Prévia do material em texto
TENSORES CARTESIANOS
MATRIZ DE INÉRCIA
𝐼 = [
𝐼𝑥 −𝑃𝑥𝑦 −𝑃𝑥𝑧
−𝑃𝑥𝑦 𝐼𝑦 −𝑃𝑦𝑧
−𝑃𝑥𝑧 −𝑃𝑦𝑧 𝐼𝑧
]
MATRIZ COSSENOS DIRETORES
[𝑎] = [
𝑐𝑜𝑠(𝑒1, 𝑒1
′ ) 𝑐𝑜𝑠(𝑒1, 𝑒2
′) 𝑐𝑜𝑠(𝑒1, 𝑒3
′)
𝑐𝑜𝑠(𝑒2, 𝑒1
′ ) 𝑐𝑜𝑠(𝑒2, 𝑒2
′) 𝑐𝑜𝑠(𝑒2, 𝑒3
′ )
𝑐𝑜𝑠(𝑒3, 𝑒1
′ ) 𝑐𝑜𝑠(𝑒3, 𝑒2
′ ) 𝑐𝑜𝑠(𝑒3, 𝑒3
′ )
]
𝐿𝑒𝑖 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎çã𝑜 𝑇𝑒𝑛𝑠𝑜𝑟: [𝐼′] = [𝑎]𝑇[𝐼][𝑎]
𝐿𝑇𝑇 2ª𝑂𝑟𝑑𝑒𝑚: 𝐼𝑖𝑗
′ = 𝑎𝑝𝑖𝑎𝑞𝑗𝐼𝑝𝑞
DIRECÇÕES PRINCIPAIS
𝐸𝑞𝑢𝑎çã𝑜 𝐶𝑎𝑟𝑎𝑐𝑡𝑒𝑟í𝑠𝑡𝑖𝑐𝑎: |𝑇𝑖𝑗 − 𝜆 𝛿𝑖𝑗| = |
𝑇11 − 𝜆 𝑇12 𝑇13
𝑇21 𝑇22 − 𝜆 𝑇23
𝑇31 𝑇32 𝑇33 − 𝜆
| = 0
[
𝑇11 − 𝜆 𝑇12 𝑇13
𝑇21 𝑇22 − 𝜆 𝑇23
𝑇31 𝑇32 𝑇33 − 𝜆
] [
𝐵1
𝐵2
𝐵3
] = 0 𝜆 → 𝑉𝑎𝑙𝑜𝑟𝑒𝑠𝑃𝑟ó𝑝𝑟𝑖𝑜𝑠/𝑀𝑜𝑚𝑒𝑛𝑡𝑜𝑠 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑖𝑠
( 𝑇11 − 𝜆) 𝐵1 + 𝑇12 𝐵2 + 𝑇13 𝐵3 = 0
𝑇21 𝐵1 + ( 𝑇22 − 𝜆) 𝐵2 + 𝑇23 𝐵3 = 0
𝑇31 𝐵1 + 𝑇32 𝐵2 + ( 𝑇33 − 𝜆) 𝐵3 = 0
�⃗⃗� → 𝑉𝑒𝑡𝑜𝑟𝑒𝑠/𝐸𝑖𝑥𝑜𝑠 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑖𝑠
CINEMÁTICA
2ª LEI DE NEWTON
�⃗� (𝑟, �⃗�, 𝑡 ) = 𝑚 �⃗� = 𝑚
𝑑�⃗�
𝑑𝑡
= 𝑚
𝑑2𝑟
𝑑𝑡2
MOVIMENTO RETILÍNEO UNIFORME
�⃗� = 𝑚 �⃗� = 0 → 𝑣 = 𝑐𝑜𝑛𝑠𝑡
𝑥 = 𝑥0 + 𝑣𝑡
MOVIMENTO PROJÉCTIL S/
ATRITO
• Movimento Horizontal (𝑎𝑥 = 0)
𝑣𝑥 = 𝑣0𝑥 = 𝑣0𝑐𝑜𝑠𝜃0
𝑥 = 𝑥0 + 𝑣0𝑥𝑡 = 𝑥0 + 𝑣0𝑐𝑜𝑠𝜃0 𝑡
• Movimento Vertical (𝑎𝑦 = −𝑔)
𝑣𝑦 = 𝑣0𝑦 − 𝑔𝑡 = 𝑣0𝑠𝑒𝑛𝜃0 − 𝑔𝑡
𝑦 = 𝑦0 + 𝑣0𝑠𝑒𝑛𝜃0𝑡 −
1
2
𝑔𝑡2
𝑣𝑦
2 = 𝑣0𝑦
2 + 2𝑔(𝑦 − 𝑦0)
• Tempo Altura máxima (𝑣𝑦 = 0)
𝑡 =
𝑣0𝑦
𝑔
˄ 𝑦𝑚á𝑥 = 𝑦0 +
1
2
𝑣0𝑦
2
𝑔
• Alcance (𝑦 = 0)
𝑡 =
𝑣0𝑦
𝑔
+ √(
𝑣0𝑦
𝑔
)
2
+ (
2𝑦0
𝑔
) ∥ 𝐴 =
𝑣0
2𝑠𝑒𝑛2𝜃0
𝑔
M.R.U. ACELERADO/RETARDADO
�⃗� = 𝑚 �⃗� = 𝑐𝑜𝑛𝑠𝑡 → 𝑎 = 𝑐𝑜𝑛𝑠𝑡
𝑥 = 𝑥0 + 𝑣0𝑡 +
1
2
𝑎𝑡2
𝑣 = 𝑣0 + 𝑎𝑡
𝑣2 = 𝑣0
2 + 2 𝑎(𝑥 − 𝑥0)
𝑡𝑞𝑢𝑒𝑑𝑎 = √
2ℎ
𝑔
𝑣𝑐ℎ𝑒𝑔𝑠𝑜𝑙𝑜 = √2𝑔ℎ
MOVIMENTO CIRCULAR
• Radial/Transversal
�⃗� = �⃗�𝑟 + �⃗�𝜃 𝑐𝑜𝑚 {
𝑣𝑟 = �̇� = �̇� = 0
𝑣𝜃 = 𝑟�̇� = 𝑅𝜔
�⃗� = �⃗�𝑟 + �⃗�𝜃 𝑐𝑜𝑚 {
𝑎𝑟 = �̈� − 𝑟�̇�
2 = −𝑅𝜔2
𝑎𝜃 = 𝑟�̈� + 2�̇��̇� = 𝛼𝑅
• Normal/Tangencial
�⃗� = 𝜌𝜔 𝑒𝑡
�⃗� = �⃗�𝑛 + �⃗�𝑡 𝑐𝑜𝑚 {
𝑎𝑛 = 𝜌𝜔
2 = 𝑅𝜔2
𝑎𝑡 = �̇� = 𝜌𝛼 + �̇�𝜔 = 𝛼𝑅
COMPONENTES RADIAL E
TRANSVERSAL
𝑑𝑒𝑟
𝑑𝑡
= �̇�𝑒𝜃
𝑑𝑒𝜃
𝑑𝑡
= −�̇�𝑒𝑟
�⃗� = �⃗�𝑟 + �⃗�𝜃 𝑐𝑜𝑚 {
𝑣𝑟 = �̇�
𝑣𝜃 = 𝑟�̇�
�⃗� = �̇�𝑒𝑟 + 𝑟�̇� 𝑒𝜃
�⃗� = �⃗�𝑟 + �⃗�𝜃 𝑐𝑜𝑚 {
𝑎𝑟 = �̈� − 𝑟�̇�
2
𝑎𝜃 = 𝑟�̈� + 2�̇��̇�
�⃗� = (�̈� − 𝑟�̇�2)𝑒𝑟 + (𝑟�̈� + 2�̇��̇�)𝑒𝜃
COMPONENTES NORMAL E TANGENCIAL
𝑑𝑒𝑛
𝑑𝑡
= −�̇� 𝑒𝑡
𝑑𝑒𝑡
𝑑𝑡
= �̇� 𝑒𝑛
�̇� = 𝜌�̇�
�⃗� = �̇�𝑒𝑡 = 𝑣𝑒𝑡 = 𝜌�̇�𝑒𝑡 = 𝜌𝜔 𝑒𝑡
�⃗� = �⃗�𝑛 + �⃗�𝑡 𝑐𝑜𝑚 {
𝑎𝑛 = �̇��̇� = 𝜌�̇�
2 = 𝜌𝜔2 =
𝑣2
𝜌
𝑎𝑡 = �̇� = �̈� = �̇��̇� + 𝜌�̈� = 𝜌𝛼 + �̇�𝜔
DETERMINAÇÃO DO RAIO DE CURVATURA
𝑦 = 𝑓(𝑥) 𝑐𝑜𝑚 𝑥 = 𝑎 ⟶ 𝜌(𝑎) =
{
[1 + (
𝑑𝑦
𝑑𝑥
)
2
]
3
2
|
𝑑2𝑦
𝑑𝑥2
|
}
𝑥=𝑎
𝑦 = 𝑓(𝜃) 𝑐𝑜𝑚 𝜃 = 𝜙 ⟶ 𝜌(𝜙) =
{
[𝑟2 + (
𝑑𝑟
𝑑𝜃
)
2
]
3
2
𝑟2 + 2(
𝑑𝑟
𝑑𝜃
)
2
− 𝑟
𝑑2𝑟
𝑑𝜃2
}
𝜃=𝜙
ÂNGULO ENTRE A
DIRECÇÃO RADIAL E
TANGENCIAL
𝑡𝑔𝜑 =
𝑟𝑑𝜃
𝑑𝑟
=
𝑟
𝑑𝑟
𝑑𝜃
QUEDA NUM FLUIDO
𝑭𝒂 ∝ 𝒗 ⇒ 𝐹𝑎 = 𝐾𝑣
𝑣𝑇 =
𝑚�̅�
𝑘
�̅� = (1 −
𝜌𝐹
𝜌𝐶
) 𝑔
�̅� =
𝑣
𝑣𝑇
= 1 − (1 −
𝑣0
𝑣𝑇
) 𝑒−
𝐾
𝑚
𝑡 = 1 − (1 −
𝑣0
𝑣𝑇
) 𝑒
−
�̅�
𝑣𝑇
𝑡
𝑦 = 𝑣𝑇𝑡 −
𝑚𝑣𝑇
𝐾
(1 −
𝑣0
𝑣𝑇
) (1 − 𝑒−
𝐾
𝑚
𝑡)
𝑎 = �̅� (1 −
𝑣0
𝑣𝑇
) 𝑒−
𝐾
𝑚
𝑡 = �̅� (1 −
𝑣0
𝑣𝑇
) 𝑒
−
�̅�
𝑣𝑇
𝑡
CELERIDADE: Velocidade
𝑭𝒂 ∝ 𝒗𝟐 ⇒ 𝐹𝑎 = 𝐾𝑣
2 𝑣𝑇 = √
𝑚�̅�
𝑘
1) 𝑣0 < 𝑣𝑇 ⇒ 𝑣 < 𝑣𝑇
�̄� =
𝑣
𝑣𝑇
=
𝑏𝑒𝑎𝑡 − 1
𝑏𝑒𝑎𝑡 + 1
𝑦 − 𝑦0 =
𝑣𝑇
𝑎
[2 𝑙𝑛 (
𝑏𝑒𝑎𝑡 + 1
𝑏 + 1
) − 𝑎𝑡]
𝑎 =
2�̅�
𝑣𝑇
𝑒 𝑏 =
𝑣𝑇 + 𝑣0
𝑣𝑇 − 𝑣0
2) 𝑣0 > 𝑣𝑇 ⇒ 𝑣 > 𝑣𝑇
�̄� =
𝑣
𝑣𝑇
=
1 + 𝑏𝑒−𝑎𝑡
1 − 𝑏𝑒−𝑎𝑡
𝑦 − 𝑦0 =
𝑣𝑇
𝑎
[2 𝑙𝑛 (
1 − 𝑏𝑒−𝑎𝑡
1 − 𝑏
) + 𝑎𝑡]
𝑎 =
2�̅�
𝑣𝑇
𝑒 𝑏 =
𝑣0 − 𝑣𝑇
𝑣0 + 𝑣𝑇