Buscar

UNIVERSIDADE_FEDERAL_DE_SANTA_MARIA_CENT

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 71 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

UNIVERSIDADE FEDERAL DE SANTA MARIA 
CENTRO DE TECNOLOGIA 
DEPARTAMENTO DE PRODUÇÃO E SISTEMAS 
 
 
 
 
 
PESQUISA OPERACIONAL 
 
 
 
 
 
 
 
 
 Denis Rasquin Rabenschlag 
 
 
 
 
 
 
2005 
 
 
PESQUISA OPERACIONAL 
D.R.R. 
 
ÍNDICE 
 
 
1 A INFLUÊNCIA DA PESQUISA OPERACIONAL NO PROCESSO DE TOMADA DE 
DECISÃO .............................................................................................................................1 
1.1 INTRODUÇÃO ..............................................................................................................1 
1.2 A TOMADA DE DECISÃO .........................................................................................3 
1.3 PRINCIPAIS CARACTERÍSTICAS DO PROCESSO DE TOMADA DE 
DECISÃO ......................................................................................................................4 
1.4 OBSTÁCULOS A UMA DECISÃO RACIONAL .......................................................5 
1.5 O ENFOQUE GERENCIAL DA P.O. .........................................................................7 
1.6 A METODOLOGIA DE UM ESTUDO DE P.O. ........................................................8 
2 MODELAGEM ...................................................................................................................13 
2.1 O PROCESSO DE MODELAGEM .........................................................................13 
2.2 VANTAGENS DA UTILIZAÇÃO DO PROCESSO DE MODELAGEM ..............15 
2.3 TIPOS DE MODELOS ..............................................................................................15 
2.4 PRINCIPIOS DE MODELAGEM ..............................................................................16 
2.5 MODELOS DE OTIMIZAÇÃO ..................................................................................18 
2.5.1 Procedimentos para Desenvolver Problemas de Otimização .................20 
2.6 EXERCÍCIOS .............................................................................................................22 
3 PROGRAMAÇÃO LINEAR ..............................................................................................28 
3.1 SOLUÇÃO GRÁFICA ................................................................................................29 
3.2 SOLUÇÃO ALGÉBRICA – MÉTODO SIMPLEX ...................................................32 
3.2.1 Etapas do Método Simplex ..........................................................................32 
3.2.2 Utilização das Variáveis Artificiais ..............................................................34 
3.3 EXERCÍCIOS .............................................................................................................35 
4 PROBLEMAS DE TRANSPORTE .................................................................................36 
4.1 FORMULAÇÃO DO MODELO ................................................................................38 
4.1.1 Problema de Transporte Equilibrado ..........................................................38 
4.1.2 Problema de Transporte Desequilibrado ....................................................40 
4.2 METODOLOGIA DE SOLUÇÃO .............................................................................41 
4.2.1 Método do Custo Mínimo ..............................................................................41 
4.2.2 Método de Vogel ............................................................................................42 
4.2.3 Método U – V ou Distribuição Modificada ..................................................42 
4.2.4 Circuito de Alpondras ....................................................................................43 
4.3 DEGENERAÇÃO DO PROBLEMA DE TRANSPORTE ......................................43 
4.4 SOLUÇÕES MÚLTIPLAS ........................................................................................44 
4.5 PROBLEMA DE TRANSPORTE DE MAXIMIZAÇÃO ..........................................44 
4.6 EXERCÍCIOS .............................................................................................................45 
5 PROBLEMAS DE DESIGNAÇÃO .................................................................................49 
5.1 PROBLEMA EQUILIBRADO ....................................................................................51 
5.2 PROBLEMA DESEQUILIBRADO ...........................................................................51 
5.3 PROBLEMA DE MAXIMIZAÇÃO ............................................................................52 
5.4 EXERCÍCIOS .............................................................................................................53 
PESQUISA OPERACIONAL 
D.R.R. II 
6 REDE PERT-CPM ............................................................................................................55 
6.1 INTRODUÇÃO ............................................................................................................55 
6.2 CONSTRUÇÃO DA REDE PERT/CPM .................................................................56 
6.3 METODOLOGIA DE UTILIZAÇÃO ..........................................................................59 
6.4 CÁLCULO DA REDE ................................................................................................60 
6.4.1 O Tempo de Execução do Projeto ...............................................................60 
6.4.2 O Caminho Crítico .........................................................................................61 
6.4.3 Os Tempos Operacionais das Atividades ..................................................61 
6.4.4 As Folgas ........................................................................................................62 
6.5 ESTIMATIVA DOS TEMPOS DE EXECUÇÃO DAS ATIVIDADES ...................63 
6.6 EXERCÍCIOS .............................................................................................................65 
7 BIBLIOGRAFIA ..................................................................................................................68 
PESQUISA OPERACIONAL 
D.R.R. 
 
 
 
1 A INFLUÊNCIA DA PESQUISA OPERACIONAL NO 
PROCESSO DE TOMADA DE DECISÃO 
 
1.1 INTRODUÇÃO 
O nome "Pesquisa Operacional" apareceu pela primeira vez durante a Segunda 
Grande Guerra, quando equipes de pesquisadores procuraram desenvolver métodos 
para resolver determinados problemas de operações militares. O fato que marcou o 
surgimento da pesquisa operacional foi a formação de uma equipe de especialistas de 
diversas disciplinas, com treino científico para fins de estudar a melhor eficiência no 
uso de equipamentos de radar. Esta equipe foi chefiada pelo físico Blackett, e ficou 
conhecida como Circo de Blackett, e embora recebesse esse nome depreciativo foi 
altamente eficiente na tarefa que lhe foi confiada. Houve fatos anteriores mas este 
marcou o início dos trabalhos das equipes de analistas operacionais que começaram 
a se expandir na Grã-Bretanha e após no Canadá, na Austrália e nos Estados Unidos. 
O sucesso dessas aplicações levou o mundo acadêmico a empresarial a procurar 
utilizar as técnicas criadas em problemas de administração. 
Desde seu nascimento, esse novo campo de análise de decisão caracterizou-se 
pelo uso de conhecimentos científicos por equipes interdisciplinares, no esforço de 
determinar a melhor utilização de recursos limitados. Essa característica 
multidisciplinar das aplicações de Pesquisa Operacional deu um novo enfoque - o 
enfoque sistêmico - aos problemas de decisão das empresas, pois ultrapassou as 
fronteiras da especialidade. O especialista tem tendência natural a enquadrar todos os 
problemas dentro dos limites de sua cultura, mesmo porque é nesse campo que ele se 
sente mais confortável. Além disso, a medida que se expandiam as empresas diminuía 
cada vez mais a possibilidade de serem administradas por um único homem. 
Conseqüentemente, o dono da indústria começou a dividir seu trabalho, atribuindoparte deste a outras pessoas. Começaram a surgir, por exemplo, os gerentes de 
produção, financeiros, de venda, de pesquisa e de desenvolvimento, e com o 
crescimento industrial que se seguiu, tais funções foram por sua vez, fracionadas. 
PESQUISA OPERACIONAL 
D.R.R. 2 
Novos mercados surgiram, novas fontes de matéria-prima foram descobertas tornando 
as operações industriais geograficamente dispersas, exigindo a criação de novos 
centros de produção e escritórios de vendas, cada qual com administração própria. 
Um aspecto importante e negativo desta evolução foi que não se aplicou o 
conhecimento científico às novas funções de direção que iam surgindo na 
Administração. Até pouco tempo o dirigente vivia isolado com seus problemas e para 
solucioná-los usava apenas a sua capacidade de julgamento adquirida através da 
experiência. Entretanto exigia-se cada vez mais do dirigente que passou a necessitar 
de ajuda de pessoas com mais experiência dos problemas que surgiam e com mais 
tempo para consulta-los. Isto provocou o aparecimento dos consultores de 
administração, cuja atividade no início não se baseava nem na ciência nem na 
pesquisa científica. Somente após o surgimento efetivo da pesquisa operacional, 
desenvolvida nas organizações militares a partir da Segunda Guerra Mundial é que se 
teve o emprego da pesquisa científica para auxiliar o dirigente. 
Outra característica importante que a Pesquisa Operacional possui e que facilita 
muito o processo de análise de decisão é a utilização de modelos. Isto permite a 
"experimentação", o que significa que uma decisão pode ser mais bem avaliada e 
testada antes de ser efetivamente implementada. A economia de recursos e a 
experiência adquirida advindas da experimentação, por si só, justificam o conhe-
cimento e a utilização da Pesquisa Operacional como instrumento de administração de 
empresas. 
O imenso progresso da Pesquisa Operacional se deve também, em grande 
parte, ao desenvolvimento dos computadores digitais, em face de sua velocidade de 
processamento e capacidade de armazenamento e recuperação das informações. 
Outro fato que atualmente muito contribui para o uso intensivo de modelos em análise 
de decisões é a disseminação dos microcomputadores, que se tornaram unidades de 
processamento descentralizadas dentro das empresas. Isto está levando os 
profissionais de Pesquisa Operacional a desenvolverem modelos mais versáteis, mais 
rápidos e, principalmente, interativos, que permitem maior participação do homem no 
desenrolar dos cálculos. 
Resumidamente pode-se conceituar Pesquisa Operacional como o uso do 
método científico para prover os departamentos executivos de elementos quantitativos 
PESQUISA OPERACIONAL 
D.R.R. 3 
para tomada de decisões com respeito a operações sob seu controle, sendo as 
principais características as seguintes: 
a) Orientação para sistemas: esta orientação baseia-se no fato de que em 
sistemas organizados o comportamento de qualquer parte afeta a todas as demais. 
Assim os analistas em pesquisa operacional procuram analisar o problema de todos 
os ângulos possíveis a fim de darem uma solução favorável ao todo, e não a um 
departamento específico; 
b) Emprego de equipes interdisciplinares: é necessário analisar e avaliar o 
problema segundo o maior número de pontos de vista possível. Eis a razão das 
equipes de pesquisa interdisciplinar; 
c) Aplicação do método científico a problemas de controle. 
 
1.2 A TOMADA DE DECISÃO 
Uma vez que a Pesquisa Operacional é um ramo da ciência administrativa que 
fornece instrumentos para a análise de decisões, vamos, na seqüência conceituar e 
listar as principais características de um processo de tomada de decisão. 
O objetivo que temos em vista é a procura de entendimento das características 
principais do processo e de suas dificuldades, de forma que possamos compreender 
como a Pesquisa Operacional, vista como um conjunto de técnicas quantitativas, pode 
auxiliar a gerência na preparação e na tomada de decisão. 
Podemos entender a tomada de decisão como o processo de identificar um 
problema ou uma oportunidade e selecionar uma linha de ação para resolvê-lo. Um 
problema ocorre quando o estado atual de uma situação é diferente do estado 
desejado. Uma oportunidade ocorre quando as circunstâncias oferecem a chance do 
indivíduo/organização ultrapassar seus objetivos e/ou metas, logo, uma decisão é o 
resultado de um processo que se desenvolve a partir do instante em que o problema 
foi detectado. Este conceito explicita, claramente, a importância do processo de 
preparação na tomada de decisão. 
 
 
PESQUISA OPERACIONAL 
D.R.R. 4 
1.3 PRINCIPAIS CARACTERÍSTICAS DO PROCESSO DE TOMADA 
DE DECISÃO 
As características principais do processo decisório que têm importância na 
conceituação de racionalidade da ação gerencial estão descritas e comentadas a 
seguir. 
 
a) Processo de decisão seqüencial 
Mesmo quando se tem a impressão de que a decisão foi tomada de impulso, ela 
é conseqüência de uma série de fatos anteriores que criaram as bases para se chegar 
à decisão. Uma decisão significativa é uma compilação de muitas decisões, 
abrangendo um leque de aspectos do problema e, freqüentemente, requerendo um 
longo período de tempo. É, muitas vezes, difícil apontar com precisão o ponto exato do 
processo no qual a decisão foi tomada, afluindo durante as discussões na forma de 
consenso. 
 
b) Processo complexo 
Além do fato de que quase sempre a informação relativa ao problema é 
insuficiente, o processo decisório consiste de um inter-relacionamento entre pessoas, 
responsabilidades pelo serviço, comunicação e sistemas de informações, códigos de 
ética e moral e, às vezes, interesses e objetivos diferentes dos participantes. O 
inter-relacionamento entre esses elementos e o grau de importância de cada um muda 
com a evolução do processo, ao longo do tempo. É claro, também, que dentro da 
empresa o próprio processo varia, dependendo do problema e do nível de decisão 
requerido. Assim, os processos diferem em: 
§ tamanho do grupo de decisão; 
§ tipos de sistemas de informações gerenciais; 
§ tipos de decisões que devem ser tomadas; 
§ estilo de liderança dos administradores; 
§ nível da decisão dentro da empresa. 
 
c) Processo envolve valores subjetivos 
Embora a maior parte do processo que deve ser seguido para preparar melhores 
PESQUISA OPERACIONAL 
D.R.R. 5 
decisões seja identificável e clara, podendo ser repetida por outras pessoas ou em 
outras ocasiões, o método pelo qual o valor de julgamento do executivo é colocado na 
decisão é estritamente pessoal. É enorme o número de fatores intuitivos, provenientes 
de experiência pessoal e personalidade, envolvidos no processo decisório. 
Evidentemente, não se pode negar a importância desses fatores na qualidade da 
decisão tomada. 
 
d) Processo em ambiente institucional 
Todas as companhias têm uma estrutura organizacional própria que influência e 
muitas vezes condiciona o processo decisório. O inter-relacionamento entre pessoas, 
a forma como se processa o fluxo de informações, as características da organização e 
o sistema hierárquico são fatores que afetam fundamentalmente o processo de 
tomada de decisão. 
 
1.4 OBSTÁCULOS A UMA DECISÃO RACIONAL 
Diversas dificuldades e obstáculos aparecem para conturbar o processo de 
tomada de uma decisão estritamente racional, por mais vontade que o administrador 
tenha de não se deixar influenciar. Dentre eles podemos destacar: 
§ Tempo Disponível Para a Tomada de Decisão: às vezes, a urgência de uma 
solução faz com que o administrador tome uma decisão com conhecimento 
incompleto dos dados do problema; 
§ A Importância da Decisão: pode demorar mais ou menos tempo em função 
da análise a ser feita devido à maneira como uma decisão afeta a empresa; 
§ O Ambiente: às vezes gera forças que podem transformar uma boa decisão 
em fracasso, por exemplo, flutuaçõesda política econômica do governo; 
§ Certeza / Incerteza e Risco: dependendo do grau de risco ou de certeza de 
determinadas variáveis, uma decisão necessita ou não de uma análise mais 
aprofundada e cuidadosa; 
§ Agentes Decisores: algumas limitações são de caráter pessoal do 
administrador, como força do hábito, falta de memória e distração, 
prejulgamentos a valores pessoais, etc; 
PESQUISA OPERACIONAL 
D.R.R. 6 
§ Conflito de Interesses: dificuldades que surgem devido ao caráter político da 
decisão, como, por exemplo, a necessidade de compromisso entre diferentes 
posições e órgãos da empresa. 
No entanto, existem duas dificuldades que são inerentes ao problema e que 
podem influenciar fundamentalmente a qualidade da decisão. A seguir será feita uma 
discussão mais detalhada. 
 
a) Escolha do problema certo para resolver 
Fazer certas as coisas é muito importante, porém o administrador deve se 
dedicar em primeiro lugar a encontrar as coisas certas para fazer. Isto significa que o 
primeiro passo para uma tomada de decisão racional é saber qual o problema que 
requer solução. Normalmente, os problemas não aparecem com um rótulo impresso 
pedindo uma solução, mas surgem através de sintomas: reclamações, atrasos, 
prejuízos, etc. Assim, a primeira tarefa do administrador deve ser identificar claramente 
qual é o problema que causa aqueles efeitos perturbadores. Conforme Peter Drucker, 
"a fonte mais comum de enganos, na administração, é a ênfase em encontrar a 
resposta certa em lugar de procurar a questão certa para responder". 
 
b) Conhecimento insuficiente 
A condição ideal para um processo de decisão racional seria a posse de um 
conhecimento completo acerca de todas as alternativas possíveis, como também 
acerca das possíveis conseqüências de cada alternativa. Contudo, na vida real essa 
condição é praticamente impossível, e o administrador deve tomar suas decisões com 
base em informações incompletas ou parciais. Isto ocorre por várias razões. 
Em primeiro lugar, informação tem custo, o que significa que, quanto mais 
informação o administrador pedir, mais tempo e dinheiro serão gastos para sua 
obtenção. Por outro lado, se pouca informação cria um ambiente de incerteza para o 
processo de decisão, informação demais também pode prejudicar, já que exigiria 
tempo e habilidades extras para análise. Desta forma, o administrador, muitas vezes, 
prefere suprir uma parte da falta de informações com sua experiência pessoal. 
 
PESQUISA OPERACIONAL 
D.R.R. 7 
1.5 O ENFOQUE GERENCIAL DA P.O. 
A Pesquisa Operacional pode ser vista segundo dois ângulos diferentes, dois 
enfoques contrários na abordagem, mas coerentes e complementares na aplicação 
prática no campo da administração. 
O enfoque tradicional é o conceito quantitativo da Pesquisa Operacional. Neste, a 
Pesquisa Operacional é definida como uma ciência que visa a aplicar métodos 
matemáticos e estatísticos à solução de problemas de decisão, através de uma 
abordagem sistêmica, pela utilização de modelos. Essa definição, conceitualmente 
exata, leva à idéia - que grande parte dos administradores tem - de que a Pesquisa 
Operacional apenas fornece um conjunto de técnicas e métodos que são úteis para a 
solução de determinados problemas, quando esses podem ser escritos na forma 
correta. 
É uma visão, até certo ponto, correta, que foi por muito tempo extremamente útil 
ao desenvolvimento dessa ciência, pois alinhou em torno de si um contingente 
numeroso de matemáticos, engenheiros, físicos, economistas e pessoas de muitas 
outras especialidades, pesquisando e desenvolvendo métodos para a solução de 
problemas. Esse esforço resultou numa coleção de métodos matemáticos e algoritmos 
de tal porte que é praticamente impossível um especialista de Pesquisa Operacional 
conhecer todos. 
No entanto, na área da administração, essa linha tradicional esbarrou no fato de 
que os administradores de nível mais elevado dentro das empresas (que são os que 
efetivamente tomam as decisões) se sentiam incomodados com o rigor matemático 
dos métodos de Pesquisa Operacional e, muitas vezes, frustrados pela pouca 
flexibilidade dos modelos que somente respondiam a perguntas padronizadas. Assim, 
os executivos viam, e ainda vêem, a Pesquisa Operacional como uma ciência que 
desenvolveu métodos operacionais que servem, às vezes, para resolver certos tipos de 
problemas. 
A outra visão decorre de um conceito qualitativo da Pesquisa Operacional. Nesse 
caso, a importância dos métodos matemáticos desenvolvidos pelo esforço dos 
pesquisadores está menos na solução dos problemas e mais nas suas formulações. A 
importância da PO estaria, então, na sua influência sobre o modo pelo qual os 
administradores abordam os problemas, na maneira como os formulam, na avaliação 
PESQUISA OPERACIONAL 
D.R.R. 8 
que fazem do relacionamento com outros problemas e na forma usada para sua 
comunicação a outras pessoas. 
Nessa abordagem qualitativa, o enfoque central é deslocado do método de 
solução (geralmente um algoritmo matemático complexo) para a formulação e para a 
modelagem, ou seja, para o diagnóstico do problema. Perde importância o rigor 
matemático da solução, e ganha relevância o espírito crítico e a sensibilidade para 
descobrir o problema correto e analisar quais informações são fundamentais para a 
decisão e quais são acessórias, apenas completando, sem, no entanto, afetar os 
resultados. 
O enfoque qualitativo da Pesquisa Operacional é o reconhecimento de que a 
abordagem quantitativa dos problemas fornece uma estrutura de raciocínio e análise 
que permite descobrir qual é a informação necessária. A informação abundante 
atrapalha tanto quanto a falta de informação. E, como toda informação tem um custo, o 
problema principal torna-se avaliar o potencial da informação com relação a seu custo. 
Podemos considerar que a finalidade de toda informação é reduzir o grau de 
incerteza envolvida na decisão. Assim, a informação só tem valor no contexto de uma 
situação específica, e sua importância para o administrador reside na possibilidade de 
poder alterar a decisão. 
É nesse aspecto do problema de decisão que a Pesquisa Operacional cumpre 
uma função importante. Na ausência de uma abordagem quantitativa, para avaliar o 
potencial da nova informação, a decisão de comprá-la é mais governada pelo temor 
do desconhecido do que por uma análise racional de custos e benefícios. 
O conhecimento de disciplinas exatas e o treinamento em abordagem 
quantitativa de problemas levam o administrador a pensar nos problemas em termos 
precisos e a usar técnicas elaboradas de análise, procurando enfocar a estrutura 
básica dos problemas ao invés de suas características particulares. O resultado, em 
muitos casos, não é uma nova ferramenta de administração, mas uma nova estrutura 
conceitual de trabalho para o administrador, uma nova maneira de pensar. 
 
1.6 A METODOLOGIA DE UM ESTUDO DE P.O. 
De uma forma geral, um estudo de Pesquisa Operacional desenvolve-se 
PESQUISA OPERACIONAL 
D.R.R. 9 
conforme o diagrama da figura abaixo. Logicamente que essa seqüência de passos 
não é rígida, mas indica as principais etapas que devem ser vencidas. Exceto a fase 
de Solução do Modelo que se baseia em métodos e técnicas bem desenvolvidos, as 
demais fases não seguem regras fixas e definidas. Os procedimentos necessários 
para essas fases dependem do tipo do problema em análise e do ambiente que o 
envolve. 
 
FIG. 1 – Diagrama das fases de um estudo de Pesquisa Operacional. 
 
Apesar das dificuldades aparentes de fixação de regras para a execução dessas 
fases, é conveniente que seja feita alguma discussão sobre elas de forma a servir de 
guia geral de procedimento. Os retornos de informação, indicados na figura 1 entre as 
diferentes etapas representam revisões que as considerações derivadas da análise de 
uma etapa provocam em etapas precedentes. 
 
a) Definiçãodo problema 
A definição do problema, do ponto de vista da Pesquisa Operacional, baseiase 
em três aspectos principais que devem ser discutidos: 
§ uma descrição exata dos objetivos do estudo; 
§ uma identificação das alternativas de decisão existentes; 
§ reconhecimento das limitações, restrições e exigências do sistema. 
A descrição dos objetivos é uma das atividades mais importantes em todo o 
processo do estudo, pois a partir dela é que o modelo é concebido. A equipe 
encarregada do estudo deve procurar captar e refletir, na formulação do problema, os 
desejos e necessidades dos executivos com relação ao problema de decisão. 
Da mesma forma, é essencial que as alternativas de decisão e as limitações 
Definição do 
problema 
Construção 
do modelo 
Solução do 
modelo 
Validação 
do modelo 
Implementação 
da solução 
Avaliação final 
Experiência 
PESQUISA OPERACIONAL 
D.R.R. 10 
existentes sejam todas explicitadas, para que as soluções obtidas no final do processo 
sejam válidas e aceitáveis. Quanto mais precisa esta definição, mais fáceis serão as 
etapas posteriores. 
 
b) Construção do modelo 
Estando bem definidas as características do caso em estudo, a partir destas 
deve-se construir uma representação formal do mesmo, isto é, deve-se conseguir 
expressar de forma, mais ou menos exata, a realidade através de um modelo. 
O modelo mais apropriado para a representação do sistema deve ser escolhido 
com base na definição do problema. Se o modelo elaborado tem a forma de um 
modelo-padrão, como, por exemplo, de programação linear, a solução pode ser obtida 
por métodos matemáticos convencionais. 
Por outro lado, se as relações matemáticas são muito complexas ou mesmo 
indefinidas, poderemos usar a técnica da simulação e, em alguns casos, haverá 
necessidade de usarmos uma combinação de duas metodologias. 
 
c) Solução do modelo 
Esta terceira fase tem por objetivo encontrar uma solução para o modelo 
construído. 
No caso de modelos matemáticos, a solução é obtida pelo algoritmo mais 
adequado, em termos de rapidez de processamento e precisão de resposta. Isto exige 
do analista de Pesquisa Operacional um conhecimento profundo das principais 
técnicas. A solução obtida, neste caso, é dita ótima. 
Entretanto, como o modelo de otimização nunca é representação perfeita da 
realidade do sistema, a solução ótima obtida para o modelo pode não ser a solução 
ótima para o sistema. Então espera-se que o modelo seja uma boa representação do 
problema e, conseqüentemente, que a solução ótima obtida seja uma boa 
aproximação da solução ótima do sistema e que seja pelo menos significativamente 
melhor que a política ou o procedimento que ela irá substituir. 
Se os modelos de simulação são utilizados, o conceito de otimalidade não é 
bem definido, e a solução obtida é uma avaliação aproximada das medidas do 
sistema ou do objetivo a ser atingido. 
PESQUISA OPERACIONAL 
D.R.R. 11 
 
d) Validação do modelo 
Nesta altura do processo de solução do problema, é necessário verificar a 
validade do modelo. Um modelo é válido se, a despeito de sua inexatidão em 
representar o sistema, ele for capaz de fornecer uma previsão aceitável de seu 
comportamento. 
Um método comum para testar a validade do modelo é analisar seu desempenho 
com dados passados do sistema e verificar se ele consegue reproduzir o 
comportamento que este manifestou. Conforme os resultados, ou se retrocede as 
etapas anteriores refazendo o problema, no caso negativo, ou passa-se à fase da 
implementação da solução obtida, no caso satisfatório. 
É importante observar que esse processo de validação não se aplica a sistemas 
inexistentes, ou seja, em projeto. Nesse caso, a validação é feita pela verificação da 
correspondência entre os resultados obtidos e algum comportamento esperado do 
novo sistema. 
 
e) Implementação da solução 
Avaliadas as vantagens e a validade da solução obtida, esta deve ser convertida 
em regras operacionais. A implementação, sendo uma atividade que altera uma 
situação existente, é uma das etapas críticas do estudo. É conveniente que seja 
controlada pela equipe responsável, pois, eventualmente, os valores da nova solução, 
quando levados à prática, podem demonstrar a necessidade de correções nas 
relações funcionais do modelo ou do conjunto dos possíveis cursos de ação, exigindo 
a reformulação do modelo em algumas de suas partes. 
A presença da equipe permite, também, superar mais facilmente as resistências 
e oposições às alterações propostas na sistemática das operações e que, 
normalmente, aparecem nessa fase do trabalho. 
 
f) Avaliação final 
A avaliação dos resultados obtidos em qualquer etapa do processo é de 
fundamental importância, pois isto garantirá melhor adequação das decisões às 
necessidades do sistema e aceitação mais fácil dessas decisões por todos os setores 
PESQUISA OPERACIONAL 
D.R.R. 12 
envolvidos. 
Nessa avaliação, um fator que tem papel primordial é a experiência do pessoal 
envolvido no estudo. Não se deve esquecer que um modelo é apenas uma 
representação simplificada, não conseguindo por isto captar todas as características e 
nuanças da realidade. Assim, é com experiência e visão crítica que conseguimos 
avaliar e determinar a aplicabilidade da decisão. 
 
PESQUISA OPERACIONAL 
D.R.R. 
 
 
 
2 MODELAGEM 
 
 
Para escolher a ação preferida, ou seja, a que mais se aproxima do objetivo 
almejado, o executivo procura visualizar as conseqüências prováveis de cada 
alternativa possível. É evidente que esse processo é tão mais simples e intuitivo 
quanto mais simples for a decisão, não importando se é uma decisão doméstica ou 
empresarial. 
No entanto, mesmo em problemas simples onde o executivo não precisa formular 
conscientemente listas de alternativas de ação e respectivas conseqüências, em 
algum ponto do processo de decisão, ele deve fazer uma ligação entre o que pode 
fazer e o que acontecerá em cada caso. 
Isto significa que ele deve ter um modelo mental do processo para gerar as 
conseqüências possíveis das ações. Contudo, a partir de um certo nível de 
complexidade, torna-se quase impossível estimar corretamente as implicações de uma 
decisão, sem avaliar corretamente a informação disponível, numa forma lógica e 
ordenada. Esse tipo de análise estruturada dos dados é essencialmente uma forma de 
modelagem. 
Na definição de Pidd (1998) um modelo é uma representação externa e explícita 
de parte da realidade vista pela pessoa que deseja usar aquele modelo para entender, 
mudar, gerenciar e controlar parte daquela realidade. 
 
2.1 O PROCESSO DE MODELAGEM 
Quando os gerentes se vêem diante de uma situação na qual uma decisão deve 
ser tomada entre uma série de alternativas conflitantes e concorrentes, duas opções 
básicas se apresentam: 1) usar a sua intuição gerencial e 2) realizar um processo de 
modelagem da situação e realizar exaustivas simulações dos mais diversos cenários, 
de maneira a estudar mais profundamente o problema. 
PESQUISA OPERACIONAL 
D.R.R. 14 
Até recentemente, a primeira opção se constituía na única alternativa viável, visto 
que não existiam nem dados e/ou informações sobre os problemas, ou mesmo poder 
computacional para resolvê-los. Com o advento dos microcomputadores e com o 
aprimoramento da tecnologia de bancos de dados, esta deixou de ser a única opção 
para os tomadores de decisão. Um número cada vez maior de empresas e tomadores 
de decisão começou a optar pela segunda forma de tomadas de decisão, isto é, 
através da elaboração de modelos para auxiliar este processo. 
Na realidade, nos dias de hoje está ocorrendo o inverso de 20 anos atrás. 
Possivelmente, a grande maioria dos tomadores de decisão está adotando a segunda 
opção de agir. Devemos ressaltar dois fatos relevantes: 
a) A quantidade de informações disponíveis cresceu exponencialmente nos 
últimos anos com advento da internet, o que nos levou ao problemainverso de 
20 anos atrás; a quantidade de dados é tão grande que se torna impossível 
montar modelos com todas estas informações. Devemos, portanto, separar as 
informações relevantes das irrelevantes, de maneira a modelar a situação para 
que possamos analisá-la. 
b) Muitos gerentes deixaram de utilizar sua intuição completamente, o que é 
bastante prejudicial ao processo de tomada de decisão, pois uma base de 
conhecimentos pode estar sendo desperdiçada. 
Portanto, achamos que as duas opções devem ser utilizadas conjuntamente, para 
melhorar ainda mais o processo de tomada de decisão; a intuição do tomador de 
decisão deve ajudá-lo na seleção das informações relevantes, nos possíveis cenários 
a serem estudados, na validação do modelo e na análise de seus resultados dos 
mesmos. Este processo pode ser representado pela Figura 2. 
 
Figura 2 - Processo de tomada de decisão. 
Modelo Resultado 
Mundo simbólico 
Situação 
Gerencial Decisões 
Mundo 
Real 
Mundo 
Real 
Intuição 
PESQUISA OPERACIONAL 
D.R.R. 15 
 
2.2 VANTAGENS DA UTILIZAÇÃO DO PROCESSO DE 
MODELAGEM 
Diversas vantagens podem ser citadas quando o decisor utiliza um processo de 
modelagem para a tomada de decisão, dentre elas destacam-se: 
§ Os modelos forçam os decisores a tornarem explícitos seus objetivos. 
§ Os modelos forçam a identificação e o armazenamento das diferentes 
decisões que influenciam os objetivos. 
§ Os modelos forçam a identificação e o armazenamento dos relacionamentos 
entre as decisões. 
§ Os modelos forçam a identificação das variáveis a serem incluídas e em que 
termos elas serão quantificáveis. 
§ Os modelos forçam o reconhecimento de limitações. 
§ Os modelos permitem a comunicação de suas idéias e seu entendimento 
para facilitar trabalho de grupo. 
Dadas estas características, os modelos podem ser utilizados como ferramentas 
consistentes para a avaliação e divulgação de diferentes políticas empresariais. 
 
2.3 TIPOS DE MODELOS 
O relacionamento entre variáveis em um modelo é, na maioria das vezes, escrito 
em termos matemáticos. Existem diversas formas de gerar e utilizar essas relações, e 
por isso existem vários tipos de modelos. 
O modelo mais apropriado para um dado contexto ou problema depende de 
vários fatores como: 
§ natureza matemática das relações entre as variáveis; 
§ objetivos do tomador de decisões; 
§ extensão do controle sobre as variáveis de decisão; 
§ nível de incerteza associado com o ambiente da decisão. 
Com base nestas considerações, podemos dividir os modelos em dois grandes 
tipos: 
PESQUISA OPERACIONAL 
D.R.R. 16 
§ modelos de simulação; 
§ modelos de otimização. 
Será analisado mais detalhadamente o modelo de otimização, objeto principal da 
disciplina. Porém, antes serão enumerados princípios básicos de modelagem, 
baseados em Pidd (1998). 
 
2.4 PRINCIPIOS DE MODELAGEM 
Este item cobre alguns princípios gerais que podem ser aplicados ao 
desenvolver um modelo que será útil nas ciências administrativas. Seu foco é 
claramente prático; a idéia é dar ao aluno alguns pontos para considerar e alguns 
princípios que lhe possam ser úteis. Mas é importante ter em mente que alguns destes 
princípios são quase questões de estilo. Tais assuntos precisam ser internalizados e 
personalizados. 
 
PRINCÍPIO 1: Pensar complicado mas modelar simples 
Modelos simples são mais fáceis de entender que os complexos. Escrevendo 
sobre as características desejáveis de modelos de decisão, John Little (1970) 
argumentou que uma propriedade essencial era que eles deviam ser simples. Isto 
porque é mais fácil atingir a transparência com modelos simples. Por isso, estes 
levantam uma chance maior de serem usados do que os complicados. Dentro das 
ciências administrativas, os modelos são construídos para ajudar pessoas e 
organizações a se tornarem mais efetivas no que fazem. Isto significa que seus 
resultados precisam ser usados e isto requer confiança da parte do usuário. A 
confiança é mais fácil de ser atingida quando o usuário é, pelo menos, capaz de 
apreciar o trabalho global do modelo. É importante não ler isto como que sugerindo 
que um modelo das ciências administrativas deve sempre ser limitado pela proeza 
técnica das pessoas responsáveis pelo trabalho. Em vez disso, a idéia de 
simplicidade precisa estar ligada com outra sugestão de que o modelo deveria ser 
fácil de manipular. A idéia de que devemos "modelar simples e pensar complicado" 
nos traz de volta para a idéia de que modelos são "ferramentas para pensar". Seria 
errado interpretar esta frase como sendo "ferramentas para substituir o pensamento". 
PESQUISA OPERACIONAL 
D.R.R. 17 
Em vez disso, eles são ferramentas que suportam e estendem o poder do 
pensamento. Assim, um modelo complicado, que é pobremente empregado, pode ser 
pior que um modelo simples usado como uma ferramenta para pensar 
cuidadosamente. 
 
PRINCÍPIO 2: Começar com pouco e acrescentar 
O problema com o primeiro princípio de simplicidade é saber o quão simples ou 
complicado se deve ser, e não existe resposta geral para isto. Em vez de tentar, no 
estágio inicial, um modelo maravilhoso que incorpora todo aspecto da situação em 
uma forma realista, nós começamos com alguma coisa manejável, que pode ter 
considerações irrealistas. A intenção é aprender o que podemos deste simples 
modelo e então refiná-lo gradativamente, sempre que necessário. Powell (1995) 
chama de "prototipagem" a mesma abordagem, pois carrega a idéia de que é melhor 
desenvolver rapidamente um modelo de trabalho, mesmo que imperfeito. Ele pode ser 
refinado, ou mesmo abandonado, mais tarde. 
 
PRINCÍPIO 3: Evitar megamodelos 
Esteja ciente do propósito geral de modelos grandiosos que tentam incorporar 
praticamente tudo. Tais modelos são difíceis de validar, de interpretar, de calibrar 
estatisticamente e, mais importante, de explicar. Você pode tornar-se melhor, não com 
um grande modelo, mas com um conjunto de modelos mais simples. (Raiffa,1982, 
citado em Miser e Quode, 1990b) 
 
PRINCÍPIO 4: Usar metáforas e analogias 
Ao invés de ficar restrito a uma consideração direta do problema abordado, pode 
ser útil tentar obter uma outra perspectiva das coisas. Este uso de outras perspectivas 
deveria ser distinguido do uso de um modelo para entender diferentes pontos de vista 
e interpretações. Aqui a idéia é que recursos como metáforas, analogias e problemas 
relacionados podem ser de grande ajuda. A idéia das analogias é levar as pessoas a 
obterem novas visões de coisas que poderiam ser muito familiares ou, no extremo 
oposto, não são entendidas. Em termos de modelagem das ciências administrativas, 
isto significa tentar obter novos insights que poderiam levar a modelos úteis. 
PESQUISA OPERACIONAL 
D.R.R. 18 
 
PRINCÍPIO 5: Descartar dados, se necessário 
É o modelo que deveria conduzir os dados e não vice-versa. Isto significa que o 
analista deve tentar desenvolver algumas idéias do modelo e seus parâmetros e, a 
partir disto, deve pensar sobre o tipo de dado que poderia ser necessário. Dados não 
são substitutos para o pensamento cuidadoso e crítico. Na vida real, os dados devem 
ser requeridos, justificados e coletados antes de poderem ser analisados, eles não 
são gratuitos, e sua coleta tem um custo assim como sua interpretação e análise. 
 
PRINCÍPIO 6: Construir modelos pode ser como desenredar-se 
Uma vez que um modelo, como usado nas ciências administrativas, é o resultado 
de uma tentativa de representar alguma parte da realidade de forma tal que as ações 
possam ser tomadas ou algum entendimento possa ser melhorado, poderia se pensar 
que a construção de modelo é um processo linear e altamente racional, na qual 
progressos suaves são feitos e na qual tudo se encaixa perfeitamente. Na prática, o 
que se verificou em alguns estudos, é que modeladores experientes pulam de tópico 
para tópico enquanto modelam e precisam refinar suas idéiasconstantemente. 
 
2.5 MODELOS DE OTIMIZAÇÃO 
Em diversas áreas do mundo real existe a escassez de um certo produto ou 
matéria-prima por sua dificuldade de produção e/ou de obtenção, entre outras razões. 
Esta dificuldade gera problemas para empregar melhor estes recursos escassos de 
forma eficiente e eficaz. Busca-se, portanto, maximizar ou minimizar uma quantidade 
(Lucro, Custo, Receita, nº de produtos, entre outros), chamada de objetivo, que 
depende de um ou mais recursos escassos. Estes processos de otimização de 
recursos são aplicados a diversas áreas e entre elas podemos citar: 
§ Determinação de Mix de Produtos. 
§ Escalonamento de Produção. 
§ Roteamento e Logística. 
§ Planejamento Financeiro. 
§ Carteiras de Investimento. 
PESQUISA OPERACIONAL 
D.R.R. 19 
§ Análise de Projetos. 
§ Alocação de Recursos de Mídia. 
§ Designação de Equipe. 
A área que estuda a otimização de recursos é denominada Programação 
Matemática. Nela a quantidade a ser maximizada ou minimizada é descrita como uma 
função matemática dos recursos (variáveis de decisão) escassos. As relações entre 
as variáveis são formalizadas através de restrições ao problema expressas como 
equações e/ou inequações matemáticas. De uma maneira geral, os problemas de 
Programação Matemática podem ser representados da seguinte forma: 
 
Otimizar: z = f (x1,x2,...,xn) 
 
Sujeito a 







=
=
xxxg
xxxg
xxxg
nm
n
n
,...,,(
...
),...,,(
),...,,(
21
212
211
≥
=
≤






b
b
b
m
...
2
1
 
 
Onde: 
xj - representa as quantidades das variáveis utilizadas; (j = 1,2 . .. n) 
bj - representa a quantidade disponível de um determinado recurso; 
(j = 1,2 ... m) 
X - vetor de xj.; 
f(X) - função-objetivo; 
gj(X) - funções utilizadas nas restrições do problema; 
n - número de variáveis de decisão; 
m - número de restrições do modelo. 
 
Por ser uma área muito extensa é subdividida em áreas menores dependendo do 
tipo das funções utilizadas nas funções-objetivo e restrições. Entre estas podemos 
citar: 
§ Programação Linear - Programação Matemática em que todas as 
funções-objetivo e restrições são representadas por funções lineares. 
PESQUISA OPERACIONAL 
D.R.R. 20 
§ Programação Não-linear - Programação Matemática em que pelo menos uma 
das funções-objetivo e/ou restrições são representadas por funções 
não-lineares. Entre os diversos tipos de Programação Não-linear 
encontram-se alguns tipos importantes, como a Programação Côncava, 
Convexa e Quadrática. 
Nos próximos capítulos falaremos mais detalhadamente sobre problemas de 
programação linear e da maneira mais adequada para resolvê-los. 
 
2.5.1 Procedimentos para Desenvolver Problemas de Otimização 
Os passos básicos que compõem o desenvolvimento de problemas de 
otimização estão relacionados a seguir. 
 
a) Definição do problema 
Inicialmente o administrador deve reconhecer que existe um problema para o qual 
é indicada a procura da melhor solução, pela pesquisa dos valores ótimos das 
variáveis de decisão. 
Em geral, podemos considerar que será mais útil empregar técnicas de 
otimização, em vez de simulação, para procurar iterativamente uma solução ótima, ou 
próxima da ótima, quando: 
§ existirem muitas variáveis de decisão ou quando as variáveis puderem 
assumir valores numa faixa ampla de viabilidade, fazendo com que os 
modelos de simulação se tornem muito lentos; 
§ existirem restrições nos recursos ou variáveis que tornam complexo o 
processo de escolha dos valores das variáveis; 
§ os sistemas forem tais que algumas variáveis devem ter seus valores 
calculados de forma precisa, para respeitar restrições ou evitar grandes 
variações no resultado final. 
 
b) Identificação das variáveis relevantes 
O conjunto de variáveis relevantes para um modelo de otimização inclui: 
§ as variáveis de decisão para as quais o administrador procura valores ótimos; 
PESQUISA OPERACIONAL 
D.R.R. 21 
§ variáveis exógenas (ou variáveis não controláveis, têm seus valores 
determinados externamente ao modelo) que servem de base para a definição 
de restrições ou de variáveis endógenas (ou variáveis controláveis, têm seus 
valores dependentes de uma ou mais variáveis, sendo calculadas 
internamente ao modelo); 
§ variáveis endógenas que, dependendo dos valores de outras, muitas vezes 
entram na formação da função-objetivo, que o administrador deve especificar. 
 
c) Formulação da função-objetivo 
A função-objetivo reflete o critério de otimização das variáveis de decisão e deve 
ser escrita na forma matemática. 
 
d) Formulação das restrições 
Em grande número de modelos de otimização, as variáveis são sujeitas a 
algumas restrições, que devem ser escritas em forma matemática. Da mesma forma, o 
relacionamento entre as variáveis deve ser formulado matematicamente. 
 
e) Escolha do método matemático de solução 
Tendo definido o problema, devemos agora escolher um método matemático 
apropriado para a solução do modelo. A escolha do método é feita tendo em vista o 
tipo de modelo matemático criado e as análises e questões para as quais o modelo 
deve fornecer subsídios. 
 
f) Aplicação do método de solução 
O método de solução é simplesmente um exercício matemático que pode ser 
realizado manualmente ou por computador. Em qualquer dos casos, um conhecimento 
do algoritmo será necessário, seja para desenvolver o processo de cálculo, seja para 
acompanhar a solução do computador e entender suas mensagens. 
 
g) Avaliação da solução 
Uma vez obtida a solução, esta deve ser verificada e avaliada à luz das 
expectativas e experiências do administrador, antes de sua efetiva implementação. É 
PESQUISA OPERACIONAL 
D.R.R. 22 
claro que, nessa fase do modelo, tanto pode ser aceito como pode ser necessário pro-
ceder as correções, para incorporar novas restrições, novas variáveis ou novos 
critérios. É importante lembrar que a maioria das decisões devem ser tomadas em um 
ambiente de risco e incerteza e que grande parte dos modelos de otimização são 
determinísticos. Assim, uma estimativa do risco deve ser conseguida através de uma 
análise de sensibilidade pós-otimização. 
 
2.6 EXERCÍCIOS 
 
1) Uma pequena empresa fabrica dois tipos de produtos similares entre si, sendo que 
cada produto passa pelas mesmas 3 máquinas para ser manufaturado. Como cada 
máquina possui um determinado valor limite de horas semanais para produzir e cada 
produto necessita de tempos diferenciados para completar o processo de manufatura, 
o gerente de produção deseja saber qual a quantidade a fabricar por semana de cada 
produto a fim de maximizar o lucro da empresa. O quadro abaixo apresenta um 
esquema do problema proposto. 
 
Horas necessárias por 
unidade 
 
Produto A Produto B 
Horas disponíveis por semana 
Máquina J 3 2 Até 42 
Máquina K 2 2 Até 30 
Máquina L 2 4 Até 48 
Lucro por unidade R$ 12,00 R$ 8,00 
 
2) O vendedor de uma revenda de automóvel ganha comissão da 10% e 20% sobre o 
preço de venda de cada unidade dos modelos LS e TS respectivamente. Seu contrato 
com o dono da loja diz que ele deve vender no mínimo 3 unidades do modelo LS e 2 
unidades do modelo TS por mês. O dono da loja tem disponibilidade para aplicar no 
mês atual UM 80.000, sendo que o custo de compra é de UM 8.000 por unidade do 
modelo LS e UM 10.000 por unidade do modelo TS. Historicamente a loja vende no 
mínimo 6 automóveis por mês. Sabendo que o preço da venda ao consumidor é de 
UM 15.000 e UM 20.000 para modelos LS e TS respectivamente. Qual o número de 
PESQUISA OPERACIONAL 
D.R.R. 23 
unidades de cada modelo que devem ser vendidas por mês de modo que o vendedor 
tenha o máximo rendimento? 
 
3) Uma empresa que aluga equipamentos para controle de qualidade, possui 2 tipos 
de aparelhos, o Quality Top (QT) e o Quality Basic (QB). Ela possui 7 aparelhos do tipo 
QT, que podem inspecionar 40 peças/hora, com um custo operacional de UM 8,00 por 
hora.Possui também 10 aparelhos do tipo QB, que inspecionam 30 peças/hora, com 
custo operacional de UM 7,00 por hora. Sabendo que o máximo de peças a serem 
inspecionadas é 2600 peças por dia (8 horas de trabalho por dia) e que a empresa 
cobra um aluguel de UM 22/hora por aparelho tipo QT e UM 17/hora por aparelho tipo 
QB, elaborar o modelo de PL que permita calcular o número de aparelhos de cada um 
dos dois tipos que devem ser alugados a fim de maximizar o lucro da empresa. 
 
4) Uma indústria produz determinado móvel em dois modelos, o luxo e o standard. O 
modelo luxo é produzido com um lucro de US$ 300,00 por unidade e o standard com 
um lucro de US$ 100,00 por unidade O modelo standard requer 2 horas de fabricação, 
ocupa uma área de 4 m2 por unidade no armazenamento e não necessita de pintura. 
Já o modelo luxo requer 3 horas de fabricação, ocupa 3 m2 por unidade no 
armazenamento e 1 hora para pintura. O tempo disponível para elaboração encontra-
se limitado em 24 horas, o espaço para armazenagem em 36 m2 e a seção de pintura 
dispõe de 6 horas. Pergunta-se quantas unidades de cada modelo de móvel devem 
ser fabricadas a fim de maximizar o lucro da empresa? 
 
5) Uma metalúrgica deseja maximizar sua receita bruta. A tabela a seguir ilustra a 
proporção de cada material na mistura para a obtenção das ligas passíveis de 
fabricação. O preço está cotado em Reais por tonelada da liga fabricada. Também em 
toneladas estão expressas as restrições de disponibilidade de matéria-prima. 
Formular o modelo de Programação Matemática. 
 
PESQUISA OPERACIONAL 
D.R.R. 24 
Restrições/Custo 
 Liga Especial de Baixa 
Resistência (*) 
Liga Especial de Alta 
Resistência (*) 
Disponibilidade de 
Matéria-prima 
Cobre 0,5 0,2 16 Ton 
Zinco 0,25 0,3 11 Ton 
Chumbo 0,25 0,5 15 Ton 
Preço de Venda 
(R$ por Ton) 
R$ 3.000 R$ 5.000 Ton de minério 
(*) -------------------- 
Ton de liga 
 
6) As especificações para construção de uma estrada determinam uma espessura de 
revestimentos de 12 a 48 cm. O revestimento pode ser feito com concreto e/ou asfalto. 
As especificações também requerem uma resistência final de no mínimo 9 cm de 
concreto. Sabe-se que 3 cm de asfalto equivalem à resistência de 1 cm de concreto. 
Sabe-se também que cada cm de espessura de 1 m2 custa UM 10.000,00 e UM 
3.500,00 para respectivamente concreto e asfalto. Se o objetivo é minimizar os custos 
da estrada, quais as espessuras de asfalto e concreto a adotar? 
 
7) Uma empresa mineradora possui duas jazidas diferentes que produzem um dado 
tipo de minério. Depois do minério ser triturado ele é classificado em três classes: 
superior, médio e inferior. Existe uma certa demanda para cada classe de minério. A 
empresa de mineração possui uma fábrica de beneficiamento com a capacidade para 
12 toneladas da classe superior, 8 da média e 24 da inferior por semana. A empresa 
gasta UM 900,00 por dia para operar a primeira jazida e UM 720,00 para operar a 
segunda. Essas jazidas tem contudo, capacidades diferentes. Durante um dia de 
operação, a primeira jazida produz 6 toneladas de minério de classe superior, 2 de 
classe média e 4 de classe inferior, enquanto que a segunda jazida produz diariamente 
2 toneladas de minério de classe superior, 2 de classe média e 12 de classe inferior. 
Pergunta-se quantos dias por semana deve operar cada jazida para satisfazer, da 
maneira mais econômica, as encomendas feitas à empresa? 
 
8) Uma companhia produz dois tipos de camisas: manga longa e manga curta. Na 
companhia, o único ponto crítico é a mão-de-obra disponível. A camisa de manga 
longa consome 50 % a mais de mão-de-obra do que a de manga curta. Sabe-se 
também que se toda a produção fosse concentrada na disponibilização de camisas de 
PESQUISA OPERACIONAL 
D.R.R. 25 
manga curta a companhia poderia entregar 400 camisas de manga curta por dia. O 
mercado limita a produção diária de camisas em 150 mangas longas e 300 mangas 
curtas. O lucro bruto por camisa de manga longa é de UM 5,00 e por camisa de manga 
curta UM 3,5 . Formular o problema de modo a permitir a determinação das 
quantidades de camisas a produzir de modo a otimizar o lucro. 
 
9) A empresa Serra Serra Serrador fabrica três tipos de madeiras compensadas 
(placas de aglomerados). Os dados abaixo resumem a produção em horas por 
unidade em cada uma das três operações de produção, o tempo máximo disponível 
em cada operação e o lucro unitário de cada placa: 
 
 Operações em horas 
Aglomerado I II III Lucro por Unidade 
Placa A 2 2 4 $40 
Placa B 5 5 2 $30 
Placa C 10 3 2 $20 
Tempo máximo disponível 900 400 600 
 
Quantas unidades de cada placa de aglomerado devem ser produzidas, de maneira a 
otimizar o lucro da Serraria? 
 
10) Um sitiante está planejando sua estratégia de plantio para o próximo ano. Por 
informações obtidas nos órgãos governamentais, sabe que as culturas de trigo, arroz e 
milho serão as mais rentáveis na próxima safra. Por experiência, sabe que a 
produtividade de sua terra para as culturas desejadas é a constante na tabela abaixo: 
Restrições do problema do plantio 
Cultura Produtividade em kg por m2 
(experiência) 
Lucro por kg de Produção 
(Informações do Governo) 
Trigo 0,2 10,8 centavos 
Arroz 0,3 4,2 centavos 
Milho 0,4 2,03 centavos 
 
Por falta de um local de armazenamento próprio, a produção máxima, em toneladas, 
está limitada a 60. A área cultivável do sítio é de 200.000 m2. Para atender as 
demandas de seu próprio sítio, é imperativo que se plante 400 m2 de trigo, 800 m2 de 
arroz e 10.000 m2 de milho. 
PESQUISA OPERACIONAL 
D.R.R. 26 
 
11) Uma grande fábrica de móveis dispõe em estoque de 250 metros de tábuas, 600 
metros de pranchas e 500 metros de painéis de conglomerado. A fábrica normalmente 
oferece uma linha de móveis composta por um modelo de escrivaninha, uma mesa de 
reunião, um armário e uma prateleira. Cada tipo de móvel consome uma certa 
quantidade de matéria prima, conforme a tabela abaixo. A escrivaninha é vendida por 
UM 100, a mesa por UM 80, o armário por UM 120 e a prateleira por UM 20. Pede-se 
exibir um modelo de Programação Linear que maximize a receita com a venda dos 
móveis. 
 
Restrições/Custos 
 Quantidade de material em metros 
Consumidos por unidade do produto 
Disponibilidade 
do Recurso (m) 
 Escrivaninha Mesa Armário Prateleira 
Tábua 1 1 1 4 250 
Prancha 0 1 1 2 600 
Painéis 3 2 4 0 500 
Valor de 
Revenda (UM) 
100 80 120 20 
 
12) A fábrica de aço Boca do Monte S/A tem duas instalações, uma em Santa Maria - 
SM e outra em São Pedro do Sul - SPS, cada uma produzindo dois tipos de aço, o 
C.A. 50 e o C.A. 60. Devido a restrições de ordem operacional, nenhuma das 
instalações pode funcionar mais do que 18h por dia. Na instalação de SM, leva-se 2h 
para produzir 1 tonelada de aço C.A 50 e 1h para produzir 1 tonelada de aço C.A. 60. 
Na instalação de SPS, leva-se 1h para produzir 1 tonelada de aço C.A. 50 e 3h para 
produzir 1 tonelada de aço C.A. 60. Na instalação SM, o custo por tonelada aço C.A. 
50 é de UM 35 e UM 30 para o aço C.A. 60, enquanto que na instalação SPS, o custo 
por tonelada na fabricação de cada um dos dois tipos de aço é de UM 25. A usina de 
aço tem a obrigação de produzir diariamente pelo menos 14 toneladas de aço C.A. 50 
e 16 toneladas de aço C.A. 60. Como deve ser organizada a produção para que o 
custo da quantidade necessária de cada tipo de aço seja o menor possível? 
 
13) O objetivo do presente programa é determinar, em uma dieta para a redução 
calórica, as quantidades de certos alimentos que deverão ser ingeridos diariamente, 
PESQUISA OPERACIONAL 
D.R.R. 27 
de modo que determinados requisitos nutricionais sejam satisfeitos a custo mínimo. 
Existem vários problemas abordando esse tema, o presente exemplo é um dos mais 
simples possíveis. Suponha que, por motivos justificáveis, uma certa dieta alimentar 
esteja restrita a leite desnatado, carne magra deboi, carne de peixe e uma salada de 
composição bem conhecida. Sabendo-se ainda que os requisitos nutricionais serão 
expressos em termos de vitaminas A, C e D e controlados por suas quantidades 
mínimas (em miligramas), uma vez que são indispensáveis à preservação da saúde da 
pessoa que estará se submetendo à dieta. A tabela abaixo resume a quantidade de 
cada vitamina em disponibilidade nos alimentos e a sua necessidade diária para a 
boa saúde de uma pessoa. 
 
Restrições de nutrientes na dieta alimentar 
Vitamina Leite 
(litro) 
Carne 
(kg) 
Peixe 
(kg) 
Salada 
(100 g) 
Requisito 
Nutricional 
Mínimo 
A 2 mg 2 mg 10 mg 20 mg 11 mg 
C 50 mg 20 mg 10 mg 30 mg 70 mg 
D 80 mg 70 mg 10 mg 80 mg 250 mg 
Custo 2 reais 4 reais 1,5 real 1 real 
 
Formular o programa para a otimização dos recursos envolvidos. 
PESQUISA OPERACIONAL 
D.R.R. 
 
 
 
3 PROGRAMAÇÃO LINEAR 
 
 
Os problemas de alocações de recursos escassos a atividades competitivas são 
resolvidos pelas técnicas de Programação Linear (PL). Estas técnicas são 
apropriadas para os casos em que variáveis do problema estão linearmente 
relacionadas entre si. A sua aplicação tem sido grande no contexto industrial e 
produzem às vezes uma respeitável economia. Mesmo que a PL não seja o único meio 
de otimizar os retornos de um determinado sistema, muitos dos relacionamentos 
fundamentais das quantidades tornam convidativa a sua utilização. 
Os estudos dos sistemas de produção apresentam muitas oportunidades para as 
aplicações da PL, pois ela pode ser empregada vantajosamente nos estágios de 
planejamento, análise e controle. Os problemas aplicáveis incluem o planejamento da 
localização com maior facilidade de suprimento a fim de minimizar os custos de 
transporte, a análise das operações e métodos para aumentar os lucros e o controle 
do carregamento das máquinas para maximizar a utilização. 
Resumidamente, a PL é definida como sendo um conjunto de técnicas 
matemáticas com as quais pode ser determinada uma solução ótima para problemas 
que apresentam várias soluções possíveis, e indica um método interativo que 
determina a melhor combinação de valores que as variáveis do modelo devem assumir 
a fim de otimizar a solução, com cada variável obedecendo a certas restrições. 
Um problema de PL está em sua forma padrão se existir a maximização da 
função-objetivo e se todas as restrições forem do tipo menor ou igual, bem como os 
termos constantes e variáveis de decisão não-negativos. Matematicamente 
representa-se um problema padrão por: 
 
Maximizar: Z = c1x1 + c2x2 + . . . + cnxn 
 
PESQUISA OPERACIONAL 
D.R.R. 29 
Sujeito a: 
a11x1 + a12x1 + . . . + a1nxn ≤ b1 
a21x1 + a22x1 + . . . + a2nxn ≤ b2 
. 
. 
am1x1 + am2x1 + . . . + amnxn ≤ bm 
 
x1, x2, …, xn ≥ 0 
ou na forma reduzida: 
 
Maximizar: ∑
=
=
n
1j
jjxcZ 
Sujeito a: ( )∑
=
=≤
n
1j
ijij m1,2,...,ibxa 
x1, x2, …, xn ≥ 0 
 
Uma padronização de termos deve ser introduzida a fim de facilitar o 
entendimento. Solução é qualquer especificação de valores para as variáveis de 
decisão, independente de se tratar de uma escolha desejável ou permissível. Solução 
Viável é uma solução em que todas as restrições são satisfeitas. Solução Ótima é uma 
solução viável que tem o valor mais favorável da função-objetivo, isto é, maximiza ou 
minimiza a função-objetivo em toda a região viável, podendo ser única ou não. 
 
3.1 SOLUÇÃO GRÁFICA 
A seleção de uma combinação ótima é uma introdução ideal aos métodos de PL. 
Determinar a proporção de produção de cada produto quando os recursos de 
produção são limitados é um exemplo típico das aplicações da PL, que mostram como 
utilizar recursos escassos para maximizar o lucro. Uma combinação de dois produtos 
tem como vantagem a simplicidade que permite colocar em questão os fatos básicos. 
PESQUISA OPERACIONAL 
D.R.R. 30 
Uma das tarefas difíceis da avaliação dos sistemas de produção é reconhecer 
qual a melhor maneira de atacar o problema. O conhecimento das exigências da PL 
que serão dadas a seguir deverá revelar se o problema está sujeito a esta forma de 
solução. 
1º) O objetivo deve ser definido explicitamente. 
2º) Os recursos devem ser limitados. 
3º) As varáveis devem ser linearmente relacionadas, e estes relacionamentos 
são expressos por inequações ou equações. 
Quando um problema envolve apenas duas variáveis de decisão, a solução ótima 
de um problema de PL pode ser encontrada graficamente. 
Após a modelagem do problema, a metodologia a seguir é: 
a) colocar retas no gráfico para cada restrição; 
b) identificar o polígono das soluções possíveis; 
c) traçar uma reta para função-objetivo; 
d) tirar paralelas à função-objetivo; 
e) se o problema for de minimização, o ponto ótimo é obtido a partir da paralela 
de “Z” até encontrarmos o ponto mais próximo da origem, dentro do polígono 
das soluções possíveis. Se o problema for de maximização, o ponto ótimo é 
aquele mais afastado da origem dentro do polígono de soluções possíveis. 
 
A fim de demonstrar o método gráfico e seus casos especiais (soluções 
múltiplas, soluções ilimitadas e problemas sem solução), são propostos os exemplos 
abaixo. 
 
1) Max Z = 5x1 + 2x2 
Sujeito a: 
x1 ≤ 3 
x2 ≤ 4 
x1 + 2x2 ≤ 9 
x1, x2 ≥ 0 
2) Min Z = 7x1 + 9x2 
Sujeito a: 
PESQUISA OPERACIONAL 
D.R.R. 31 
- x1 + x2 ≤ 2 
x1 ≤ 5 
x2 ≤ 6 
3x1 + 5x2 ≥ 15 
5x1 + 4x2 ≥ 20 
x1, x2 ≥ 0 
 
3) Min Z = 6x1 + 10x2 
Sujeito a: 
- x1 + x2 ≤ 2 
x1 + 2x2 ≥ 1 
x1 ≤ 5 
x2 ≤ 6 
3x1 + 5x2 ≥ 15 
5x1 + 4x2 ≥ 20 
x1, x2 ≥ 0 
 
4) Max Z = 6x1 + 10x2 
Sujeito a: 
- x1 + x2 ≤ 2 
x2 ≤ 6 
3x1 + 5x2 ≥ 15 
5x1 + 4x2 ≥ 20 
x1, x2 ≥ 0 
 
5) Max Z = x1 + x2 
Sujeito a: 
x1 + x2 ≤ 12 
x1 + x2 ≥ 20 
x1, x2 ≥ 0 
 
 
PESQUISA OPERACIONAL 
D.R.R. 32 
3.2 SOLUÇÃO ALGÉBRICA – MÉTODO SIMPLEX 
A resolução de um problema de PL consiste basicamente em resolver sistemas 
de equações lineares e calcular o valor da função-objetivo. Comparando os diversos 
valores obtidos para esta função-objetivo, escolhe-se como solução do problema o 
resultado do sistema de equações que fornece o maior valor, no caso de resolvermos 
um problema padrão de PL, ou seja, de maximização. 
Esse procedimento, apesar de correto e elegante, é bastante trabalhoso, já que 
temos de resolver todos os sistemas para podermos escolher o que dá maior valor 
para a função-objetivo, ou menor no caso de minimização. Em um problema real de 
PL, onde pode-se ter, por exemplo, 40 equações e 50 variáveis, o número de sistemas 
de equações que deveríamos resolver é extremamente elevado, o que é impraticável, 
mesmo para um computador. 
Assim, para termos condições de resolver o problema de PL, precisamos de 
uma sistemática que nos diga: 
§ qual o sistema de equações que deve ser resolvido; 
§ que o próximo sistema a ser resolvido fornecerá uma solução melhor que as 
anteriores; 
§ como identificar uma solução ótima, uma vez que a tenhamos encontrado. 
Essa sistemática é o método Simplex, e de forma resumida pode-se dizer que é 
um processo iterativo para determinar soluções básicas viáveis para um sistema de 
equações e testá-las quanto à otimidade. As etapas utilizadas no método para atender 
às três questões acima estão descritas no próximo tópico. 
 
3.2.1 Etapas do Método Simplex 
a) Transformação das desigualdades em igualdades através da introdução 
de variáveis de folga (falta ou excesso) 
inequações de sinal ≤ adiciona-se a variável de folga. 
inequações de sinal ≥ subtrai-se a variável de folga. 
 
b) Montar o Quadro Simplex 
Colocar os coeficientes de todas as variáveis com os respectivos sinais, da 
PESQUISA OPERACIONAL 
D.R.R. 33 
função objetivo (cj), das variáveis nas equações (ai j) e os termos independentes (bi) 
são então transferidos para uma tabela que é a Solução Básica Inicial (SBI) do 
problema: 
 
 Variáveis Naturais Variáveis de Folga Solução 
Base x1 x2 x3 ... xn xn+1 xn+2 ...xn+m bi Divisão 
xn+1 a11 a12 a13 ... a1n 1 0 ... 0 b1 
xn+2 a21 a22 a21 a21 0 1 ... 0 b2 
... ... ... ... ... ... ... ... ... 0 ... 
xn+m am1 am2 am3 ... amn 0 0 ... 1 bm 
Zj c1 c2 c3 ... cn cn+1 cn+2 ... cn+m 0 
 
c) Troca de Base 
Em cada iteração será determinada uma nova solução básica (outro ponto 
extremo). Para isso é necessário realizar a troca de base. A escolha da variável que 
deve entrar na base é feita pela REGRA SIMPLEX 1. 
 
c.1) REGRA SIMPLEX 1 
A seleção da Variável que entra na base depende dos valores de Zj. A variável 
selecionada será aquela que apresentar o maior valor de Zj. Se todos os valores de Zj 
são ≤ 0, então a solução ótima foi encontrada. 
 
A variável que sai da base é dada pela REGRA SIMPLEX 2. 
 
c.2) REGRA SIMPLEX 2 
A seleção da variável que deve deixar a base é feita pelo valor obtido pela 
divisão dos números da coluna solução (bi) pelos coeficientes a i j na coluna da variável 
que entrar na base. 
Selecione a linha com a menor razão (ignore as razões com denominador zero ou 
negativo). A variável desta linha deve deixar a base. 
 
d) Pivoteamento 
O processo de pivoteamento envolve a obtenção da matriz dos coeficientes das 
varáveis básicas como uma matriz identidade, visto que somente uma variável básica 
PESQUISA OPERACIONAL 
D.R.R. 34 
entra na tabela, a cada iteração, a matriz identidade é completada usando as 
operações de linha para obter coeficiente unitário na posição do elemento pivô, ai j na 
linha que saiu e coluna de entrada e coeficientes zeros nas demais posições da coluna 
pivô (coluna da variável que entrou na base). 
Para obter coeficiente unitário na posição pivô divide-se os termos da linha pivô 
(linha da variável que deixou a base) pelo elemento pivô. Registra-se a nova linha no 
novo quadro. As seguintes operações de linha são feitas para obter zeros nas demais 
posições da coluna pivô, usando a seguinte fórmula: 
 
[Nova Linha “n”] = [Antiga Linha “n”] – {[Coeficiente da Coluna Pivô] x [Nova Linha Pivô]} 
 
Esta fórmula é aplicada para cada linha que não seja pivô e cada equação 
resultante é registrada no novo quadro. Obtém-se, assim, a matriz dos coeficientes das 
variáveis básicas como matriz identidade. Na coluna solução tem-se os valores das 
variáveis básicas, sendo as variáveis não básicas nulas. 
 
e) Verificação da Otimidade 
Se todos os valores Zj forem ≤ 0 a solução é ótima, porém se existir algum Zj > 0, 
repete-se o processo desde a troca de base, isto é, calcula-se a próxima solução 
básica. 
 
3.2.2 Utilização das Variáveis Artificiais 
Ocorrência: 
a) Quando há inequação de sinal ≥ pois nesse caso teremos que colocar variável 
de folga negativa. 
b) Quando existir b i negativo e a inequação for do tipo ≤. 
c) Quando tivermos uma equação. 
Quando ocorrer variáveis artificiais no problema, o método, chamado de Método 
das Duas Fases, será o seguinte: 
a) Deve-se acrescentar uma função objetiva W que será minimizada a fim de 
anular as variáveis artificiais; 
PESQUISA OPERACIONAL 
D.R.R. 35 
 
b) O problema simplex terá duas fases: 
Fase I : Minimizar W, isto é, W = 0 anulando as variáveis artificiais. 
Fase II: Otimizar a função objetiva Z. 
 
c) A função objetiva W artificial será 
W = D1x1 + D2x2 + . . . + Dnxn + Dn+1xn+1 + . . . Dn+mxn+m + . . . + Dn+m+k xn+m+k 
Onde: xn+m+k = variáveis artificiais 
∑=
+
n
1i
ijj AD das equações que possuem variáveis artificiais 
∑= bW i das equações que possuem variáveis artificiais 
 
d) Otimização da fase I 
1º) Quando os Dj ≤ e W = 0, a função objetiva está otimizada passando então 
para a fase II, eliminando a linha de coeficientes de W e a coluna de variáveis 
artificiais. 
2º) Quando os D j ≤ e W < 0 o problema não tem solução viável. 
 
3.3 EXERCÍCIOS 
Resolver todos do item 2.5 
PESQUISA OPERACIONAL 
D.R.R. 
 
 
 
4 PROBLEMAS DE TRANSPORTE 
 
 
O problema de transporte é um tipo especial de problema de PL, sendo que sua 
resolução pelo Método Simplex é bastante trabalhosa. Por isso foi desenvolvido um 
algoritmo especial para a resolução. O algoritmo de transporte visa simplificar a 
obtenção da solução ótima, entretanto, nada impede que os modelos de transporte 
sejam resolvidos pelo método simplex, uma vez que este, resolve qualquer modelo de 
programação linear. 
Este modelo visa minimizar o custo total do transporte, envolvendo “m” origens 
cada uma dotada de “ai” (i = 1,2, . . ., m) unidades disponíveis de um produto 
homogêneo, e “n” destinos cada um dos quais requerendo “bj” (j = 1,2, . . . , n) unidades 
deste produto. Os números “ai” e “bj” são inteiros e positivos. O custo “ci j” de 
transportar uma unidade da origem “i” para o destino “j” é conhecido para cada valor 
de “i” e “j”. Matematicamente o problema é definido da seguinte maneira: 
 
Função-objetivo: 
Min Z = xc ij
m
1i
n
1j
ij∑ ∑
= =
 
 
Sujeito a: 
m)1,2,...,(iax i
n
1j
ij ==∑
=
 (4.1) 
n)1,2,...,(jbx j
m
1j
ij ==∑
=
 
 
0x ij ≥ ( i = 1, 2, . . . , m) e (j = 1, 2, . . . , n) 
 
PESQUISA OPERACIONAL 
D.R.R. 37 
Observe que nas restrições do modelo todos os coeficientes das variáveis são 
iguais a 1. Comparando as restrições de oferta e demanda, obtém-se: 
∑=∑
==
n
1j
j
m
1i
i ba (4.2) 
Esta igualdade indica que o modelo de transporte exige uma igualdade entre 
oferta total e demanda total (problema equilibrado). Para explicar o algoritmo de 
transporte é necessário representar o modelo (4.1), por meio da tabela a seguir: 
 
DESTINOS 
 
ORIGENS 
1 2 . . . n OFERTA 
1 c11 c12 . . . c n1 a1 
2 c21 c22 . . . c n2 a2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
. 
. 
. 
. 
. 
. 
m cm1 cm2 . . . cmn am 
DEMANDA b1 b2 . . . bn 
∑
=
m
i
ia
1
 
∑
=
n
j
jb
1
 
Quadro 4.1. 
Necessitar-se-ia de outro quadro envolvendo as quantidades a serem 
transportadas da origem “i” ao destino “j”. 
 
DESTINOS 
 
ORIGENS 
1 2 . . . n OFERTA 
1 x11 x12 . . . x n1 a1 
2 x21 x22 . . . x n2 a2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
. 
. 
. 
. 
. 
. 
m xm1 xm2 . . . xmn am 
DEMANDA b1 b2 . . . bn 
∑
=
m
i
ia
1
 
∑
=
n
j
jb
1
 
Quadro 4.2. 
PESQUISA OPERACIONAL 
D.R.R. 38 
 
Como se deseja que a solução combine “n” custos e as quantidades 
transportadas envolvidas entre as origens “i” e os destinos “j”, nada mais lógico que 
trabalhar-se com a combinação dos dois quadros. 
 
DESTINOS 
 
ORIGENS 
1 2 . . . n OFERTA 
1 
c11 
x11 
c12 
x12 
. . . 
c n1 
x n1 
a1 
2 
c21 
x21 
c22 
x22 
. . . 
c n2 
x n2 
a2 
. 
. 
. 
. 
. 
. 
. 
. 
. 
 
. 
. 
. 
. 
. 
. 
M 
cm1 
xm1 
cm2 
xm2 
. . . 
cmn 
xmn 
am 
DEMANDA b1 b2 . . . bn 
∑
=
m
i
ia
1
 
∑
=
n
j
jb
1
 
Quadro 4.3. 
 
4.1 FORMULAÇÃO DO MODELO 
Através da formulação do modelo de transporte pode-se notar que os 
coeficientes das variáveis são unitários envolvendo um só tipo de variável. Dois casos 
podem ocorrer: o problema de transporte equilibrado, onde a oferta é igual à demanda, 
e o problema de transporte desequilibrado, onde a oferta é diferente da demanda. 
Ambos serão apresentados a seguir. 
 
4.1.1 Problema de Transporte Equilibrado 
Supondo que um fazendeiro possui quatro granjas A, B, C e D, produzindo 
PESQUISA OPERACIONAL 
D.R.R. 39 
diariamente 50.000, 50.000, 60.000 e 30.000 litros de leite respectivamente. Vende 
toda a produção em três cidades I, II e III, que necessitam 70.000, 70.000 e 50.000 
litros de leite diariamente. O custo de transporte por litro está na tabela abaixo: 
 
 CIDADE I CIDADE II CIDADE III 
GRANJA A 10 15 12 
GRANJA B 15 10 16 
GRANJA C 12 16 10 
GRANJA D 13 18 16 
 
O modelo pode ser formulado da seguinte maneira: 
 
Seja xi j ( i = A, B, C e D; j = I, II, III) a quantidade a ser transportada da granja “i” 
para a cidade “j”. 
 
O modelo de transporte será: 
Min Z = 10 xAI + 15xAII + 12xAIII+ 15xBI +10xBII + 16xBIII + 12xCI + 16xCII + 10xCIII + 
13xDI + 18xDII + 16xDIII 
Sujeito a: 
xAI + xAII + xAIII = 50.000 
 xBI + xBII + xBIII = 50.000 
 xCI + xCII + xCIII = 60.000 
 xDI + xDII + xDIII = 30.000 
 
xAI + xBI + xCI + xDI = 70.000 
 xAII + xBII + xCII + xDII = 70.000 
 xAIII + xBIII + xCIII+ xDIII = 50.000 
e xiJ ≥ 0 para i = A, B, C, D e j = I, II, III. 
 
Pode-se observar que a oferta total de leite é de 190.000 litros e é igual à 
demanda. Neste caso o problema é equilibrado. 
 
PESQUISA OPERACIONAL 
D.R.R. 40 
4.1.2 Problema de Transporte Desequilibrado 
Agora vamos supor que duas fábricas, FA e FB abastecem dois depósitos D1 e 
D2, sendo as quantidades ofertadas e demandadas de unidades de produto estão 
relacionadas abaixo: 
Fábrica A: 20 unidades 
Fábrica B: 40 unidades 
∑ Oferta = 60 unidades 
As quantidades requeridas em cada depósito são: 
Depósito 1: 30 unidades 
Depósito 2: 20 unidades 
∑ Demanda = 50 unidades 
Os custos unitários de transporte aparecem no quadro abaixo: 
 
 D
1
 D
2
 
F
A
 10 25 
F
B
 20 15 
 
Neste caso a oferta total é maior que a demanda total, indicando que será 
necessário fazer estocagem do produto. Para equilibrar a oferta com a demanda, cria-
se um depósito (consumidor) fictício com demanda igual a 10 unidades que é a 
diferença entre a oferta e a demanda total. 
Sendo xi j ( i = A, B, C e D; j = I, II, III) a quantidade a ser transportada da fábrica “i” 
para o depósito “j”. 
As quantidades xA3 e xB3 devem ficar estocadas nas fábricas A e B, pois não 
existe o depósito 3. 
Os custos CA3 e CB3 representam os custos unitários de estocagem em cada 
depósito, serão considerados como CA3 = CB3 = 0. 
A formulação do modelo será: 
Min Z = 10 xA1 + 25xA2 + 20xB1 +15xB2 
Sujeito a: 
xAI + xAII + xAIII = 20 
 xBI + xBII + xBIII = 40 
PESQUISA OPERACIONAL 
D.R.R. 41 
xAI + xBI = 30 
 xAII + xBII = 20 
 xAIII + xBIII = 10 
 
Pode-se ter também o somatório da demanda maior que o somatório da oferta. 
Neste caso cria-se uma fábrica (produtor) fictícia e procede-se como no caso 
mostrado anteriormente. 
 
4.2 METODOLOGIA DE SOLUÇÃO 
Após verificar se o problema de transporte é equilibrado ou não, e se não for 
equilibrá-lo conforme foi mostrado acima, parte-se para a obtenção da Solução Básica 
Inicial (SBI) através de dois métodos mais comuns, que são: 
a) Método do custo mínimo. 
b) Método de Vogel. 
O objetivo de cada método é obter uma SBI viável. Antes de se aplicar o modelo 
de SBI, precisa-se apontar o número de variáveis básicas do problema de transporte. 
O número de variáveis básicas é (m + n – 1), porque as restrições são de igualdade, e 
este conjunto de (m + n) equações tem uma equação extra ou redundante que pode ser 
eliminada sem mudar a região viável. Qualquer uma das restrições é satisfeita sempre 
que as outras (m + n – 1) restrições forem satisfeitas. A seguir apresentar-se-á o 
procedimento para selecionar as variáveis básicas de tal modo que satisfaça a todas 
as restrições. 
 
4.2.1 Método do Custo Mínimo 
Procedimentos: 
1º) Localize no quadro de custos o menor Ci j e coloque nessa célula, a maior 
quantidade permitida pela oferta e demanda correspondente. 
2º) Atualize os valores de oferta e demanda que foram modificados e volte a 
localizar o menor Ci j. O procedimento se repete até que sejam esgotadas 
todas as ofertas e supridas todas as demandas. 
PESQUISA OPERACIONAL 
D.R.R. 42 
4.2.2 Método de Vogel 
Procedimentos: 
1º) Para cada linha e coluna do problema, calcule a diferença entre os dois 
menores custos unitários (C i j). 
2º) Escolher a linha ou coluna que tenha a maior diferença, onde seleciona-se a 
variável que tiver o menor custo (C i j). 
3º) Na célula escolhida, colocar a maior quantidade possível permitida pela 
oferta e demanda. 
4º) Repetir o procedimento até esgotar as quantidades de ofertas e demandas 
(todas restrições satisfeitas). 
 
Pode-se utilizar 2 critérios para desempate: 
1º) Havendo empate entre linhas ou colunas, seleciona-se entre as possíveis a 
célula de menor custo unitário. 
2º) Havendo empate entre linhas e/ou colunas e células com menor custo, 
escolhe-se a linha ou coluna onde é possível fazer a maior atribuição. 
 
4.2.3 Método U – V ou Distribuição Modificada 
É o primeiro passo para verificar se a solução encontrada é a solução ótima do 
problema de transporte. Antes de proceder ao cálculo dos valores de “U” e “V” testa-se 
a SBI quanto à degeneração através da seguinte fórmula: (m + n –1) = número de 
células básicas (células cheias pela distribuição realizada), onde m = número de linhas 
e n = número de colunas do quadro. 
Procedimentos: 
1º) Preparar a matriz que contenha os custos associados às células para cada 
alocação feita; 
2º) Estabelecer o conjunto de números Vj e outro conjunto Ui, da seguinte 
maneira: 
b) Arbitrar Ui = 0. 
b) Matematicamente calcular, com auxílio das células cheias, a partir de C i j 
= Ui + Vj, as demais células básicas. 
PESQUISA OPERACIONAL 
D.R.R. 43 
c) Através da equação Qi j = Ci j – (Ui + Vj) calcular os custos associados 
para as células vazias. 
d) Se houver qualquer valor negativo de Qi j, a solução não é ótima, aplicar o 
Circuito de Alpondras. 
e) Se todos os valores Qi j forem positivos ou nulos a solução é ótima e 
então deve-se interpretar o resultado obtido. 
 
4.2.4 Circuito de Alpondras 
Este método é utilizado para redistribuir os valores de oferta e demanda caso a 
solução encontrada não seja a solução ótima 
Procedimentos: 
1º) Localizar a célula que tem o menor valor negativo, em caso de empate deve-
se fazer uma escolha arbitrária. 
2º) Traçar um circuito de avaliação que deve começar e terminar na célula 
escolhida no 1º item. 
3º) Iniciar o circuito com o sinal (+), em cada troca de direção atribuir sinais 
alternados (+) e (-), sendo permitida a troca de direção apenas em células 
ocupadas. 
4º) Escolher a menor quantidade (x0 = elemento pivô) onde o sinal do circuito for 
negativo. 
5º) Somar ou subtrair essa quantidade, conforme o sinal do circuito. 
Após completar o procedimento, aplicar novamente o método U – V. Repetir o 
procedimento até não existir mais QiJ < 0. 
Vamos proceder à resolução dos dois problemas propostos acima! 
 
4.3 DEGENERAÇÃO DO PROBLEMA DE TRANSPORTE 
Pode ocorrer em qualquer estágio da solução do problema de transporte. 
A degeneração ocorre quando o número de células ocupadas for menor que a 
quantidade (m + n) – 1, e pode ser resolvida fazendo-se uma alocação infinitamente 
pequena ε em uma célula conveniente. A alocação de ε é feita por inspeção e não 
PESQUISA OPERACIONAL 
D.R.R. 44 
afeta os totais da linha ou coluna, pois se trata de uma quantia muito pequena. A 
colocação de ε em determinada célula segue as normas de qualquer alocação 
comum. Quando se obtém a solução ótima, ε é igual a zero. 
 
4.4 SOLUÇÕES MÚLTIPLAS 
Quando na solução ótima o custo associado for igual a zero, Qi j = 0, significa que 
o problema possui mais de uma solução ótima, e elas serão tantas outras soluções 
ótimas quantos o número de custos associados iguais a zero existirem. Observe no 
problema das Cooperativas, descrito acima, os valores dos custos associados da 
solução ótima. Para achar a(s) outra(s) solução(ões) utiliza-se o circuito de Alpondras 
a partir da célula onde o Qi j = 0. 
 
4.5 PROBLEMA DE TRANSPORTE DE MAXIMIZAÇÃO 
Neste tipo de problema trabalha-se com os valores de lucros unitários e não mais 
com os custos unitários de transporte. Neste caso, escolhe-se o mais valor de lucro 
unitário e subtrai-se dos demais valores da tabela formando então uma nova tabela e a 
partir desta resolve-se o problema como minimização. 
Para ilustrar este caso, vamos resolver o problema abaixo. 
Uma empresa de transporte de cargas está assinando

Outros materiais