Buscar

PLanta piloto de gaseificação de biomassa

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 90 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 90 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 90 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

landgraf@ipt.br 
BIOSYNGAS – 
BIOMASS ENTRAINED FLOW GASIFICATION 
Dr. GERHARD ETT, 
Dr. FERNANDO JOSÉ GOMES LANDGRAF, 
Dr. ABRAHAM SIN YU, 
Dr. JOÃO GUILHERME POCO 
Dr. SILAS DERENZO. 
ANDRE NUNIS, MSc 
JOÃO RICARDO FILIPINI DA SILVEIRA, MSc 
Who we are 
 IPT - Institute for Technological Research of 
 the State of São Paulo S.A. 
 
 One of the first applied R&D&I institutions in Brazil and the 
largest applied multipurpose R&D&I institution in Latin America 
(115 years) 
 Linked to the State of São Paulo Secretariat for Economic 
Development, Science and Technology 
 IPT provides technological solutions to public and private 
companies and institutions 
2006-Biotechnology and 
Nanotechnology 
Buildings 
IPT Units in: 
São Paulo 
Franca (individual protection equipment) 
São José dos Campos (composite materials) 
1988 - Materials Resistance Laboratory 
1934 – and today 
History 
 1899: creation of the Materials 
Resistance Laboratory 
 1st IPT’s unit 
 
 1934: IPT is established 
 
 1934-1957: IPT Aeronautiic division 
that give support for the 
manufactoring the aircraft 
“paulistinha “ from the company: 
Compania Aeronautica Paulista 
 
 1975: Pro-Álcool project participation 
 
 
 Early 1970s: IPT improves is 
relationship with industries 
 Increasing R&D&I contracts with private 
companies 
 
 1975: creation of the Science, 
Technology and Culture Secretariat of 
the State of SP 
 currently Secretariat for Economic 
Development, Science and Technology 
 
 
 2008/12: Modernization of IPT 
Annual revenue: R$ 153 million 
2013 Figures 
Human Resources Dec. 2013 
Researchers 425 
Technicians 430 
Administrative 
Support 
309 
Interns 105 
Total 1269 
59 % 
R&D 
contracts and 
services 
41 % 
State of São 
Paulo 
Government 
Technical Production: indicators 
 
- Technical Documents: 26,951 technical reports 
- Publications: 338 papers in journals and congresses 
- Patents: 11 
 
Infrastructure 
IPT units in: 
São Paulo 
Franca 
 (individual protection equipment) 
São José dos Campos* 
 (composite materials) 
11 technology centers 
37 laboratories 
92,030 m2 of built area 
* In progress 
Technical Activities 2013 
Innovation, research and 
development 
21 % of the total revenue 
 
 
Technological Services 
29 % of the total revenue 
 
Development and 
metrological support 
49 % of the total revenue 
 
Information and 
technology education 
1 % of the total revenue 
 
 
Markets 
Transportation Infrastructure 
Roads 
Naval 
Pipeline 
Metro-railway 
Airspace 
Cargo 
IT & ITS 
Metallurgy 
Chemistry 
Bioproducts 
Plastics & Rubber 
Composites 
Textiles & Leather 
Wood 
Energy Materials and 
Chemistry 
Civil Works 
Buildings 
Environmental 
Impacts 
Mining 
 
Oil and gas 
Ethanol 
Technical Centers 
CT-Obras 
Center for 
Infrastructure Work 
Technology 
CTMM 
Center for Technology 
in Metallurgy and 
Materials 
CTGeo 
Center for 
Geoenvironmental 
Technologies 
CT-Floresta 
Center for Forest 
Resource Technology 
CTMetro 
Center for Mechanical, 
Electrical and Fluid Flow 
Metrology 
CQuiM 
Center for Chemistry and 
Manufactured Goods 
CIAM 
Center for Information 
Technology, Automation 
and Mobility 
CETAC 
Center for the Built 
Environment 
CTMNE 
Center for Mechanical, 
Naval and Electrical 
Technologies 
NT- BIONANO 
Nucleus for 
Bionanomanufacturing 
 
NT – MPE 
Nucleus for 
Technological Support 
to Medium and to 
Small Enterprises 
LEL 
Light Weight Laboratory 
9 
Activities 
• Energy optimization, 
• Atmospheric emissions, 
• Combustion, 
• Gasification and biomass 
• Fuels and Energy Sources 
• Fuels, combustion engines and vehicle propulsion 
systems 
 
LET - Laboratory of Thermal Engineering 
Mais dados acesse: 
http://www.ipt.br 
LET 
LEA 
LEME 
LEO 
LENO 
Horizontal Furnace 
Vertical Furnace 
Combustion engines and vehicle propulsion systems 
Center for Mechanical, Naval and Electrical Technologies 
ENERGY 
10 
ENERGY 
Energy is an important component of humankind challenge to construct a sustainable 
process of living. Within this scenario energy sustainability is strongly associated to at 
least three main priorities: 
 The preservation of essential natural systems threatened by anthropogenic actions 
that result in environmental problems such as climate changes, flooding, health 
stresses, deforestation and so on; 
 The necessity to provide the basic and modern energy services to each world 
inhabitant, in accordance to the sustainability equity concept: around one third of the 
world population has no access to these services; 
 The reduction of security risks and potential for geopolitical conflicts associated to 
an uneven distribution of energy resources. 
 
Energy sustainability is a global and very complex subject requiring an integrated 
technical, economic, political, ecological and environmental approach, being here 
the social included in the environmental. An open minded and cooperative effort 
involving the world nations is also necessary to pave the way to sustainability in 
general. 
 
11 
Energy- EUA 
Energy- CHINA 
Energy - BRAZIL 
15 
BRAZIL - ENERGY 
Electric Energy – Hydraulic 76,9% 
 
16 
COAL 
Solid Combustion 
17 
Coal 
 
BIOENERGY 
20 
0
200
400
600
800
1000
1200
M
ilh
õ
e
s 
d
e
 t
o
n
e
la
d
as
 a
n
o
 
Safra 
Sugar cane Production 
Projeção IPT (2013)
Unica (2013)
EPE (2012)
Projeções Ministério da Agricultura (2013)
Exponencial (Projeção IPT (2013))
Exponencial (Projeções Ministério da Agricultura (2013))
 150 kg of sugars 
140 kg of bagasse 
70 kg of straw in cane 
70 kg of straw left in field 
570 kg water 
Availability : 
90Mt (bagasse + straw) /year 
Spread in 400 sugar-ethanol mills 
4 Million tonnes sugarcane producer generates 
800 000 tonnes of dry biomass per year 
Cana colhida Previsão 
EPE UNICA 
IPT 5%aa 
Ministério 
Agricultura 
2013 
653,44Mt 
(safra 13/14) 
REF: Unica 
Mt 
1,1Bt 
(2020) 
0,85Bt 
(2020) 
2012, 600 Mt of sugarcane were harvested 
 
 
600Mt in 10 years 
Possible market: 
150 mills for 4Mtpy 
Biomass Cellulose (%) Hemicellulose (%) Lignin (%) Other (%) Source 
Sugarcane 
bagasse 
41 a 47 22 a 26 18 a 22 1 a 5 COELHO, 2004 
Sugarcane straw 41 a 46 25 a 32 12 a 23 1 a 5 COELHO, 2004 
Wood 
(Eucalyptus) 
43 a 47 25 a 35 19 a 33 1 a 5 ABTCP,2010 
Elephant grass 30 a 36 25 a 32 8 a 12 1 a 5 SANTOS et al., 2001 
Biomass Compostion 
Elementary Chemical Biomass Composition 
Biomass C (%) H(%) N (%) S (%) O (%) Ash (%) 
LHV 
(MJ/Kg) 
Source 
Sugarcane bagasse 46,7 5,9 0,9 n.d. 46,7 2,5 17,1 CTC 
Sugarcane straw 48,5 6,92 0,32 n.d. 48,5 11,6 16 CTC 
Wood (Eucalyptus) 45,1 6,3 0,3 n.d. 48,3 0,4 18 Braskem 
Elephant grass 41,2 5,6 1,8 n.d. 51,4 11,6 13,4 Bioware 
Biorefinarias - caso de estudo do IPT 
IPT 
Enzymatic Hydrolysis 
Sugar Platform 
`BIOCHEMICAL ROUTE’ 
Biosyngas Plattform 
Gasification 
‘ THERMOCHEMICAL ROUTE’ 
Cogeneration 
(CHP) 
Heat and Power 
Residues 
Clean Gas 
Fuels, 
Chemicals, 
Polymers and Materials 
Torrefaction 
Pyrolysis Conditioning 
Gas 
Sugar, Álcool 
Raw materials 
Biomass 
http://www.youtube.com/watch?v=hvAMm4a8u7Q&feature=player_embedded
DRYING, PIROLISYS, TORREFACTION 
UPSTREAM 
25 
Drying of Sugarcane Bagasse 
 Bagasse of sugarcane humidity: 50%, just 
after milling. 
 Humidity for burning in the boiler: ~30% 
 Humidity for torrefaction/pyrolysis: ~8-12% . 
 Theoretical energy consumption: ~616 kcal/kg 
of evaporated water 
 
 
Drying of Sugarcane Bagasse 
 Consumption of dry bagasse (~10% humidity): 
 Torrefaction ~ 620 Kg/h 
 Pyrolysis =627Kg/h 
 Coupled to torrefaction/ pyrolysis process,
 using/burning their gases (or burning NG) 
 
Torrefaction  Requirements of entrained-flow gasifier: 
 
 Grindable torrefied (low energyspent during grinding) 
 Dry product (max 1-2% 
moisture) 
 High Heat Value 
 Hidrophobic 
 Less sensitive to biological 
degradation 
 Fine powder (particle size: 100 
and 200 µm) favorable size 
distribution and spherical 
particles. 
 Pilot plant: 1t/h of wet biomass 
(624 kg/h dry bagasse) 
 
 
Properties: Biomass X torrefied 
Torrefaction = incomplete Pyrolysis 
• Devolatilization and carbonization of hemicellulose 
• Depolymerization and devolatilization/softening of lignin 
• Depolymerization and devolatilization of cellulose. 
90°C 180°C 
205°C 
Preliminary experiments carried out in a lab 
equipment for coffee torrefaction 
Lab Experimental results 
After Torrefaction 
After grinding 
0
2
4
6
8
10
12
14
0 50 100 150 200 250
H
2
O
 (
%
) 
T (°C) 
17
18
19
20
0 50 100 150 200 250
LH
V
 (
M
J/
kg
) 
T (°C) 
 Fast Pyrolysis 
 
 
 
•Process in which the biomass is fragmented 
using heat in an atmosphere having no 
oxygen to generate optimized liquid (bio-oil), 
gas and solid (char); 
 
Yelds: 
•60-70% liquid; 
•10-20% char; 
•10-20% Gases (CO2; CH4; CO e H2) 
Source: Bridgwater, 2001 
 
 
 
 Biomass particle size 
 
 
 
Yields the products of the fast pyrolysis depending on the particle size of the biomass. 
Source: Extracted from de Choi et al. (2011) 
Gasification 
 is a partial oxidation process whereby a 
carbon source such as coal, natural gas or 
biomass, is broken down into carbon 
monoxide (CO) and hydrogen (H2), plus 
carbon dioxide (CO2) and possibly 
hydrocarbon molecules such as methane 
(CH4). 
 
34 
35 
Thermal 
Convertion 
Combustion 
(execess air) 
Gaseification 
(less air) 
Pirolisys 
(no air) 
Heat 
(Syngas = H2 + CO) Bio-oil 
Adaptado de NREL/ EUA 
36 
Milestones 
Operating window of main gasifiers types 
Fixed Bed Fluidized beds Entrained flow 
Downdraft Updraft Bubbling circulanting 
T°C 700-1200 700-900 <900 <900 1200-1500 
Tars 
(Alcatrão) 
LOW Very High intermediario intermediario no 
Controle facil Muito fácil intermediario intermediario Muito 
complexo 
Scale <1-5 MWth <20 Mth 10-100 Mth 20-100 Mth > 100 MWth 
(feedstock) 
Materia-prima 
Muito 
crítico 
critico Pouco crítico Pouco crítico Partículas finas 
ou líquido 
Baseado em: David Harris / CSIRO 
Fixed Bed and Fluidized Bed 
 (Bubbling Bed) (Fixed Bed-up draft) (Fixed bed- down draft) 
Diferentes tipos de biomassa - Sugar cane Bagasse, 
Pellets, wood, ... 
IPT History - Gasification (30 projets) 
REF: Ademar Ushida 
1982 1970 1985 2000 
Beginig 
Biomass 
Gasification 
(Cyclonic Gasifiers) 
2010 
Small Biomass Gasifiers for 20 kWe 2000 (5kWe): Gasifier for 
electric energy generation 
(Entrained Flow) 
http://www.youtube.com/watch?v=hvAMm4a8u7Q&feature=player_embedded
Two different types of gasifier technologies are 
usually considered for biomass 
(For liquid and powder) 
 
 
 
 
(For powder) 
Entrained Flow Fluidized Bed 
(m
o
d
e
lo
 S
ie
m
e
n
s
) 
Entrained flow 
consist of a vertically 
placed cylindrical reactor 
at the top of which fuel 
(bio-oil or bio-coal) and a 
gasifying agent (air or O2) 
are inserted through a 
nozzle, usually in a 
swirling flow, forming a 
flame that carries either 
particles or droplets 
through the reactor as they 
undergo incomplete 
combustion, i.e. 
gasification. 
Fluidized bed 
consists of a reactor 
filled with a fluidizing 
agent (usually sand) 
that is fluidized 
(mixed and made 
apparently less dense 
by the passing of 
bubbles through it) 
with the insertion of 
a gas (H2O or air). 
http://en.wikipedia.org/wiki/File:Fluidized_Bed_Reactor_Graphic.svg
150 kt/year 1500 kt/year 
 
Adapted from TPS 
Zhang (2010) 
(Zhang, 2010) that entrained flow gasifiers have great scalability, making them an excellent 
option for lowering investment cost by using bagasse from several suppliers in a high-scale 
plant, as opposed to fluidized bed technology. For that reason, IPT has decided to focus on 
entrained flow gasification. 
Reações de Gaseificação 
Dependendo da organização do processo de gaseificação (movimento relativo da biomassa e do gás de gaseificação), estas etapas 
transcorrem em diferentes regiões do gaseificador, ou em todo seu volume de maneira simultânea. 
A seguir apresentam-se as reações químicas mais importantes de cada uma destas etapas: 
 
 I. Pirólise 
 Biomassa + Calor Coque + Gases + Alcatrão + Condensáveis (1) 
 
 II. Oxidação do Carbono 
 C + 1⁄2 O2 = CO (2) C + O2 = CO2 (3) 
 
 III. Gaseificação 
 - Reações Heterogêneas 
 C + CO2 = 2 CO(Reação de Bouduard) (4) 
C + H2O = CO + H2 (Reação de gás de água ou reação carbono vapor) (5) 
 C + 2 H2 = CH4 (Reação de formação de metano) (6) 
 
 - Reações Homogêneas 
CO + H2O = CO2 + H2 (Reação de “deslocamento” da água) (7) 
 CH4 +H2O=CO+3H2 (8) 
 
 IV. Craqueamento do Alcatrão 
 Alcatrão + Vapor + Calor = CO + CO2 + CH2 (9) 
 
 V. Oxidação Parcial dos Produtos da Pirólise 
 (CO+H2 +CH4)+O2 =CO2 +H2 (10) 
 
A adição de vapor de água ao ar de gaseificação, na 
prática até aproximadamente uns 30%, aumenta o 
conteúdo de hidrogênio e de monóxido de carbono 
no gás obtido, como mostram as equações 5,7 e 8. 
O aumento da pressão favorece a formação de 
metano, segundo a equação 6, por causa da 
diminuição do número de moles ao se passar 
dos reagentes aos produtos. 
APPLICATION 
44 
State of the Gasification Industry – 
the Updated Worldwide Gasification Database 
Gasification Technologies Conference 
Colorado Springs, 16th October, 2013 
http://www.gasification.org/database1/search.aspx 
 
What’s New in 2013 Database - 
Content 
• Content 
– Total 747 projects, 1741 gasifiers 
 
• Main additions 
– Chinese project reflecting many new 
plants and processes 
– Biomass and waste plants in Europe 
and USA 
– Update status of existing entries 
http://www.gasification.org/database1/search.aspx
http://www.gasification.org/database1/search.aspx
http://www.gasification.org/database1/search.aspx
http://www.gasification.org/database1/search.aspx
Gaseificação 
Usina Rio Pardo 
Usina Iracema Gaseificador Biomassa KIT 
Corte mecanizado Raízen 
Diesel verde 
Etanol de segunda geração 
colheita 
M
o
agem
 
Gaseificação 
GTL 
Chemical pathways to synthetic products 
Biomass Syngas
Fischer-
Tropsch-
synthesis
 Propylene
 Ethylene
 Gasoline
Acrylic acid
 Oxygenates
…….
 Gases
 LPG
 Naphta
 Cerosene
 Diesel
……….
Dimethyl-
ether DME
Refining
H2 + CO
CH3OH
„C6H9O4
“
Direct use 
(Fuel cell, PME 
production, …
 Hydrogen
 Methane (SNG)
CH3-(CH2 )n-CH3
Methanol-
synthesis
Biomass Gasification 
 
 
Some advantages 
 
•Almost any biomass 
can be used to produce 
Syngas with small 
adaptations required 
 
 
•From Syngas many 
products can be otained 
(some need 
improvement) 
 
 
•Use of Syngas as source 
of some products is 
consolidated using coal 
“Lego” 
Unidade de Gaseificação - 2014 
 
EUA 
 
Europa 
 
CHINA 
 
 
 
 
Gasification Process 
BIOSYNGAS PROJECTS 
58 
Drying 
Torrefaction 
Pyrolisis 
Gasification SHIFT 
Gas 
cleaning 
P = 40 bar 
T = 1500 °C 
2.5 MW 
CO2 
Syngas 
2:1 H2 +CO 
Raw biomass 
~1 ton/h) 
Process description – 2MWth 
Bio-oil 
~0,6 ton/h) 
Torrefied 
~0,6 ton/h) 
~0,3Kg/h 
Block diagram 
Gasifier thermal power 
 Large scale commercial plants for 
petrochemical waste and coal 
gasification. 
 Quality of generated gases: no tar and 
methane due to high operating 
temperatures (greater than 1500 oC) 
and high CO and H2 levels. 
 The ability to operate with liquid flows 
or low granulometry particulate 
materials (bio-oil and torrified grounded 
biomass). 
 High pressures and high power. 
 The ability to remove molten ashes 
 High conversion of Biomass 
 
Why choose entrained flowgasification: 
 
 CAPEX: 40 MUSD 
 Capacity: 1 t biomass/h 40bar – 1500 oC 
 Preferentially “flex”: 
 able to gasify powder or bio-oil 
 Oxygen blown 
 heat recovery 
 Gas composition targets: 
 80% (CO+H2) 
 < 0,5% CH4 
 <1g tarr / Nm3 
 < 0,5%N2 
 
 
 
Pilot Plant 
Operating Pressure 
 Gasification pressure 
 5 bar 50 bar 
Feed gas pumping 35 450 kg/h 0.03 MW 0.09 MW 
Oxygen compression 21 120 m²/h 2.85 MW 4.97 MW 
Syngas compression 100 000 Nm³/h 19.70 MW 0 MW 
Total 22.58 MW 5.06 MW 
Table 1 – Comparison of energy requirement for compression – adapted from Higman, 2008 
 Work at high pressure or pressurize the syngas? 
 Desired syngas to production of paraffin, olefins and fuels. 
 Those products can be produced in some kind of process such as Fischer-Tropsch. 
 This kind of process operate at high pressure 
Higmann, C.; Burgt, M. “Gasification”, 2nd edition, 2007 
Operating Temperature 
64 
 Work at high temperatures corrobates with non-formation of hydrocarbons and tar (>1300 K). 
 We need to avoid operating between softening and fusion temperature of ash. 
 The fusion temperature of ash from biomass can be greater than 1700 K. 
 We have chosen to operate at temperatures between 1550 and 1900 K. 
 The main design temperature is 1773 K. 
 Problems with sand contamination can elevate the temperature of biomass. 
 Preferred to operate at low temperatures due highest syngas mass yield. 
 
Drying 
Torrefaction 
Pyrolisis 
Gasification 
SHIFT Gas cleaning 
Syngas 
Pre-treatment 
Bagasse is to be received with a high moisture content of around 50% in weight. Its 
feeding rate to the plant is determined to ensure that, after mass losses in pre-
treatment, the fuel feeding rate into the gasifier will produce an operating power of 
2.5 MW given each fuel’s higher heating value. 
 This calculation is described in Equation 1. 
𝑀𝑑𝑟𝑦 𝑏𝑎𝑔𝑎𝑠𝑠𝑒 =
2.5 𝑀𝑊
𝐻𝐻𝑉𝑏𝑖𝑜−𝑓𝑢𝑒𝑙
∙
1
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑝𝑟𝑒−𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
 (1) 
 
66 
Taking into account the information gathered with pre-treatment plant suppliers, a 
mass conversion efficiency of 70 and 80% was adopted for pyrolysis and torrefaction, 
respectively. 
 
This yields the following feeding rates: 
 Moist bagasse for pyrolysis = 1130 kg/h 
 Moist bagasse for torrefaction = 1110 kg/h 
Pyrolisis x Torrefaction 
Bio-oil Bio-coal 
Yield 40-75% 80-90% 
HHV (MJ/kg) 22,8 20,3 
P
ro
x
im
a
te
 
Moisture 8-9 4-5 
Volatile 91,8 76,3 
Fixed C 7,8 22,4 
U
lt
im
a
te
 
Ash 0,45 1,3 
C 59,9 50,0 
H 6,2 5,66 
N <0,3 <0,3 
S <0,1 <0,1 
O 32,9 42,6 
Gasifier 
Bagasse 
Drying 
Torrefaction 
Pyrolisis 
Pré-tratamento 
Gasifier type 
 Downward entrained flow 
 2.5 MW 
 Pure O2 
 Pressure – 40 bar 
 Temperature – 1300 – 1700 ºC (above ash 
melting point) 
 Residence time – few seconds 
Fuel and 
atomizing 
impinging jets 
REACTIONS 
R1 combustion C + O2 → CO2 
R2 hydrogenation C + 2H2 → CH4 
R3 H2O - gasification C + H2O → CO2 + H2 
R4 CO2 – gasification C + CO2 → 2CO 
 
Further reactions are linear combinations 
 
R5 Shift reaction CO + H2O → CO2 + H2 (R4 - R3) 
R6 C-partial oxidadion 2C + O2 → 2CO (R1+R4) 
R7 CO oxidation 2CO + O2 → 2CO2 (R1- R4) 
R8 H2 combustion 2H2 + O2 → 2H2O (R1+R4–2R3) 
Gasifier Geometry 
0.1m 
0.03m 
15º 
60º 
7mm 
5mm 
3mm 
1.25m 
0.25m 
60º 
0.18m 
z 
Axissimetric with swirl 
ρ 
Lengthwise view 
point of view 
cut plane 
There can be tangential velocity 
greater than zero. 
However, analyzed variables do not 
vary with angle 
because of cylindrical symmetry. 
Vtan 
Vtan 
Vtan 
Twall= 1700 K 
Tcenter = 3000 K 
See WASTEENG: JOÃO RICARDO FILIPINI DA SILVEIRA, MSc 
Results 
 
H2 H2O 
CO CO2 
Exit condition FLUENT (kinecits) HYSYS (ch. equilibrium) 
H2 (mass fraction) 2.0 1.8 
H2O (mass fraction) 12.9 14.6 
CO2 (mass fraction) 21.3 22.8 
CO (mass fraction) 63.8 60.7 
Temperature (K) 1666 1773 
0%
10%
20%
30%
40%
50%
60%
70%
0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40
H2
H2O
O2
CO
CO2
Component mass fraction along gasifier length 
 Mass fraction 
Length (m) 
H2 
H2O 
O2 
CO 
CO2 
Results 
 
Characteristic sizes 
*Future Energy na International Freiberg Conference on IGCC and XtL Technologies - June 16-18 - 2005 
Future Energy * Spain Several** IPT 
Power (mcomb* 
HHV) MW 200 500 1000 1000 
Not 
informed 2.5 
diameter m 2.00 2.90 3.65 3.80 1.67 0.5 
Height m 3.50 5.25 6.70 13.00 4.87 1.25 
Volume m3 11.00 34.68 70.11 147.43 12.7 0.28 
Volumetric rate of 
convertion MW/m3 18.19 14.42 14.26 6.78 
Not 
informed 9.0 
Height/diameter 1.75 1.81 1.84 3.42 2.9 2.50 
**Basu Prabir. 2010 (Tennessee Eastman. Shandong Fertilizer. Shangahai Chemical. Harbei Fertilizer) 
Shift 
H2/CO = 2 
𝐶𝑂 + 𝐻2𝑂 𝐶𝑂2 + 𝐻2 
Gas cleaning 
 
Particulate mater - Gas Filter 
Gas is heated to 350C (shift temperature) and filtered. 
Particle charge: 200g/h or 2,53 g/m3, 
dp=20 mm. 
 
Other possibilities 
Scrubber 
Eletrostatic precipitator 
CO2 absorption 
•Columns: f=1 ft x h=2,5 m of IMTP sell 
•Flash regenerates solvent for absorption; 
•Flash from the first column is made in two steps, 7,5 bar 
and atmospheric, to generate a flow of 200 kg/h of CO2 to 
be compressed and feed biocoal in the reactor 
After drying gas temperature 
is lowered to 15C 
First absorption of acidic gas 
4000kg/h of methanol at 15C 
reduces CO2 content to <5% 
vol. 
Second absorption, 5000kg/h 
of methanol at -10 C reduces 
CO2 content to <2% vol. 
7kw 
14 kw 
Production/ output 
The syngas (H2:CO in 2:1 molar proportion) 
production under standard operating conditions 
averages around 265 kg/h with less than 2% 
impurities. 
 
Operation regime 
 Due to the very high temperature and pressure inside the 
gasifier, the unit should operate 24 hours a day seven days a 
week, to avoid start-up and shut-down to preserve the 
gasifier refractory as well as other equipment parts. 
 
 Plant start-up time is estimated at two days. This period 
should be enough for controlled heating of all equipment. 
The gasifier in particular must be heated at a rate of, at most, 
50 ºC/h avoiding refractory faults. Plant shut-down is also 
estimated at two days. 
 
Energy efficiency - Pilot plant (2MWth) 
Pyrolysis and Torrefaction Route 
Grassmann diagram 
for energy flow for bio-coal 
Bagasse 
67% 
Natural Gas 
29% 
Electrical 
Energy 
4% 
Supplied energy 
contribution for bio-coal. 
Supplied energy 
contribution for bio-oil. 
 
 
 
Grassmann diagram 
for energy flow for bio-oil. 
 
 
Supplied energy contribution for bio-coal 
Bagasse 
89% 
Natural 
Gas 
3% 
Electrical 
Energy 
8% 
Supplied energy contriution for bio-oil 
Energy efficiency - Industrial plant (648MWth) 
Pyrolysis and Torrefaction Route 
Grassmann diagram 
for energy flow for bio-coal 
Grassmann diagram 
for energy flow for bio-oil. 
 
 
Industrial plant 
On the other hand, in the industrial plant, maximum energy efficiency is paramount to allow positive financial 
results. Also, given the magnitude of the mass flow rate, different solutions may be adopted to minimise 
energy loss. The following assumptions were made with regards to energy recovery in the industrial plant: 
 
 Energy integration optimization; 
 Energy recovery from the gasifier is enough to generate 70% of the necessary vapor for the entire plant; 
 The heat from the shift reactor plus flue gas from pyrolysis and torrefaction is enough to dry the bagasse; 
 The syngas fraction used to clean the filter, rather than go to the flare is burned to reduce the gas 
consumption in torrefaction. 
 
 800 000 tonnes/year 
 Bio-coal Bio-oil 
Bagasse input (50% moisture) [kg/h] 91 300 91 300 
Plant power [MWth] 200 200 
Syngas output [kg/h] 22 000 22 000 
Electrical energy requirement [kW] 16 600 21 800 
NG mass flow[kg/h] 1430 640 
Considering the processing of 800 000 tonnes/year of moist bagasse and using the afore-
mentioned assumptions, the data in Table 2 was calculated: 
 
Technical and Economic Feasibility study for 648MWth 
 648 MWth gasification plant producing green diesel using Fischer-Tropsch process. 
 The diesel produced by the Fischer-Tropsch process as green diesel in order to distinguish it from well-known biodiesel. 
 
 This study is based on the projections of the cost of bagasse and the price of diesel oil in Brazil 
between 2020 and 2030. 
 This diesel price is estimated based on a study by the California Energy Commission (CEC) (CEC, 
2009). 
 
 Scenarios for 2020 - 2030 
Scenario 
Bagasse cost 
(US$/ton) 
Discount 
rate 
Diesel price 
2020-2030 
(US$/litro) 
TCI 
(M US$2010) NPV (M US$) ROI 
Optimist 30 0,08 2,1 549 786 286% 
Probable 50 0,10 1,8 689 334 114% 
Pessimist 70 0,12 1,5 917 -2 -1% 
NPV = Net present Value 
TCI = Total Capital Investment 
ROI = Return of Investment 
ROI requirement of 25% for investments in petrochemical plant 
Plant 4Mt sugar cane 
Produce 0,8 M t/year dry bagasse 
648MWth – efficient 55% 
IPT Team 
13 IPT Center – 10 Center envolve on the Gasification Project 
 
 CTPP - Center for Processes and Products Technology (Torrefaction, Modeling, Gasification and Plant 
specifications) 
 CT-FLORESTA - Center for Forest Resource Technology (Pyrolysis) 
 CMQ - Center for Metrology in Chemistry (Analysis) 
 CME - Center for Mechanical and Electrical Metrology (controls) 
 CETAE – Center for Environmental and Energy Technologies (Enviroments law) 
 CINTEQ - Center for Integrity of Structures and Equipment (Construction) 
 CIAM -Center for Information Technology, Automation and Mobility (controls) 
 CMF -Center for Fluid Metrology (bagasse transport) 
 CETAC - Center for Technology of the Built Environment (Construction) 
 CT-OBRAS - Center for Infrastructure Construction Technology (Construction) 
 
 Total researchers in the projects: 47 Specialist 
 
Conclusions 
 IPT has completed the conceptual design of the pilot plant and has estimated the 
economic feasibility and energetic efficiency of the industrial plant. The total 
energy efficiency in the industrial plant is estimated at 55%, and the ROI should be 
around 25% if oil prices are close to US$81/barrel between 2020 and 2030. 
Sugarcane production projections for that period show that there will be enough 
bagasse for gasification. 
 Key technical aspects include maintaining the slagging condition inside the gasifier, 
maximizing pre-processing efficiency and achieving a low enough impurity content 
before entering the shift reactor. 
 There is no clear indication of the best route for pre-treatment, so the gasification 
pilot plant to be built in Piracicaba is unique in the sense that it will allow for the 
testing of both possibilities: pyrolysis and torrefaction. 
 The project predicts the construction of a full scale 648 MW industrial plant if, 
after testing in the pilot plant, technical-economic viability is verified. 
 
88 
What IPT can do for you! 
 Support for thermal e biochemical route 
 Biomass characterization and chemical analysis 
 Conceptual enginering project 
 Gas cleaning tecnologies solutions 
 Biomass milling solutions 
 Pirolysis and torrefaction process support 
 Mass and energy balance development 
 Process simulation and gasification modeling 
 Technical and Economic Feasibility study 
 
Support, development and analysis 
Wellcome to IPT! 
Instituto de Pesquisas Tecnológicas 
Laboratório de Engenharia Térmica 
www.ipt.br (centros tecnológico/CTMNE/LET) 
+55 (11) 3767-4667 / 4283 / 4793 / 4798 
 
Contact: 
Gerhard Ett - gett@ipt.br 
+ 55 (11) 3767-4667 
 
 
• THANK YOU - WasteEng Commitee 
 THANK YOU - Ange Nzihou 
 Thank You - RIO 
 
 
http://www.ipt.br/

Continue navegando