Buscar

respostas unidade 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 9 páginas

Prévia do material em texto

· Pergunta 1 
1 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“Depois do comprimento de entrada, ou seja, no escoamento estabelecido, o perfil de velocidade fica invariante ao longo de um duto de seção constante, e a forma da distribuição real de velocidade depende de o regime ser laminar ou turbulento. Para um escoamento laminar num duto de seção transversal circular, a distribuição (perfil) de velocidade numa seção é parabólica”. 
 
LIVI, C. P. Fundamentos de fenômenos de transporte : um texto para cursos básicos. 2. ed. [S.l.]: LTC, 2017. p. 71-72.
 
Assuma-se o diagrama de velocidades indicado na figura a seguir, em que a parábola tem seu vértice a 20 cm do fundo. 
Fonte: Adaptada de Brunetti (2008, p. 15).
 
BRUNETTI, F. Mecânica dos fluidos . 2. ed. revisada. São Paulo: Pearson Prentice Hall, 2008.
 
A respeito do perfil de velocidade abordado na figura apresentada, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). 
 
I. (  ) O escoamento é turbulento. 
II. (  ) Na superfície a velocidade é máxima e vale 2,5 m/s. 
III. (  ) A uma profundidade de 20 cm a velocidade é igual a zero. 
IV. (  ) O perfil de velocidade parabólico é dado por uma equação onde v = a.y 2 + b.y + c. Sendo que c = 0.
 
Assinale a alternativa que apresenta a sequência correta: 
	
	
	
	
		Resposta Selecionada: 
	
F, V, V, V. 
	Resposta Correta: 
	
F, V, V, V. 
	Feedback da resposta: 
	Resposta correta. A sequência está correta. O perfil parabólico é válido para escoamentos laminares e não turbulentos. Na superfície o fluido apresenta velocidade máxima igual a 2,5 m/s e no fundo, a 20 cm de profundidade, sua velocidade é igual a zero. Nesta altura y = 0, como v = a.y 2 + b.y + c, para y = 0 temos v = 0 = c, o que resulta em c = 0 m/s. 
	
	
	
· Pergunta 2 
1 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“Muitas vezes nós estamos interessados no que acontece numa região particular do escoamento. O Teorema de Transporte de Reynolds fornece uma relação entre a taxa de variação temporal de uma propriedade extensiva para um sistema e aquela para um volume de controle”.
 
MUNSON, B. R.; YOUNG, D. F.; OKIISHI, T. H. Fundamentos da mecânica dos fluidos . Tradução da quarta edição americana de: Euryale de Jesus Zerbini. São Paulo: Edgard Blucher, 2004. p. 164.
 
A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas. 
 
I. O teorema de Reynolds é utilizado para explicar o princípio de funcionamento do desodorante.
Pois:
II. Através desse princípio o gás dentro do aerosol é expelido com uma pressão suficiente para que a massa também deixe a superfície de controle, no caso o recipiente do aerossol.
  
A seguir, assinale a alternativa correta: 
	
	
	
	
		Resposta Selecionada: 
	
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. 
	Resposta Correta: 
	
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. 
	Feedback da resposta: 
	Resposta correta. A alternativa está correta, pois 
a asserção I é uma proposição verdadeira, devido ao fato do Teorema de Reynolds ser utilizado quando o produto desodorante em aerosol foi desenvolvido. A asserção II também é verdadeira e justifica a I, pois quando o gás é expelido do recipiente (volume de controle) ele faz com que a massa do produto seja expelida também, mas somente uma quantidade suficiente para que possamos nos higienizar. 
	
	
	
· Pergunta 3 
0 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“Uma das leis mais fundamentais da natureza é a 1 a Lei da Termodinâmica, também conhecida como princípio da conservação de energia. Ela afirma que a energia não pode ser criada, apenas transformada”.
 
ÇENGEL, Y.; CIMBALA, J. M. Mecânica dos fluidos : fundamentos e aplicações. Tradução de: ROQUE, K. A.; FECCHIO, M. M. São Paulo: Mc Graw Hill, 2007. p. 175.
 
A respeito da lei da conservação de energia, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). 
 
I. ( ) A força potencial só tem componente vertical. 
II. ( ) A energia cinética de uma partícula parada é zero. 
III ( ) Um líquido em movimento tem pelo menos as energias cinética e de pressão.
IV. ( ) A força de pressão é sempre tangencial. 
 
Assinale a alternativa que apresenta a sequência correta: 
	
	
	
	
		Resposta Selecionada: 
	
V, V, V, V. 
EQUPE VG: os nomes de tradutores estão abreviados em alguns momentos, ao longo do BQ. Conforme a ABNT, não devem ser abreviados. Peço que, se possível, seja verificado com o professor. 
Verificar nome sem abreviação. 
#ilustração# 
_Marcada como resolvida_ 
_Reaberta_ 
#ilustração# 
_Marcada como resolvida_ 
_Reaberta_ 
#ilustração# 
_Marcada como resolvida_ 
_Reaberta_ 
#ilustração# 
_Marcada como resolvida_ 
_Reaberta_ 
#ilustração# 
	Resposta Correta: 
	
V, V, V, F. 
	Feedback da resposta: 
	Sua resposta está incorreta.  A sequência está incorreta.  A energia potencial é devida à queda de um fluido, portanto ela só tem componente vertical. Uma partícula parada apresenta v = 0 e, portanto, sua energia cinética também será zero. Um líquido em movimento tem a energia cinética devido à velocidade e a energia devida à pressão exercida pelo líquido, pelo menos. A força de pressão pode ser normal ou tangencial. 
	
	
	
· Pergunta 4 
0 em 1 pontos
	
	
	
	Leia o trecho a seguir: 
“O fluxo de massa em uma seção é a massa do fluido que escoa através da seção por unidade de tempo. Logo, o transporte de massa é decorrente do campo de velocidade de escoamento. As distribuições (perfis) reais de velocidade numa seção geralmente não são uniformes, pois os fluidos viscosos apresentam a propriedade de aderência às superfícies sólidas com as quais estão em contato”.
 
LIVI, C. P. Fundamentos de fenômenos de transporte : um texto para cursos básicos. 2. ed. [S.l.]: LTC, 2017. p. 71-72.
 
A partir do apresentado, analise as asserções a seguir e a relação proposta entre elas. 
 
I. O princípio do perfil de velocidade pode ser usado para explicar o funcionamento do óleo lubrificante nas paredes da tubulação do motor de um automóvel.
Pois:
II. Por ser um fluido viscoso o óleo lubrificante adere às paredes do motor fazendo com que o combustível tenha um fluxo mais uniforme.
  
A seguir, assinale a alternativa correta: 
	
	
	
	
		Resposta Selecionada: 
	
A asserção I é uma proposição verdadeira, e a asserção II é uma proposição falsa. 
	Resposta Correta: 
	
As asserções I e II são proposições verdadeiras, e a II é uma justificativa correta da I. 
	Feedback da resposta: 
	Sua resposta está incorreta. A alternativa está incorreta, pois as duas proposições apresentadas são verdadeiras e a asserção II justifica a I, devido ao fato do óleo lubrificante ter a propriedade de aderir à parede da tubulação do motor, e graças a esse fato, quando o óleo adere à parede do motor ele faz com que o combustível possa circular mais suavemente do que se tivesse que entrar com a parede sem o óleo, muitas vezes podendo entrar em contato com superfícies irregulares devido à corrosão do motor. 
	
	
	
· Pergunta 5 
0 em 1 pontos
	
	
	
	Um medidor de vácuo conectado a uma câmara exibe a leitura de 11,6 psi no seu mostrador em um local onde a pressão atmosférica foi medida com um manômetro e a leitura informada foi igual a 29 psi. Com esses dados é possível obtermos a pressão absoluta nessa câmara. Nesse sentido, assinale a alternativa que indique a pressão absoluta na câmara: 
	
	
	
	
		Resposta Selecionada: 
	
Acima de 20 psi. 
	Resposta Correta: 
	
Entre 16 e 20 psi. 
	Feedback da resposta: 
	Sua resposta está incorreta. A alternativa está incorreta, pois a Pressão absoluta é dada pela Pressão atmosférica - Pressão do vácuo, ou seja, devemos subtrair da pressão atmosférica o valor da pressão do vácuo dada para encontrarmos a pressão absoluta solicitada. Esse exercício é resolvido com uma simples subtração. Resolução: A Pressão absoluta é dada pela Pressão atmosférica - Pressão do vácuo, o que é igual a P abs = 29- 11,6 = 17,4 psi. 
	
	
	
· Pergunta 6 
1 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“Muitos sistemas fluidos foram projetados para transportar um fluido de um local para outro a uma vazão, velocidade e diferença de elevação especificadas, e o sistema pode gerar trabalho mecânico em uma turbina, ou pode consumir trabalho mecânico em uma bomba durante esse processo”.
 
ÇENGEL, Y.; CIMBALA, J. M. Mecânica dos fluidos : fundamentos e aplicações. Tradução de Roque, K. A e Fecchio, M. M. São Paulo: Mc Graw Hill, 2007. p. 156.
 
Considerando o excerto apresentado, sobre a energia mecânica, analise as afirmativas a seguir:
 
I. Uma turbina hidráulica transforma energia mecânica em energia elétrica, através da energia potencial de uma queda d’água. 
II. Uma bomba transfere a energia mecânica para um fluido elevando sua pressão. 
III. Um ventilador produz uma sensação agradável utilizando a energia cinética do ar. 
IV. A energia mecânica de um fluido varia durante um escoamento mesmo se sua pressão, velocidade e elevação permanecerem constantes.
 
Está correto o que se afirma em: 
	
	
	
	
		Resposta Selecionada: 
	
I, II e III, apenas. 
	Resposta Correta: 
	
I, II e III, apenas. 
	Feedback da resposta: 
	Resposta correta. A alternativa está correta, pois uma usina hidrelétrica gera energia através da transformação da energia potencial da queda d’água em energia elétrica. Uma bomba transfere energia para o fluido aumentando sua velocidade, ou vazão, através da injeção de pressão na tubulação. O ventilador aumenta a velocidade do vento, ou sua energia cinética, produzindo uma sensação de frescor. Entretanto a energia mecânica de um fluido permanece constante se sua pressão, velocidade e elevação permanecerem constantes. 
	
	
	
· Pergunta 7 
1 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“[...] uma variação de elevação z (coordenada cartesiana, em m) em um fluido em repouso corresponde a P/ g (sendo que  é a densidade, em kg/m 3 ) , o que sugere que uma coluna de fluido pode ser usada para medir diferenças de pressão  [...] um dispositivo que se baseia neste princípio é chamado de manômetro, normalmente usado para medir diferenças de pressão pequenas e moderadas” (ÇENGEL; CIMBALA, 2011, ).
 
ÇENGEL, Y.; CIMBALA, J. M. Mecânica dos fluidos : fundamentos e aplicações. Tradução de: ROQUE, K. A; FECCHIO, M. M. São Paulo: Mc Graw Hill, 2007. p. 65.
 
Considerando o excerto apresentado, sobre os manômetros, analise as afirmativas a seguir:
 
I. Os transdutores de pressão chamados de strain-gages funcionam através de um diafragma que se curva entre duas câmaras abertas para as entradas de pressão.
II. Os transdutores piezelétricos funcionam de acordo com o princípio de que um potencial elétrico pode ser gerado toda vez que uma substância cristalina sofrer uma pressão mecânica. É gerado em uma substância cristalina quando ela é submetida à pressão mecânica.
III. O manômetro de Bourdon consiste em um tubo de metal oco, geralmente em formato de gancho; dobrado como um gancho. Ao ligarmos o manômetro, o tubo elástico é submetido à pressão que queremos medir, deformando assim o tubo elástico e através de um sistema de engrenagens aciona o ponteiro, indicando a pressão da tubulação onde o equipamento foi instalado. 
IV. O manômetro é usado para medir a pressão atmosférica.
 
Está correto o que se afirma em: 
	
	
	
	
		Resposta Selecionada: 
	
I, II e III, apenas. 
	Resposta Correta: 
	
I, II e III, apenas. 
	Feedback da resposta: 
	Resposta correta. A alternativa está correta, pois as alternativas apresentam a correta descrição dos vários tipos de manômetro existentes: strain-gages, piezelétricos e o manômetro de Bourdon. O barômetro é o nome dado ao instrumento utilizado especificamente para  usado para medir a pressão atmosférica ao invés do manômetro. 
	
	
	
· Pergunta 8 
0 em 1 pontos
	
	
	
	Leia o excerto a seguir:
“A vazão através de um tubo pode ser determinada restringindo o escoamento neste tubo e medindo-se a diminuição na pressão devido ao aumento da velocidade no local da constrição. Esse é o princípio empregado para a medição da vazão em um tubo de Venturi, um dos dispositivos mais usados para a medição de vazão, e mostrado na figura abaixo”.
 
ÇENGEL, Y.; CIMBALA, J. M. Mecânica dos Fluidos : Fundamentos e Aplicações. Tradução de: ROQUE, K. A; FECCHIO, M. M. São Paulo: Mc Graw Hill, 2007. p. 318-319.
 
Figura - Tubo de Venturi
Fonte: letindor / 123RF.
 
A respeito do tubo de Venturi, analise as afirmativas a seguir e assinale V para a(s) Verdadeira(s) e F para a(s) Falsa(s). 
 
 
 
I. ( ) A parte onde o tubo de Venturi se estreita é chamado de garganta do tubo. 
I. ( ) A velocidade aumenta porque há uma diminuição do diâmetro do tubo. 
III. ( ) O tubo de Venturi não é muito utilizado na agricultura para irrigar plantações. 
IV. ( ) O tubo de Venturi é utilizado no estudo da aerodinâmica de aviões. 
 
Assinale a alternativa que apresenta a sequência correta: 
	
	
	
	
		Resposta Selecionada: 
	
V, V, V, V. 
	Resposta Correta: 
	
V, V, F, V. 
	Feedback da resposta: 
	Sua resposta está incorreta. A sequência está incorreta. A parte estreita de um tubo de Venturi é chamada realmente de garganta do tubo e nessa área a velocidade aumenta devido a uma diminuição no diâmetro do tubo. Ao contrário do mencionado, uma das áreas onde o tubo de Venturi é largamente utilizado é na agricultura. Ele também é utilizado no estudo da aerodinâmica de aviões. 
	
	
	
· Pergunta 9 
0 em 1 pontos
	
	
	
	Um manômetro conecta uma tubulação de óleo a uma tubulação de água conforme é mostrado na figura a seguir: 
 
Fonte: Elaborada pela autora.
 
Sendo S óleo 
= 0,86 e S Hg = 13,6 (S é a gravidade específica dada pela relação entre a massa específica de uma substância e a massa específica da água, por isso é adimensional) e      água 
= 9.800 N/m 3 .
 
Nesse sentido, assinale a alternativa que apresente a diferença de pressão dos valores entre as tubulações de água e óleo: 
	
	
	
	
		Resposta Selecionada: 
	
Entre 21 e 40 kPa. 
	Resposta Correta: 
	
Entre 0 e 20 kPa. 
	Feedback da resposta: 
	Sua resposta está incorreta. A alternativa está incorreta, pois a pressão no ponto 3 é igual à pressão no ponto 2, ou seja, p 2 = p 3. A pressão p 2 é dada por p água + γ água 
x 0,04. A pressão em p 3 é dada por p 3 = p 4 
+ γ Hg x 0,08. Sendo que todas as alturas foram passadas de cm para m. A pressão no ponto 4 é igual àquela aplicada no ponto 5, pois o peso específico do ar pode ser ignorado em comparação com o do óleo. Logo: p 4 = p 5 
= p óleo - γ óleo x 0,06. Igualando estes valores temos que p água – p óleo 
= - γ água x 0,04 +  γ Hg x 0,08 - γ óleo x 0,06 = - 9.800 x 0,04 + (13,6 x 9.800) x 0,08 – (0,86 x 9.800) x 0,06 = - 392 + 10.662,4 - 505,68 = 9.764,72 Pa = 9,7 kPa. 
	
	
	
· Pergunta 10 
1 em 1 pontos
	
	
	
	Um furacão é uma tempestade tropical que se forma acima do oceano pelas baixas pressões atmosféricas. A velocidade média dos ventos em um furacão foi medida como sendo de 180 km/h. Considere-se que a massa específica do ar é de 1,2 kg/m 3 e que um arranha-céu tem 120 janelas medindo 1 m x 2 m cada. 
 
Nesse sentido, calcule a força do vento sobre cada janela, que será um número entre: 
	
	
	
	
		Resposta Selecionada: 
	
2.001 e 3.000 N. 
	Resposta Correta: 
	
2.001 e 3.000 N. 
	Feedback da resposta: 
	Resposta correta. A alternativa está correta, pois primeiramente adequamos as unidades, visto que a velocidade foi dada em km/h e a massa específica em kg/m 3. Então, vamos passar a velocidade para m/s. Logo,  = 50 m/s. A janela recebe uma força equivalente a energia cinética, ou seja: E c = m x = 1,2  x  = 1,2  x  = 1500 . Como kg = . Teremos 1500 = 1500 N/m 2 
= 1.500 Pa. Agora temos que calcular a força. A pressão  é definida como a força dividida pela área, então F = P x A, ou p = F / A = x 2 m 2 
= 3.000 N. 
	
	
	
Domingo, 4 de Outubro de 2020 20h50min33s BRT
Parte superior do formulário

Continue navegando