charged in first
Big hole created on the bottom
Melting Process
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Charged on first liquid bath
Sticking on the bottom liner 
as a crown
Melting Process
Recarburisers:
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
If charged the last
Bad yield and sticking on 
the top liner as a crown
Melting Process
Recarburisers:
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Sequence for charging alloying materials:
 Graphite and SiC should be added at 40 to 70 % of the 
charge: 
To have enough time for melting or dilution
To avoid the reduction of the liner or crown formation
To have better yield
 FeSi will have better effect if it is added practically at the end 
of the melting.
 Other alloys (Ni, Mo, Cr, Cu, …) if requested, will be add, if 
possible in the ladle to avoid pollution.
Melting Process
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Melting Process
Melt as quick as possible and stop at 1400 – 1420°C to avoid the 
oxides reversion
De–slag & take a “spectro” sample
Prepare the additions or/and corrections
Wait the “iron” request from the molding line
Introduce the corrections and “push” the power until +/- 1500°C
De–slag & take a “spectro” sample & a Thermal analysis or chill 
test bar
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Melting Process
Melt as quick as possible and stop at 1400 – 1420°C to avoid the 
oxides reversion
De–slag & take a “spectro” sample
Prepare the additions or/and corrections
Wait the “iron” request from the molding line
Introduce the corrections and “push” the power until +/- 1500°C
De–slag & take a “spectro” sample & a Thermal analysis or chill 
test bar
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Quelques définitions:
TL: Température du liquidus
TE low: Température minimum de l’eutectique
TE upper: Température maximum de l’eutectique
TE Gray: Température de l’eutectique “gris”
TE White: Température de l’eutectique “blanc”
TS: Température du solidus
1100
1150
1200
1250
0 50 100 150 200 250 300
Time: s
Te
m
pe
ra
tu
re
: °
C
Te Low
Te Upper
Te Gray
Te White
T Liq
T Sol
R
TT: Surfusion
R: Recalescence
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Pour les fontes:
Chaque fonte présente un courbe spécifique
1: GL
2: GS
3: GS avec un faiblenombre de nodules
4: Fonte blanche
5: Fonte pseudo lamellaire
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Par example:
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Pour la GS, il y a plusieurs types de courbes:
Fonte de BaseFonte de Base
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Fonte traitéeFonte traitée
Pour la GS, il y a plusieurs types de courbes:
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Fonte Traitée 
Et
inoculée
Fonte Traitée 
Et
inoculée
Pour la GS, il y a plusieurs types de courbes:
RIO TINTO Iron & Titanium SORELMETALISO 9002 CERTIFIED 
Examples concrets:
 Caldobase = Fonte de Base
C=3.64 Si=1.72 S=0.011 Cu=0.05 Mn=0.15 Température four=1494
 1 = Fonte de Base avec ajout de graphite
C=3.66 Si=1.72 Température four=1512
1125
1130
1135
1140
1145
1150
1155
1160
15:36 15:50 16:04 16:19 16:33
Liquidus
Eutect ique bas
Eutect ique haut
0
5
10
15
20
25
15:45 15:50 15:55 16:10 16:20 16:25
4.05
4.1
4.15
4.2
4.25
4.3
4.35
4.4
Surfusion
Recalescence
Ceq
16:00 avec Te
Tsolidus = 1128
Fonte GS
Heure
15:45
15:50
15:55
16:10
16:20
16:25
ss Te, Tfour=1413
ss Te + 1Kg/T graphite
ss Te + ino
ss Te, T four=1529
ss Te, après TT Mg, 
dans four
ss Te, après TT Mg, 
dans poche inoculée
Selection of Charge Materials:
Undercooling measurement:
it is necessary to always practice under the same conditions.
Undercooling evolution as a function of the N° of Taps
5
7
9
11
13
15
17
19
21
1 2 3 4 5 6 7
Tap's number
Un
de
rc
oo
lin
g 
°C
A good solution to have always good and repeatable values is 
to use a stable and good charge composition
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Melting Process
Melt as quick as possible and stop at 1400 – 1420°C to avoid the 
oxides reversion
De–slag & take a “spectro” sample
Prepare the additions or/and corrections
Wait the “iron” request from the molding line
Introduce the corrections and “push” the power until +/- 1500°C
De–slag & take a “spectro” sample & a Thermal analysis or chill 
test bar
Practice pre-conditioning (1Kg/T of good graphite of FeSi or 
inoculant)
and wait 5 mn for oxides removing
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Mg Treatment Process
FeSiMg 5-7 : 1 to 1,6%
FeSi or Inoculant: 0 to 1% - 0,4 is enough
Good steel or DI chips: < 1% 
D
2 
D
1,
5 
D
FeSiMg grain size: depending of the weigh 
ladle: big ladle = biggest grain size
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
General formula for quantity of FeSiMg:
Where:
W FeSiMg = weight of FeSiMg in Kg W Ladle = weight of ladle in Kg
Mg final = % of Mg in liquid iron after treatment
% Mg FesiMg = % of Mg in the FeSiMg alloy
Si , Sf = initial & final Sulfur in the iron in %
t = time between treatment and beginning of pouring in mn
T = temperature of iron in °C
R = yield of the treatment
Effect of each parameter:
W Ladle = weight of the ladle in Kg :
Only the core wire process takes into account the weight of liquid DI in the ladle. 
The other processes are influenced.
Impossible d’afficher l’image.
A fluctuation of +/- 5% is “normal” and 
automatically generates variations on the 
final Mg 
A balance
Good hydraulic lay-out on the 
furnace. Low speed at the end
Good design for the furnace 
neck and ladle
Good exhaust system
Training for operators
…
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
Effect of each parameter:
W FeSiMg = weight of FeSiMg in Kg :
All the Mg treatment processes present a possible variations on the FeSiMg weight 
.
A fluctuation of +/- 1% is frequent 
(accuracy of the balance)
A clean balance with calibration
Frequent audits of the automatic 
distributors
Capability of the balance
Training for operators
…
 in %
W ladle Kg 1000 1000 0.00
Mg FeSiMg % 6 6 0.00
R % 60 60 0.00
Mg final % 0.0350 0.0355 1.37
Si % 0.01 0.01 0.00
Sf % 0.005 0.005 0.00
t mn 5 5 0.00
T °C 1450 1450 0.00
W FeSiMg Kg 12.17 12.30 1.10
Target Effective
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
Effect of each parameter:
Si = initial Sulfur:
The best advantage of SORELMETAL versus the others .
Depending on the melting process and 
charge composition Si fluctuates between 
0.08 & 0.01 
Good raw material & charge 
composition
Good recarburiser and ferro-
alloys
Good process control 
(spectro, Lecco)
&
Sorelmetal ®
 in %
W ladle Kg 1000 1000 0.00
Mg FeSiMg % 6 6 0.00
R % 60 60 0.00
Mg final % 0.0350 0.0312 -10.86
Si % 0.01 0.015 50.00
Sf % 0.005 0.005 0.00
t mn 5 5 0.00
T °C 1450 1450 0.00
W FeSiMg Kg 12.17 12.17 0.00
Target Effective
Effect of each parameter:
Si = initial Sulfur:
The best advantage of SORELMETAL versus the others .
Sorelmetal ®
- 3.38 € / 
Liquid Ton
TF10
W ladle Kg 1000 1000
Mg FeSiMg % 6 6
R % 60 60
Mg final % 0.0350 0.0350
Si % 0.0073 0.0153
Sf % 0.005 0.005
t mn 5 5
T °C 1450 1450
W FeSiMg Kg 11.60 13.29
Cost of Mg treatment € 23.20 26.58
Others
Effect of each parameter:
Mg final = final Mg before pouring:
The final Magnesium before pouring depends on:
the casting thickness
the level of S, Zn and free oxygen in the iron (quality of charge 
material, melting process)
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
the time between the first mold and last one (in 
that case the time t will include this period – next slide)
The final Magnesium before pouring depends on the level of S, Zn and free oxygen 
in the iron (quality of charge material, melting process):
% Mg final(spectro)= MgS + MgO + MgZnO3 + MgX + Mg free
Only the free Mg promotes the nodularization, and a very small part of MgS and 
MgO will create some nucleis !
Many defects (like poor graphite shape) come from too low free Mg. 
Thus we ought to look at the PI ratio, like our HPI, to minimize the presence 
of free O, S and Zn from steel scraps!
Effect of each parameter:
Mg final = final Mg before pouring:
However, a high Magnesium creates or promotes defects as well: 
carbides, dross, micro-shrinkage !!!!!
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
Effect of each parameter:
%Mg FeSiMg = % of Mg in FeSiMg:
A good supplier
Frequent audits of the melting 
platform
Capability on the product
Training for operators
…
 in %
W ladle Kg 1000 1000 0.00
Mg FeSiMg % 6 5.8 -3.33
R % 60 60 0.00
Mg final % 0.0350 0.0335 -4.17
Si % 0.01 0.01 0.00
Sf % 0.005 0.005 0.00
t mn 5 5 0.00
T °C 1450 1450 0.00
W FeSiMg Kg 12.17 12.17 0.00
Target Effective
Often, this ratio is overlook. But a FeSiMg 
5-7 presents a natural variation close to 0.5 
(+ 0.25%):
different lots, grain size segregation, grain size, origin, 
…
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
Effect of each parameter:
‘t = time between end of treatment and beginning of pouring or
time between Mg treatment and last mold:
Good maintenance and 
transportation machine
Training for operators
Ladle with cover
Automatic pouring line
…
For a final Mg of 0.035 %:
If total pouring period is 15 mn, the FeSiMg 
needed is 14,94 Kg
If this time becomes only 10 mn, thus the 
need decreases to 13,56 Kg  in %
W ladle Kg 1000 1000 0.00
Mg FeSiMg % 6 6 0.00
R % 60 60 0.00
Mg final % 0.0350 0.0350 0.00
Si % 0.01 0.01 0.00
Sf % 0.005 0.005 0.00
t mn 10 15 50.00
T °C 1450 1450 0.00
W FeSiMg Kg 13.56 14.94 10.25
Optimized Normal
Effect of each parameter:
T °C = treatment temperature
The treatment temperature is the addition of:
Pouring temperature (function of casting thickness 
and type of risering)
+
Loss of temperature during transfer and pouring
+
Loss of temperature during the treatment
10 Kg of “cold” ferro-alloy 
in a ladle (1Ton – 1500°C) 
decreases the temperature 
by 15°C
Worldwidereference 
for DI foundry 
information
Between 5 to 12°C 
per minute
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x R 1450
W FeSiMg )= x x (W ladle
Effect of each parameter:
T °C = treatment temperature
Insulating refractory + cover 
for ladle (s)
Small addition in the ladle
Quick transfer (s) and short
pouring period 
 in %
W ladle Kg 1000 1000 0.00
Mg FeSiMg % 6 6 0.00
R % 60 60 0.00
Mg final % 0.0350 0.0321 -8.20
Si % 0.01 0.01 0.00
Sf % 0.005 0.005 0.00
t mn 5 5 0.00
T °C 1450 1500 3.45
W FeSiMg Kg 12.17 12.17 0.00
Target Effective
An increase of pouring temperature by 50°C 
decreases the final magnesium by 0.003
Effect of each parameter:
R = yield of the treatment:
From the mathematical formula, we automatically get the yield, and all the past 
parameters could have an influence!
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x W FeSiMg 1450
R )= x x (W ladle
However, yield is a typical parameter like the previous. And, it is more a sum of 
subjective items than purely a mathematical list:
quality of the spectro and spectro sample, how and where the spectro sample is taken
design, cleanliness of the ladle (body and pocket) and quality of its liner
quality and cleanliness of the steel cover
output of the furnace during the tapping
time between input of FeSiMg and beginning of the tapping
level of oxidation of liquid iron and practice of pre-conditioning 
exhaust system directly attached on the ladle as with for core wire process
etc, …
Effect of each parameter:
R = yield of the treatment:
If all the previous parameters are “under control”, we recommend to recalculate the 
yield for each treatment.
In case of major deviation, the foundrymen will be alerted and will check all the 
precedent list (previous slide)
For a similar design of ladle and process (melting treatment, …), the yield can move 
from 60 to 40% from one foundry to another!!!
Our “job” consists of giving information to our customers or potential customers
( Mg final + 0.76 (Si - Sf) + 10
-3 t ) T°C 2
% Mg FeSiMg x W FeSiMg 1450
R )= x x (W ladle
Summarize:
For the same final Mg = 0.035 %: 
if we take into consideration all the 
possible fluctuations (with an 
industrial level), the price of the 
treatment will become:
But for the same weight of FeSiMg 
if we take into consideration all the 
“negative” fluctuations (with an 
industrial level), the final Mg will 
become:
 in %
W ladle Kg 1000 1050 5.00
Mg FeSiMg % 6 5.7 -5.00
R % 60 57 -5.00
Mg final % 0.0350 0.0197 -43.71
Si % 0.0073 0.0153 109.59
Sf % 0.005 0.005 0.00
t mn 5 6 20.00
T °C 1450 1500 3.45
W FeSiMg Kg 11.60 11.60 0.00
Target Effective in %
W ladle Kg 1000 1050 5.00
Mg FeSiMg % 6 5.7 -5.00
R % 60 57 -5.00
Mg final % 0.0350 0.0350 0.00
Si % 0.0073 0.0153 109.59
t mn 5 6 20.00
T °C 1450 1500 3.45
W FeSiMg Kg 11.60 16.89 45.62
€ 23.20 33.78 10.58
Cost of Mg 
treatment
Target with TF10 & well 
process
 in € per liquid 
Ton
Effetive or 
Others
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Mg Treatment Process
Mgspectro = MgS + MgO + MgZnO3 + Mgxxxx + Mgfree
Base iron: S < 0.02%
Treated iron: 0.008< S < 0.015%
Base iron: 0 active< 200ppm
Treated iron: 2 < 0 active< 20ppm
Depending Bad or 
Good Steel Scrap
Rusty, sterile, 
Sand, …
GOOD & 
FONDAMENTAL 
for NODULES
GOOD & 
FONDAMENTAL 
for NODULES
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Mg Treatment Process
Mg%add on the ladle 
=
[ 0.76 (S initial – S final ) + Mg final ] * Mg yield
>>> FeSiMg adding in the ladle
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®
Pre-conditionning: 0,1 % (FeSi, SiC, graphite, inoculant)
in the furnace: above the clean base iron 
Metallurgical Quality of the Iron: Inoculation
Pre-inoculation: 0,2 – 0,4 % (FeSi, inoculant)
during the tapping: in the stream
On the Mg treatment ladle: with the sandwich or in the core wire
Inoculation: 0,1 – 0,2 % (inoculant)
In the stream, between treatment ladle and pouring ladle
In the stream, between treatment ladle and pouring furnace
Late Inoculation: 0,08 – 0,15 % (inoculant)
"Out" the mold, In the stream, In the mold
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Inoculation: 500 Kg to 2 Tons
Block of Inoculant: 
0.1 to 0.15% 
Grain Inoculant: 0.2% 
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Inoculation: 500 Kg to 2 Tons
Grain Inoculant: 0.1 – 0.15% 
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®Why Inoculation?
To avoid Carbides:
To increase Nodule count:
What is Inoculant?
It’s a FeSi alloy with “magic” elements:
FeSI + / - Ca, Al, Ce, La, Ba, Zr, Sr, Bi, … Mn (?)
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®And Cooling Time?
Avoid to practice “cheak-out” at “red color”, only ... 
for specific and “sensible” grade 
0
200
400
600
800
1000
1200
1400
1600
1800
0 2 4 6 8 10 12
t solidification
t décochage / ferrite
t décochage / perlite
Te
m
ps
 d
e 
R
ef
ro
id
is
se
m
en
t e
n 
m
n
Module en cm
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®And to finish: Quality control!
Raw Material: dirty, rusty, contamination, composition certificate, 
origin, safety delivery, …
Melting: minimum 2 spectro analysis, chill test or thermal analysis 
with or without Te
Mg Treatment: just after treatment: spectro analysis
after the last mold: nodularity sample
time before the last mold pouring
Mechanical test: sample outside the mold, sample attached to the 
casting or the mold, sample from the casting
On/In the casting: US, Eddy current, Radio, die penetrant, 
dimension, ….
RI
O 
TI
NT
O 
Iro
n 
& 
Ti
ta
ni
um
Sorelmetal ®But before to finish, before to start and 
during the process:
Discuss with and call Esfemetal
Use good material, at least as HPI
Read books & suggestions

Outros materiais