Buscar

Matemática regular 8º ano

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 44 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Matemática 
 
 Aluno 
 
Caderno de Atividades 
Pedagógicas de 
Aprendizagem 
Autorregulada – 04 
8° Ano | 4° Bimestre 
 
Disciplina Curso Bimestre Ano 
Matemática Ensino Fundamental 4° 8° 
Habilidades Associadas 
1. Associar os produtos notáveis às suas representações geométricas. 
2. Fatorar uma expressão algébrica relacionando-a com a expressão dos produtos notáveis. 
3. Compreender as medidas de tendência central: média, moda, mediana. 
4. Resolver problemas que envolvam as medidas de tendência central. 
5. Ler e interpretar dados em tabelas e gráficos de barras e de setores. 
6. Construir gráficos de barras e de setores, a partir de dados fornecidos em tabelas. 
 
2 
 
 
A Secretaria de Estado de Educação elaborou o presente material com o intuito de estimular o 
envolvimento do estudante com situações concretas e contextualizadas de pesquisa, aprendizagem 
colaborativa e construções coletivas entre os próprios estudantes e respectivos tutores – docentes 
preparados para incentivar o desenvolvimento da autonomia do alunado. 
A proposta de desenvolver atividades pedagógicas de aprendizagem autorregulada é mais uma 
estratégia pedagógica para se contribuir para a formação de cidadãos do século XXI, capazes de explorar 
suas competências cognitivas e não cognitivas. Assim, estimula-se a busca do conhecimento de forma 
autônoma, por meio dos diversos recursos bibliográficos e tecnológicos, de modo a encontrar soluções 
para desafios da contemporaneidade, na vida pessoal e profissional. 
Estas atividades pedagógicas autorreguladas propiciam aos alunos o desenvolvimento das 
habilidades e competências nucleares previstas no currículo mínimo, por meio de atividades 
roteirizadas. Nesse contexto, o tutor será visto enquanto um mediador, um auxiliar. A aprendizagem é 
efetivada na medida em que cada aluno autorregula sua aprendizagem. 
Destarte, as atividades pedagógicas pautadas no princípio da autorregulação objetivam, 
também, equipar os alunos, ajudá-los a desenvolver o seu conjunto de ferramentas mentais, ajudando-o 
a tomar consciência dos processos e procedimentos de aprendizagem que ele pode colocar em prática. 
Ao desenvolver as suas capacidades de auto-observação e autoanálise, ele passa ater maior 
domínio daquilo que faz. Desse modo, partindo do que o aluno já domina, será possível contribuir para 
o desenvolvimento de suas potencialidades originais e, assim, dominar plenamente todas as 
ferramentas da autorregulação. 
Por meio desse processo de aprendizagem pautada no princípio da autorregulação, contribui-se 
para o desenvolvimento de habilidades e competências fundamentais para o aprender-a-aprender, o 
aprender-a-conhecer, o aprender-a-fazer, o aprender-a-conviver e o aprender-a-ser. 
 A elaboração destas atividades foi conduzida pela Diretoria de Articulação Curricular, da 
Superintendência Pedagógica desta SEEDUC, em conjunto com uma equipe de professores da rede 
estadual. Este documento encontra-se disponível em nosso site www.conexaoprofessor.rj.gov.br, a fim 
de que os professores de nossa rede também possam utilizá-lo como contribuição e complementação às 
suas aulas. 
Estamos à disposição através do e-mail curriculominimo@educacao.rj.gov.br para quaisquer 
esclarecimentos necessários e críticas construtivas que contribuam com a elaboração deste material. 
 
Secretaria de Estado de Educação 
 
 
Apresentação 
 
3 
Caro aluno, 
Neste caderno, você encontrará atividades diretamente relacionadas a algumas 
habilidades e competências do 4° Bimestre do Currículo Mínimo de Matemática do 8° 
ano do Ensino Fundamental. Estas atividades correspondem aos estudos durante o 
período de um mês. 
 A nossa proposta é que você, Aluno, desenvolva estas Atividades de forma 
autônoma, com o suporte pedagógico eventual de um professor, que mediará as trocas 
de conhecimentos, reflexões, dúvidas e questionamentos que venham a surgir no 
percurso. Esta é uma ótima oportunidade para você desenvolver a disciplina e 
independência indispensáveis ao sucesso na vida pessoal e profissional no mundo do 
conhecimento do século XXI. 
Neste caderno de atividades, vamos estudar sobre produtos notáveis e no 
campo da estatística, também conhecido como tratamento da informação, vamos 
estudar sobre as principais medidas de tendência central, a média aritmética, moda e 
mediana. Além disso, analisaremos dados distribuídos em tabelas e gráficos de barras e 
setores. 
Este documento apresenta 6 (seis) aulas. As aulas são compostas por uma 
explicação base, para que você seja capaz de compreender as principais ideias 
relacionadas às habilidades e competências principais do bimestre em questão, e 
atividades respectivas. Leia o texto e, em seguida, resolva as Atividades propostas. As 
Atividades são referentes a dois tempos de aulas. Para reforçar a aprendizagem, 
propõe-se, ainda, uma avaliação sobre o assunto. 
 
Um abraço e bom trabalho! 
Equipe de Elaboração. 
 
 
 
 
 
4 
 
 
 
 
 
 
 
 
 Introdução................................................................................................ 
 
03 
 Aula 1: Produtos notáveis .................................................................... 
 Aula 2: Produtos notáveis e suas representações geométricas .............. 
 Aula 3: Fatoração algébrica e os produtos notáveis .............................. 
 Aula 4: Média, moda e mediana ........................................................... 
 Aula 5: Problemas com medida de tendências central .......................... 
 Aula 6: Tabelas e gráficos de barras e setores ....................................... 
 Avaliação ............................................................................................ 
 Pesquisa .............................................................................................. 
05 
09 
15 
19 
25 
31 
38 
41 
 
 Referências ........................................................................................ 43 
 
 
 
Sumário 
 
 
5 
 
 
Caro aluno, vimos anteriormente como fazer operações com monômios e 
polinômios, e dentre essas, vimos como calcular o produto de polinômios, aplicando a 
propriedade distributiva da multiplicação. Nesta aula, vamos estudar alguns produtos 
que ocorrem frequentemente nos cálculos algébricos e que são chamados de produtos 
notáveis. Definindo com maior precisão, a palavra produto significa o resultado de 
uma multiplicação e notável quer dizer importante. Os produtos notáveis além de sua 
importância nos cálculos algébricos possuem também uma regularidade em seus 
resultados, que é o padrão. Por isso, convém estudar os produtos notáveis por 
apresentarem regularidades e assim podemos economizar muitos cálculos. 
 
1 – QUADRADO DA SOMA DE DOIS TERMOS: 
 
 Esse produto notável é resultante de uma soma de dois termos elevada ao 
quadrado, veja: 
 
�� � ��² � �� � �� ⋅ �� � �� � �² � �� � �� � �² 
 
Como �� � ��, temos: �� � ��² � �² � 2�� � �² 
 
 Podemos concluir que o quadrado da soma de dois termos obedece a uma 
regularidade e têm o seguinte padrão, observe o quadro a seguir: 
 
 
 
Aula 1: Produtos notáveis 
 
6 
EXEMPLO 1: 
a) (x + 1)2 = (x)2 + 2⋅(x)⋅(1) + (1)2 = x2 + 2x + 1 
b) (3y + 2)2 = (3y)2 + 2⋅(3y)⋅(2) + (2)2 = 9y2 + 12y + 4 
c) (3a2 + 2b3)2 = (3a2)2 + 2⋅(3a2)⋅( 2b3) + (2b3)2 = 9y4 + 12a2b3 + 4b6 
 
2 – QUADRADO DA DIFERENÇA DE DOIS TERMOS: 
 
 Esse produto notável é resultante de uma diferença de dois termos elevada ao 
quadrado. Nota-se que este produto notável é parecido com o estudado 
anteriormente, veja: 
 
�� 
 ��² � �� 
 �� ⋅ �� 
 �� � �² 
 �� 
 �� � �² � �² 
 2�� � �² 
 
 Assim, �� 
 ��² � �² 
 2�� � �² 
 
 Podemos concluir que a diferença da soma de dois termos obedece a uma 
regularidade e tem o seguinte padrão, observe o quadro abaixo: 
 
 
 
EXEMPLO2: 
a) (x - 4)2 = (x)2 - 2⋅(x)⋅(4) + (4)2 = x2 - 8x + 16 
b) (2y - 5)2 = (2y)2 - 2⋅(2y)⋅(5) + (5)2 = 4y2 - 20y + 25 
c) (m2 - 7p3)2 = (m2)2 - 2⋅(m2)⋅( 7p3) + (7p3)2 = m4 + 14m2p3 + 49p6 
 
 
 
 
7 
3 – PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS: 
 
 Podemos observar que o primeiro produto notável baseia-se em uma soma 
multiplicada por uma soma, vimos também, que no segundo, uma diferença 
multiplicada por uma diferença. O presente produto notável é uma soma de dois 
termos multiplicada pela diferença destes mesmos termos, veja: 
 
�� � �� ⋅ �� 
 �� � �² � �� 
 �� – �² � �² 
 �² 
 
 Assim, �� � �� ⋅ �� 
 �� � �² 
 �² 
 
 Podemos concluir que o produto da soma pela diferença de dois termos 
obedece a uma regularidade e têm o seguinte padrão, observe no quadro a seguir: 
 
 
 
EXEMPLO 3: 
a) (a - 4) (a + 4)= (a)2 - (4)2 = a2 - 16 
b) (3k - 8)2 = (3k)2 - (8)2 = 9k2 - 64 
c) (m2 - np3)2 = (m2)2 - (np3)2 = m4 - n2p6 
 
 Caro aluno, chegou a hora de praticar! Resolva as atividades a seguir para 
exercitar os conhecimentos que você aprendeu e em caso de dúvidas, retorne aos 
exemplos apresentados. 
 
 
8 
 
 
01. Desenvolva os seguintes quadrados abaixo: 
a) (x + y)2 
b) (c3 + 6)2 
c) (3m2 + 4n)2 
d) (7x2 + 2xy)2 
e) (ac3 + b2)2 
 
02. Desenvolva os seguintes quadrados abaixo: 
a) (x - y)2 
b) (2x2 - 3)2 
c) (3p2 - 2q)2 
d) (1 - 4r3)2 
e) (a2c3 - 2x2)2 
 
03. Calcule os seguintes produtos: 
a) (x + y)⋅(x - y) 
b) (m + 1)⋅(m - 1) 
c) (2 + 7a2)⋅(2 - 7a2) 
d) (a2b + c3)⋅(a2b - c3) 
e) (t - 6)⋅(t + 6) 
 
04. Efetue: 
a) (x + 3)2 + x2 - 7x 
b) (x + 1)2 + (x - 1)2 + (x + 1)⋅(x - 1) 
c) (3a - 1)2 + (a - 2)2 
d) (m + 1)⋅(m - 1) - (m - 1)2 
e) (p + 5)2 - (p - 5)2 
 
 
 
Atividade 1 
 
9 
 
 
 Caro aluno, nesta presente aula vamos estudar produtos notáveis associados à 
geometria. Você sabia que esses produtos representam áreas de figuras planas? É 
através destas representações que iremos trabalhar esses produtos. 
 Vamos à aula! 
 
1 – QUADRADO DA SOMA DE DOIS TERMOS: 
 
 Considere um quadrado de lado a + b, conforme a figura abaixo: 
 
 Como a área de um quadrado de lado l é l 2, e este quadrado tem lado (a+b) então 
a área é (a + b)2. 
 Vamos separar as quatro partes em que o quadrado está dividido e indicar na 
região interior de cada parte a expressão algébrica que representa sua respectiva área. 
 
 Observe que ao somarmos as áreas coloridas, teremos a2 + 2⋅a⋅b + b2. 
 
Aula 2: Produtos notáveis e suas representações geométricas 
 
10 
 Logo, (a + b)2 = a2 + 2ab + b2 
 Assim, podemos afirmar, geometricamente, que calcular (a + b)2 é o mesmo que 
calcular a área de uma região quadrada de lado (a + b). 
 
2 – QUADRADO DA DIFERENÇA DE DOIS TERMOS: 
 
 Vamos considerar a figura abaixo: 
 
 Através dela, vamos conhecer a expressão que representa a área do quadrado 
rosa cujo lado mede a – b e, portanto, com área (a – b)2. 
 Separando as quatro partes em que o quadrado está dividido e escrevendo no 
interior de cada a expressão respectiva que representa a área, temos: 
 
 Observe que a área do quadrado rosa é igual a área do quadrado de lado a, menos 
a soma das duas áreas dos retângulos verdes com a área do quadrado laranja, cujo lado 
mede b , isto é: 
 (a – b)2 = a2 – [2⋅b⋅(a – b) + b2] 
 (a – b)2 = a2 – [2ab – 2b2 + b2] 
 
11 
 (a – b)2 = a2 – [2ab – b2] 
 (a – b)2 = a2 – 2ab + b2 
 Assim, podemos afirmar, geometricamente, que calcular (a – b)2 é o mesmo que 
calcular a área de uma região quadrada de lado (a - b). 
 
3 – PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS: 
 
 Considere a figura abaixo: 
 
 Agora vamos conhecer a expressão que representa a área do retângulo lilás. 
 Observe que a base desse retângulo mede a + b e sua altura, a –b. 
 Como a altura de retângulo é determinada pelo produto da base pela altura, a 
área do retângulo lilás é igual ao produto (a + b)⋅(a – b). 
 Observe também que a área do retângulo I é dada por a⋅(a – b) e a área do 
retângulo II, por b⋅(a – b). 
 Assim, nota-se que a área do retângulo lilás é equivalente a soma das áreas de I e 
 (a + b)⋅(a – b) = a⋅(a – b) + b⋅(a – b) 
 (a + b)⋅(a – b) = a2 – ab + ab – b2 
 (a + b)⋅(a – b) = a2 – b2 
 
 Desta forma, geometricamente, equivale à área de uma região retangular de lados 
(a + b) e (a – b). 
 
 
12 
EXEMPLO 1: 
Determine o polinômio que representa a área do quadrado ABCD. 
 
Resolução: 
Desenvolvendo (x + 5)
2
 = (x)
2
 + 2(x)(5) + (5)
2
 = x
2
 + 10x + 25 
Logo, o polinômio procurado que representa a área do quadrado é x
2
 + 10x + 25. 
 
EXEMPLO 2: 
Com base na figura, determine o polinômio que representa a área do quadrado azul. 
 
Resolução: 
Para determinar a área do quadrado azul, basta fazer o seguinte desenvolvimento: 
(a - b)
2
 = (a
2
 + b
2
) - 2ab = a
2
 - 2ab + b
2
 
Logo, o polinômio procurado que representa a área do quadrado azul é a
2
 - 2ab + b
2
. 
 
 
13 
EXEMPLO 3: 
Calcule a área da figura abaixo: 
 
Resolução: 
Para obter a área da figura deve-se efetuar (4)
2
 - (1)
2
 = 16 - 1 = 15 
Assim, a área do polígono é 15m
2
. 
 
 Caro aluno chegou a hora de praticar! Resolva as atividades a seguir para 
exercitar os conhecimentos que você aprendeu e em caso de dúvidas, retorne aos 
exemplos apresentados. 
 
 
 
01. Um quadrado de lado com medida igual a x cm teve seus lados aumentados em 2 
cm. 
 
a) Qual expressão algébrica representa a área desse quadrado aumentado, em 
centímetros quadrados? 
 
Atividade 2 
 
14 
b) Qual expressão algébrica representa o aumento da área desse quadrado? 
 
02. A sentença (x + 30)⋅(x - 30) expressa a área de um retângulo de 700 m2. Qual o 
valor de x? 
 
 
 
 
 
 
03. Escreva as expressões algébricas que representam o perímetro e a área da figura. 
 
 
 
 
 
 
 
 
04. Calcule o valor de (x - y)2 sabendo que x2 + y2 = 65 e xy = 28. 
 
 
 
 
 
 
 
 
15 
 
 
 Caro aluno, nesta aula vamos estudar sobre fatoração. Inicialmente fatorar 
significa transformar em produto, assim fatorar um polinômio significa escrever esse 
polinômio como uma multiplicação de polinômios. 
 
1 – FATOR COMUM: 
 
 Quando os termos de um polinômio possuem um fator comum, podemos 
colocá-lo em evidência e obter uma forma fatorada do polinômio. 
 
EXEMPLO 1: 
a) 3a + 3b = 3(a + b) 
b) 3 + 9x - 12y = 3⋅1 + 3⋅3x - 3⋅4y =3(1 + 3x - 4y) 
c) 8x3 - 6x2 + 2x = 2⋅4x3 - 2⋅3x2 + 2x = 2(4x3 - 3x2 + x) 
 
2 – FATORAÇÃO POR AGRUPAMENTO: 
 
 Algumas fatorações são um pouco mais complexas, por exemplo fatorar alguns 
polinômios onde não há fatores comuns em todos os seus termos. Neste caso, 
geralmente, é possível separá-los em grupos de tal forma que em cada grupo exista 
um fator comum. Assim, fatorando cada grupo, observamos que eles apresentam um 
novo fator comum, que ao ser colocado em evidência, completa-se a fatoração. 
 
EXEMPLO 2: 
a) ax + ay + bx + by + cx + cy = a(x + y) + b(x + y) + c(x + y) = (x + y)(a + b + c) 
b) 2x2 - 4x + 3xy - 6y = 2x(x - 2) + 3y(x - 2) = (x - 2)(2x + 3y) 
c) p3 - 5p2 + 4p - 20 = p2(p - 5) + 4(p - 5) = (p - 5) (p2 - 4) 
 
 
 
Aula 3: Fatoração algébrica 
 
16 
3 – FATORAÇÃO DA DIFERENÇA DE DOIS QUADRADOS: 
 
 A forma fatorada de uma diferença de dois quadrados é o produto da soma 
pela diferença das bases deles na ordem dada, isto é: 
 
a2 - b2 = (a + b)(a - b) 
 
EXEMPLO 3: 
a) x2 - 25 = x2 - 52 = (x + 5)(x - 5) 
b) 4a2 - 9 = (2a)2 - (3)2 = (2a + 3)(2a - 3) 
c) a6 - m2n4 = (a3)2 - (mn2)2 = (a3 + mn2) (a3 - mn2) 
 
4 – FATORAÇÃO DO TRINÔMIO QUADRADO PERFEITO: 
 
 O polinômio a2 + 2ab + b2 é denominado trinômio quadrado perfeito, pois tem 
três termos (monômios) e é um quadrado perfeito, pois é igual ao quadrado do 
binômio (a + b), isto é: 
a2 + 2ab + b2 = (a + b)2 
 
 O polinômio a2 - 2ab + b2 também é um trinômio quadrado perfeito, pois é 
igual ao quadrado do binômio(a - b), isto é: 
a2 - 2ab + b2 = (a - b)2 
EXEMPLO 4: 
a) x2 + 6x + 9 = (x + 3)2 
 
 2x 9 
 
 2 ⋅ x 3 = 6x 
 
b) 9m2 - 12m + 4 = (x + 3)2 
 
 2m9 4 
 
 2 3m ⋅ 2 = 12x 
 
17 
 
 
 
 
 
 
 
 
 
Agora chegou o momento mais importante. Faça as atividades abaixo e em 
caso de dúvidas, consulte novamente os tópicos da aula. Bom estudo! 
 
 
 
01. Fatore as expressões: 
 
a) am - 4ac 
b) m3 + 7m2 
c) abc - aabd - abg 
d) 9ax + 12ay - 15 az 
e) ab + ac + 10b + 10c 
f) xy + 2x + 5y + 10 
g) m4 +7m3 - 6m - 42 
h) ax - ay + bx - by + cx - cy 
 
02. Fatore: 
 
a) c2 - 81 
b) 36 - 9x² 
c) a²b³ 144 
 
Atividade 3 
Observe: 
1º - Achar a raiz quadrada dos termos quadrados perfeitos. 
2º - O terceiro termo deve ser igual ao dobro do produto das 
bases. 
3º - O sinal deste termo deverá ser mantido na forma 
fatorada, isto é, (a + b)2 ou (a - b)2. 
 
18 
d) 64x² - 25 
 
03. Calcule o valor de: 
 
a) 300² - 299² 
b) 2013² - 2012² 
04. Fatore: 
 
a) a² + 4a + 4 
b) m² + 12m + 36 
c) 9x² + 6xy + y² 
d) 64m² - 48m + 9 
e) 4x² - 20x + 25 
f) 121t² + 22t + 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19 
 
 
 Caro aluno, nesta aula vamos estudar sobre as principais medidas de tendência 
central, que são a média, moda e mediana. Creio que você já está familiarizado com a 
média aritmética que é muito utilizada na maioria das instituições de ensino para 
saber a média de notas de um estudante. As outras medidas você vão entender nesta 
aula. Então, vamos em frente! 
 
1 – MÉDIA ARITMÉTICA SIMPLES: 
 
 A média aritmética é a mais conhecida das medidas de tendência central. Para 
calcular a média aritmética simples de uma distribuição de valores basta somá-los e 
dividir tal soma pela quantidade de valores. Vamos ver dois exemplos: 
 
EXEMPLO 1: 
Em uma prova de Matemática, cinco alunos tiraram as seguintes notas: 5,0; 4,5; 7,5; 
8,0 e 6,0. Vamos calcular a média aritmética destas notas. Para isso, vamos somar os 
cinco valores e dividir a soma encontrada por cinco: 
 
5,0 � 4,5 � 7,0 � 8,0 � 5,5
5
�
30,0
5
� 6,0 
 
Logo a média destes alunos na prova de Matemática foi de 6,0 pontos. 
 
EXEMPLO 2: 
As alturas dos seis jogadores de volêi de um time são dadas em centímetros por 146, 
150, 155 , 156, 158 e 165. Vamos calcular a média aritmética da altura do time. Para 
isso, vamos somar o seis valores e dividir a soma encontrada por seis: 
 
 
Aula 4: Média, moda e mediana 
 
 
Portanto, a média de altura destes jogadores do time de volêi é de 155 
centímetros. 
 
 
 
 
 
 
2 – MÉDIA ARITMÉTICA PONDERADA:
 
 A média aritmética é do tipo ponderada quando os valores de uma distribuição 
possuem pesos. Vamos analisar mais dois exemplos:
 
EXEMPLO 3: 
Em um desfile de moda foram analisados três critérios, beleza, postura e simpatia. 
Para cada um destes quesitos foram atribuídos os seguintes pesos: beleza (peso 1), 
postura (peso 2) e simpatia (peso 3). Ana desfilou e as notas dela foram as seguintes:
Vamos calcular a média aritmética das notas de Ana.
 
Para isso, vamos multiplicar as notas pelos pesos, somar os resultados e dividir 
a soma obtida pela soma dos pesos:
 
 
Logo, a média aritmética das notas de Ana é 9,0.
 
Você percebeu que neste último exemplo a média aritmética 
encontrada era exatamente igual a um dos valores?
Mas não há problema algum nisso! E 
 
édia de altura destes jogadores do time de volêi é de 155 
MÉDIA ARITMÉTICA PONDERADA: 
édia aritmética é do tipo ponderada quando os valores de uma distribuição 
possuem pesos. Vamos analisar mais dois exemplos: 
desfile de moda foram analisados três critérios, beleza, postura e simpatia. 
Para cada um destes quesitos foram atribuídos os seguintes pesos: beleza (peso 1), 
postura (peso 2) e simpatia (peso 3). Ana desfilou e as notas dela foram as seguintes:
Beleza: 8,0 
Postura: 9,5 
Simpatia: 9,0 
édia aritmética das notas de Ana. 
Para isso, vamos multiplicar as notas pelos pesos, somar os resultados e dividir 
a soma obtida pela soma dos pesos: 
édia aritmética das notas de Ana é 9,0. 
Você percebeu que neste último exemplo a média aritmética 
encontrada era exatamente igual a um dos valores? 
Mas não há problema algum nisso! E é até comum que isto 
aconteça. 
20 
 
édia de altura destes jogadores do time de volêi é de 155 
édia aritmética é do tipo ponderada quando os valores de uma distribuição 
desfile de moda foram analisados três critérios, beleza, postura e simpatia. 
Para cada um destes quesitos foram atribuídos os seguintes pesos: beleza (peso 1), 
postura (peso 2) e simpatia (peso 3). Ana desfilou e as notas dela foram as seguintes: 
Para isso, vamos multiplicar as notas pelos pesos, somar os resultados e dividir 
 
 
EXEMPLO 4: 
Em uma escola, a média final é calculada da seguinte forma: Nota do 1º bimestre: Peso 
1, nota do 2º bimestre: Peso 2, nota do 3º bimestre: Peso 3 e nota do 4º bimestre: 
Peso 4. 
 João tirou as seguinte
segundo, terceiro e quarto bimestre 
aprovação é 6,0. Será que João passou?
 
Para saber a resposta, vamos calcular a média de João. Para isso, basta 
multipicar as notas pelos respectivos pesos, somar os resultados e dividir a soma 
encontrada pela soma dos pesos:
 
 
 Portanto a média de João é 6,0 e com este valor ele está aprovado.
 
 
 
 
 
 
3 – MODA: 
 
Esta é uma medida de tendência central bem fácil de 
próprio nome sugere, a moda de uma distribuição de valores é justamente o valor que 
mais apareceu, ou seja, aquele que tem maior frequência.
 
EXEMPLO 5: 
Vamos encontrar a moda da seguinte distribuição de valores:
 
1 
Ufa! Você viu que João passou apertado? Para isso não acontecer é 
a média final é calculada da seguinte forma: Nota do 1º bimestre: Peso 
1, nota do 2º bimestre: Peso 2, nota do 3º bimestre: Peso 3 e nota do 4º bimestre: 
João tirou as seguintes notas em Matemática: 5,0; 6,5; 4,0 e 7,5 no primeiro, 
segundo, terceiro e quarto bimestre respectivamente. Sabemos que a m
aprovação é 6,0. Será que João passou? 
Para saber a resposta, vamos calcular a média de João. Para isso, basta 
as notas pelos respectivos pesos, somar os resultados e dividir a soma 
encontrada pela soma dos pesos: 
Portanto a média de João é 6,0 e com este valor ele está aprovado.
Esta é uma medida de tendência central bem fácil de encontrar,
oda de uma distribuição de valores é justamente o valor que 
mais apareceu, ou seja, aquele que tem maior frequência. 
oda da seguinte distribuição de valores: 
1 – 4 – 3 – 2 – 1 – 5 – 1 – 8 – 11 – 9 
Ufa! Você viu que João passou apertado? Para isso não acontecer é 
melhor estudar com seriedade. E média aritmética simples e 
ponderada são bem fáceis. Vamos seguir nossos estudos! 
21 
a média final é calculada da seguinte forma: Nota do 1º bimestre: Peso 
1, nota do 2º bimestre: Peso 2, nota do 3º bimestre: Peso 3 e nota do 4º bimestre: 
s notas em Matemática: 5,0; 6,5; 4,0 e 7,5 no primeiro, 
respectivamente. Sabemos que a média para 
Para saber a resposta, vamos calcular a média de João. Para isso, basta 
as notas pelos respectivos pesos, somar os resultados e dividir a soma 
 
Portanto a média de João é 6,0 e com este valor ele está aprovado. 
encontrar, como o 
oda de uma distribuição de valores é justamente o valor que 
Ufa! Você viu que João passou apertado? Para isso não acontecer é 
melhor estudar com seriedade. E média aritmética simples e 
ponderada são bem fáceis. Vamos seguir nossos estudos! 
 
22 
 
 Note que são dez valores e o valor que tem maior frequência foi o 1, ele 
apareceu três vezes. Então a moda desta distribuição é o 1. 
 
Caso mais de um valor tenham a mesma frequência, a distribuição de valores 
pode ter mais de uma moda. Se forem dois valores, a distribuição é bimodal, se forem 
três valores é trimodal. Mas pode acontecer de não ter nenhum valor que se destaque 
na frequência,daí a distribuição não tem moda e a chamamos de amodal. 
 
4 – MEDIANA: 
 
A mediana de uma distribuição de frequência é o valor central da distribuição 
quando escrita em ordem crescente. Veja o exemplo: 
 
EXEMPLO 6: 
Vamos encontrar a mediana da seguinte distribuição de valores: 
 
4 – 6 – 9 – 10 – 4 – 3 – 7 – 2 – 8 – 12 – 2 
 
 Para encontrar a mediana é necessário escrever esta mesma distribuição em 
ordem crescente e verificar o valor central: 
 
2 – 2 – 3 – 4 – 4 – 6 – 7 – 8 – 9 – 10 – 12 
 
Perceba que são onze valores, logo o valor central é o sexto valor, assim a 
mediana desta distribuição é o 6. 
 
Caso a distribuição tenha uma quantidade par de valores, a mediana é a média 
aritmética dos dois valores centrais. Veja mais um exemplo: 
 
EXEMPLO 7: 
Vamos encontrar a mediana da seguinte distribuição de valores: 
 
 
 
Para encontrar a m
ordem crescente e verificar os valores centrais já que são seis valores:
 
 
Note que não há um valor central, são dois valores centrais, exatamente 7 e 
Logo, a mediana é a média arit
por . 
 
 
 
 
 
Chegou o momento de testar seus 
tenha alguma dúvida, volte aos tópicos da aula. Bom estudo! 
 
 
01. Lucas fez três provas neste bimestre, as notas de Lucas foram 4,0; 7,5 e 6,5. Qual foi 
a média aritmética de Lucas neste bimestre?
 
 
 
 
 
 
Veja que a m
exemplo não pertence à distribuição de valores. 
Mas nestes casos isso pode acontecer! 
9 – 11 – 7 – 8 – 4 – 6 
Para encontrar a mediana é necessário escrever esta mesma distribuição em 
ordem crescente e verificar os valores centrais já que são seis valores: 
4 – 6 – 7 – 8 – 9 – 11 
Note que não há um valor central, são dois valores centrais, exatamente 7 e 
ediana é a média aritmética dos valores centrais. Assim, a m
Chegou o momento de testar seus conhecimentos, vamos às atividades. Caso 
volte aos tópicos da aula. Bom estudo! 
Lucas fez três provas neste bimestre, as notas de Lucas foram 4,0; 7,5 e 6,5. Qual foi 
édia aritmética de Lucas neste bimestre? 
 
Atividade 4 
Veja que a mediana encontrada neste último 
exemplo não pertence à distribuição de valores. 
Mas nestes casos isso pode acontecer! 
23 
é necessário escrever esta mesma distribuição em 
 
Note que não há um valor central, são dois valores centrais, exatamente 7 e 8. 
dos valores centrais. Assim, a mediana é dada 
conhecimentos, vamos às atividades. Caso 
 
Lucas fez três provas neste bimestre, as notas de Lucas foram 4,0; 7,5 e 6,5. Qual foi 
 
24 
02. Em um concurso público a seleção se dá em três etapas com pesos 1, 2 e 3 
respectivamente. As notas de Maria foram 9,0; 7,0 e 8,0. Qual foi a média aritmética de 
Maria? 
 
 
 
03. Dada a distribuição de valores abaixo, encontre o que se pede: 
 
2 – 6 – 7 – 9 – 3 – 10 – 2 – 8 – 2 – 5 – 1 
 
a) A média aritmética; 
b) A moda; 
c) A mediana. 
 
 
 
 
 
 
04. Dada a distribuição de valores abaixo, encontre o que se pede: 
 
8 – 2 – 1 – 11 – 12 – 3 – 8 – 1 – 7 – 6 
 
a) A média aritmética; 
b) A moda; 
c) A mediana. 
 
 
 
 
 
 
 
25 
 
 
Querido aluno, agora que aprendemos sobre as principais medidas de 
tendência central, nesta aula vamos observar alguns problemas com média, moda e 
mediana. Estes problemas retratam bem a realidade cotidiana, fique atento! 
Vamos à aula! 
 
1 – PROBLEMAS COM MEDIDA DE TENDÊNCIA CENTRAL: 
 
EXEMPLO 1: 
Oito pessoas participaram de uma competição de tiro ao alvo com notas que variam 
de 0,0 a 10,0. As notas dos oito competidores foram: 
 
2,0 3,5 1,0 2,5 9,0 3,0 1,0 10,0 
 
 Vamos calcular a média aritmética das notas dos oito competidores. 
 
 Para calcular a Média aritmética, vamos somar os oito valores e dividir a soma 
encontrada por oito, observe: 
 
2,0 � 3,5 � 1,0 � 2,5 � 9,0 � 3,0 � 1,0 � 10,0
8
�
32,0
8
� 4,0 
 
 Logo a média aritmética das notas dos oito competidores é 4,0. 
 
EXEMPLO 2: 
Um time de futebol disputou sete jogos em um campeonato e marcou 2, 2, 1, 1, 4, 2 e 
2 gols nestas partidas. Vamos calcular a média de gols deste time neste campeonato. 
 
Para calcular a média aritmética, vamos somar os sete valores e dividir a soma 
encontrada por sete, observe: 
 
Aula 5: Problemas com medida de tendências central 
 
26 
 
2 � 2 � 1 � 1 � 4 � 2 � 2
7
�
14
7
� 2 
 
Logo a média aritmética de gols deste time de futebol, neste campeonato, é de 
2 gols por partida. 
 
EXEMPLO 3: 
Em uma empresa trabalhar quatro supervisores ganhando cada um R$ 1450,00, vinte 
auxiliares ganhando R$ 950,00 e quarenta operários ganhando R$ 500,00 por mês. 
Vamos calcular o salário médio de um trabalhador desta empresa. 
 
 Note que esta média procurada é do tipo ponderada. Onde a quantidade de 
trabalhadores em cada categoria é o peso. Para chegar a esta média basta multiplicar 
os valores pelos seus respectivos pesos, somar os resultados obtidos e dividir tal valor 
pela soma dos pesos. Observe: 
 
1450.4 � 950.20 � 500.40
4 � 20 � 40
�
5800 � 19000 � 20000
64
�
44800
64
� 700 
 
 Logo, o salário médio de um trabalhador desta empresa é de R$ 700,00. 
 
EXEMPLO 4: 
Em um curso de informática, são aplicadas três provas: a primeira com peso 2, a 
segunda com peso 3 e a terceira com peso 5. Vamos calcular a média aritmética de um 
aluno que tirou, respectivamente, notas 4,0; 5,0 e 6,0 nas três provas. 
 
 Para chegar a esta média devemos multiplicar as notas pelos seus respectivos 
pesos, somar os resultados obtidos e dividir tal valor pela soma dos pesos. Observe: 
 
4,0.2 � 5,0.3 � 6,0.5
2 � 3 � 5
�
8,0 � 15,0 � 30,0
10
�
53,0
10
� 5,3 
 
 
 Portanto, a média deste aluno é de 5,3.
 
 
 
 
 
 
 
EXEMPLO 5: 
Observe uma tabela sobre as notas de m
determinado colégio: 
 
Distribuição das notas da prova de Matemática
 
Vamos encontrar a moda e a m
 
Perceba que foram duas as notas que obtiveram a maior frequência. Ou seja, 
esta distribuição é bimodal. Assim, as m
obtiveram frequência igual a 8.
Agora, para encontrar a m
crescente e localizar o termo central. 
 
3–3–4–4–4–4–4–5–5–5–5–5
 
Note que cada nota aparece de acordo com o número de sua frequência e que, 
ao todo, temos trinta e sete notas na distribuição. Portanto o termo ce
nono. Logo, a mediana procurada é 6.
Até 
ponderada. Agora vamos ver m
édia deste aluno é de 5,3. 
e uma tabela sobre as notas de matemática obtidas em uma turma de um 
Distribuição das notas da prova de Matemática 
Nota Frequência 
3 2 
4 5 
5 7 
6 8 
7 8 
8 6 
9 1 
Vamos encontrar a moda e a mediana desta distribuição de notas.
Perceba que foram duas as notas que obtiveram a maior frequência. Ou seja, 
tribuição é bimodal. Assim, as modas desta distribuição são 6 e 7 que 
ncia igual a 8. 
para encontrar a mediana das notas devemos escrevê
crescente e localizar o termo central. 
5–5–5–6–6–6–6–6–6–6–6–7–7–7–7–7–7–7–7–
Note que cada nota aparece de acordo com o número de sua frequência e que, 
ao todo, temos trinta e sete notas na distribuição. Portanto o termo ce
ediana procurada é 6. 
Até agora vimos quatro exemplos de média seja simples ou 
ponderada. Agora vamos ver mais três exemplos para achar
moda e a mediana. Fique atento! 
27 
em uma turma de um 
 
ediana desta distribuição de notas. 
Perceba que foram duas as notas que obtiveram a maior frequência. Ou seja, 
o são 6 e 7 que 
ediana das notas devemos escrevê-las em ordem 
–8–8–8–8–8–8–9 
Note que cada nota aparece de acordo com o número de sua frequência e que, 
ao todo, temos trinta e sete notas na distribuição. Portanto o termo central é o décimo 
édia seja simples ou 
ais três exemplos para achar a 
 
28 
Uma outra maneira de encontrar esta mediana usando diretamente a tabela é 
somar as frequências e perceber que, sendo trinta e sete notas, a mediana seria a 
décima nona nota, então bastava verificar que nota a frequência chagaria a dezenove. 
 
EXEMPLO 6: 
Em um grupo de pessoas, as idades são:13 anos, 20 anos, 18 anos, 14 anos, 17 anos, 
16 anos e 19 anos. Vamos encontrar a moda e a mediana desta distribuição de idades. 
 
Observe que nesta distribuição, todas as idades têm a mesma frequência que é 
um. Assim, não há moda nesta distribuição que é chamada de amodal. 
Mas a mediana pode ser encontrada pondo a distribuição em ordem crescente: 
 
13 – 14 – 16 – 17 – 18 – 19 – 20 
 
Veja que o termo central é o quarto, já que temos sete termos na distribuição. 
Logo a mediana procurada é 17 anos. 
 
EXEMPLO 7: 
Em uma pesquisa anotaram o peso de seis pessoas obtendo o seguinte registro: 72Kg, 
84Kg, 76Kg, 98Kg, 72Kg e 90Kg. Vamos encontrar a moda e mediana desta distribuição. 
 
 Note que duas pessoas pesam 72Kg. Logo esta é a moda procurada. 
Para encontrar a mediana vamos escrever os pesos em ordem crescente e 
localizar os termos centrais, já que são seis valores: 
 
72 – 72 – 76 – 84 – 90 – 98 
 
 Agora, basta fazer a média aritmética destes termos, 
�����
�
�
���
�
� 80. 
Portanto, a mediana procurada é de 80Kg. 
 
 
29 
Hora de exercitar! Faça as atividades e caso encontre dificuldades, relembre a 
teoria e os exemplos. Bom estudo! 
 
 
 
01. As idades, em anos, dos seis jogadores titulares da seleção brasileira de voleibol 
são: 20 – 23 – 25 – 26 – 30 – 32. 
 
a) Qual é a idade média dos jogadores? 
b) Qual é a idade mediana dos jogadores? 
c) Qual é a moda (idade modal dos jogadores)? 
 
 
 
 
 
 
02. Estas são as alturas, em centímetros, de um grupo de dez crianças: 119, 120, 121, 
121, 121, 123, 124, 124, 125 e 128. 
 
a) Qual é a média de altura desse grupo? 
b) Qual é a mediana? 
c) Qual é a moda? 
 
 
 
 
 
 
 
 
 
Atividade 5 
 
30 
03. Marisa jogou um dado sete vezes e obteve as seguintes pontuações: 2, 6, 2, 5, 1, 3 
e 2. Determine: 
 
a) A média aritmética dos pontos obtidos. 
b) A mediana dos pontos obtidos. 
c) A moda dos pontos obtidos. 
 
 
 
 
 
 
 
 
 
04. João registrou, durante dez dias, o tempo gasto em minutos para ir de sua casa à 
escola: 15 min, 14 min, 18 min, 15 min, 14 min, 25 min, 16 min, 15 min, 15 min e 16 
min. Determine: 
 
a) A média aritmética do tempo. 
b) A mediana do tempo. 
c) A moda do tempo. 
 
 
 
 
 
 
 
 
 
 
 
 
31 
 
 
 Caro aluno, na última aula já apresentamos alguns exemplos de atividades com 
tabela, nesta aula vamos reforçar a interpretação de tabelas. Além disso, vamos 
trabalhar o estudo de dois tipos de gráficos, os de barra e os de setores. Saber 
interpretar estes gráficos são muito importantes no momento de ler uma notícia em 
um jornal ou interpretar os dados de uma pesquisa. Você está pronto para estudar? 
Então, vamos à aula! 
 
1 – TABELAS: 
 
 Uma maneira simples e eficiente de organizar dados sempre foi através de 
tabelas. Elas fazem parte do cotidiano e é muito importante que saibamos interpretá-
la bem. Vamos observar alguns exemplos: 
 
EXEMPLO 1: 
Em uma escola os alunos foram avaliados quanto ao seu desempenho e colocados nas 
seguintes categorias: Ruim, 12 alunos, Regular, 20 alunos, Bom, 28 alunos e Ótimo, 20 
alunos. 
 Você deve ter percebido que estas informação dadas em forma de texto não 
ficam bem organizadas. Agora vamos organilá-las em uma tabela: 
 
Desempenho dos alunos 
Categoria Quantidade de alunos 
Ruim 12 
Regular 20 
Bom 28 
Ótimo 20 
 
 Com certeza, a organização dos dados na tabela é melhor do que no texto. A 
informação fica mais fácil de ser encontrada. Por exemplo, se alguém perguntasse: 
 
Aula 6: Tabelas e gráficos de barras e setores 
 
32 
Quantos alunos Regulares temos nesta turma? A resposta é 20 e você acharia esta 
informação mais rápido na tabela do que no texto. 
 
2 – GRÁFICO DE BARRAS: 
 
 Um gráfico, de maneira geral, é mais uma maneira de organização de dados. 
Existem diferentes tipos de gráficos, um deles é o gráfico de barras. Que pode ser de 
dois tipos, o vertical e o horizontal. 
 No gráfico de barras vertical, como o próprio nome já diz, as barras ficam na 
posição vertical. Este gráfico também é conhecido como gráfico de colunas. Vamos ao 
exemplo: 
 
EXEMPLO 2: 
Vamos utilizar a mesma tabela do Exemplo 1 para enterder o que é um gráfico de 
barras. 
Desempenho dos alunos 
Categoria Quantidade de alunos 
Ruim 12 
Regular 20 
Bom 28 
Ótimo 20 
 
Pretendemos passar estas informações para um gráfico de barras verticais. 
Assim os dados “Categoria” ficaram no eixo horizontal e os dados “Quantidade de 
alunos” ficaram no eixo vertical. 
 
12
20
28
20
0
5
10
15
20
25
30
Ruim Regular Bom Ótimo
 
 Perceba que o eixo vertical foi graduado de 5 em 5 e o valor máximo dele foi 
até 30 pois a maior barra que temos foi até 28.
 Estes mesmos dados poderiam ser organizados em um gráfico de barras 
horizontais. Assim, os dados “Categoria” passam para o eixo ve
“Quantidade de alunos” passam para o eixo horizontal.
 
 
 
 
 
 
 
 
3 – GRÁFICO DE SETORES: 
 
 O gráfico de setores é um círculo com vários setores representando os dados. 
Por isso ele também é vulgarmente conhecido como o gráfico em forma de pizza, pois 
os setores se parecem com fatias de uma pizza. Este tipo de gráfico
para representar dados percentuais. Veja o exemplo:
 
 
 
0 5
Ruim
Regular
Bom
Ótimo
Você gostou dos dados organizados em gráfico de barras?
Desta maneira você pode fazer comparações entre os dados de 
forma muito mais rápida pois a visualização é imediata!
Perceba que o eixo vertical foi graduado de 5 em 5 e o valor máximo dele foi 
até 30 pois a maior barra que temos foi até 28. 
Estes mesmos dados poderiam ser organizados em um gráfico de barras 
horizontais. Assim, os dados “Categoria” passam para o eixo vertical e os dados 
“Quantidade de alunos” passam para o eixo horizontal. 
 
O gráfico de setores é um círculo com vários setores representando os dados. 
Por isso ele também é vulgarmente conhecido como o gráfico em forma de pizza, pois 
os setores se parecem com fatias de uma pizza. Este tipo de gráfico é muito utilizado 
para representar dados percentuais. Veja o exemplo: 
12
20
28
20
5 10 15 20 25
Você gostou dos dados organizados em gráfico de barras?
Desta maneira você pode fazer comparações entre os dados de 
forma muito mais rápida pois a visualização é imediata!
 
33 
Perceba que o eixo vertical foi graduado de 5 em 5 e o valor máximo dele foi 
Estes mesmos dados poderiam ser organizados em um gráfico de barras 
rtical e os dados 
 
O gráfico de setores é um círculo com vários setores representando os dados. 
Por isso ele também é vulgarmente conhecido como o gráfico em forma de pizza, pois 
é muito utilizado 
30
Você gostou dos dados organizados em gráfico de barras? 
Desta maneira você pode fazer comparações entre os dados de 
forma muito mais rápida pois a visualização é imediata! 
 
34 
EXEMPLO 3: 
Vamos mais uma vez utilizar a tabela do exemplo 1 acrescida dos percentuais de cada 
categoria e do total da quantiadade de alunos. 
 
Desempenho dos alunos 
Categoria Quantidade de alunos Percentual 
Ruim 12 15% 
Regular 20 25% 
Bom 28 35% 
Ótimo 20 25% 
Total 80 100% 
 
Uma maneira eficiente de representar este percentual da quantidade de alunos por 
categoria é com o gráfico de setores. Observe: 
 
 
 Veja que o tamanho dos setores são proporcionais ao percentual representado 
por cada categoria. 
 
Agora chegou o momento mais importante da nossa aula. É hora de ver se você 
entendeu! Faça as atividades abaixo e em caso de dúvidas, consulte os tópicos da aula. 
 
Ruim
15%
Regular
25%
Bom
35%
Ótimo
25%
 
35 
445
500
756
480
890
0
100
200
300
400
500
600
700
800
900
1000
2ª feira 3ª feira 4ª feira 5ª feira 6ª feira
Q
u
a
n
ti
d
a
d
e
 d
e
 p
e
s
s
o
a
s
Dia da semana
Quantidade de pessoas que fizeram visitação a um 
ponto turístico
 
 
01. Uma pesquisa sobre o esporte preferido em umasala de aula revelou os dados que 
estão organizados na tabela abaixo: 
 
Pesquisa sobre esporte preferido de uma turma 
Esporte Quantidade de alunos 
Futebol 21 
Voleibol 10 
Basquetebol 8 
Artes marciais 11 
 
Responda: 
a) Qual é o esporte preferido da turma? 
b) Qual é o esporte que está em segundo lugar na preferência da turma? 
c) Quantos alunos, no total, tem esta turma? 
 
 
 
2. O gráfico abaixo, mostra a quantidade de pessoas que fizeram visitação a um ponto 
turístico de uma cidade em uma semana. 
 
 
 
 
 
 
 
 
 
 
 
Atividade 6 
 
36 
a) Quantas pessoas estiveram nos três últimos dias de visitação? 
b) Qual o total de pessoas vacinadas? 
 
 
 
 
 
03. Com base no gráfico de barras sobre uma pesquisa de estilos musicais, responda: 
 
 
 
 
a) Qual dos estilos musicais possui menos adeptos? 
b) Qual estilo musical é preferência de 8 alunos? 
c) Qual é o total de alunos desta turma? 
 
 
04. Com base no exercício 3, vamos observar o gráfico de setores do percentual 
referente ao gráfico de barras. 
3
12
15
8
5
0 2 4 6 8 10 12 14 16
Samba
Rock
Funk
Axé Music
Pagode
Estilo de música preferido dos alunos de uma turma
 
37 
 
 
Com base no gráfico, responda: 
 
a) Qual dos estilos musicais possui mais adeptos e qual o seu percentual? 
b) Qual dos estilos tem a preferência de 28% dos alunos? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Samba
7%
Rock
28%
Funk
35%
Axé Music
18%
Pagode
12%
Estilo de música preferido dos alunos de uma turma
 
38 
 
 
Caro aluno, chegou a hora de avaliar tudo o que nós estudamos nas aulas 
anteriores. Leia atentamente cada uma das questões e faça os cálculos necessários. 
Vamos lá, vamos tentar? 
 
01. Desenvolvendo o quadrado da diferença �2� 
 1�� obtemos: 
 
(A) 4�² 
 4� � 4 
(B) 4�² 
 4� � 1 
(C) 4�² 
 2� � 1 
(D) 4�² 
 2� � 4 
 
02. O produto notável que representa a área do quadrado ABCD abaixo, sabendo que 
as áreas dos quadrados azul e vermelho são, respectivamente, 4�² e 9, é: 
 
(A) �4� � 9�² 
(B) �4� � 3�² 
(C) �2� � 9�² 
(D) �2� � 3�² 
 
 
03. Vimos que fatoração é uma maneira de agrupar uma expressão e reescrevê-la 
como um produto. Observe o processo abaixo: 
�² � 2�� � �² � �² � �� � �� � �² 
 Tomando os fatores comuns nos dois primeiros termos e os fatores comuns nos 
dois últimos termos, temos: 
�² � 2�� � �² � ��� � �� � ��� � �� 
 Note que (a+b) é fator comum, colocando ele em evidência temos: 
�² � 2�� � �² � �� � ���� � �� 
 
Avaliação 
 
39 
 E, por último: 
�² � 2�� � �² � �� � ��² 
 Fazendo este mesmo processo com �² � 6� � 9, obtemos: 
 
(A) �� � 6�� 
(B) �� � 9�� 
(C) �� � 3�� 
(D) �� � 2�² 
 
04. De acordo com a distribuição de valores abaixo, os valores da moda e mediana são, 
respectivamente: 
7 – 9 – 2 – 5 – 7 – 3 – 10 – 1 – 2 – 3 – 4 – 2 
 
(A) 3,5 e 2 
(B) 2 e 3,5 
(C) 3 e 3,5 
(D) 3,5 e 3 
 
05. Um grupo de cinco amigas decidiu comparar o peso de cada uma. Os pesos das 
meninas foram 65Kg, 60Kg, 71Kg, 66Kg e 58Kg. Sabendo disso, a mediana e a média de 
peso desse grupo são, respectivamente: 
 
(A) 65Kg e 64Kg. 
(B) 65Kg e 63Kg. 
(C) 64Kg e 65Kg. 
(D) 63Kg e 65Kg. 
 
06. Uma pesquisa sobre a preferência entre quatro canais de televisão foi 
representada através de um gráfico de setores. Os canais que obtiverem e melhor e a 
pior votação foram, respectivamente: 
 
40 
 
 
(A) Canal A e Canal B 
(B) Canal A e Canal C 
(C) Canal C e Canal B 
(D) Canal C e Canal A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Canal A
10%
Canal B
20%
Canal C
40%
Canal D
30%
 
41 
 
 
 
 Caro aluno, agora que já estudamos os principais assuntos relativos ao 4° 
bimestre, é hora de discutir um pouco sobre a importância deles na nossa vida. 
 Espero que você tenha entendido tudo com clareza! Agora, vamos fazer uma 
pesquisa para que estes conceitos fiquem consolidados. Vamos lá! 
 
ATENÇÃO: Não se esqueça de identificar as fontes de pesquisa, ou seja, o nome dos 
livros e sites nos quais foram utilizados. 
 
I – Apresente alguns exemplos de situações reais nas quais podemos encontrar a 
aplicação de expressões algébricas. 
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________ 
_______________________________________________________________________
_______________________________________________________________________ 
 
II – Pesquise e apresente dois jogos de adivinhas com expressões algébricas: 
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________ 
_______________________________________________________________________
_______________________________________________________________________ 
 
III – Agora pesquise em jornais e revistas alguns exemplos de notícias que evidenciam 
a aplicação de expressões algébricas. Recorte e cole em folha separada. 
 
 
 
Pesquisa 
 
42 
IV – Assista ao vídeo sugerido sobre Expressões Algébricas, e escreva suas observações 
sobre o que assistiu e qual a sua aplicabilidade no dia a dia? 
O vídeo está disponível em: http://www.telecurso.org.br/matematica/ 
 
_______________________________________________________________________
_______________________________________________________________________
_______________________________________________________________________ 
_______________________________________________________________________
_______________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43 
 
 
[1] BARROSO, Juliane Matsubara. Projeto Araribá: Matemática Ensino Fundamental 7. 
1 ed. São Paulo: Moderna, 2003. 
[2] BIANCHINI, EDWALDO. Matemática: 8º Ano. 6ª. Edição. São Paulo: Moderna, 2006. 
[3] DANTE, Luiz Roberto. Projeto Teláris: Matemática 8º ano. 1 ed. São Paulo: Ática, 
2012. 
[4] GIOVANNI, José Ruy; Parente, Eduardo Afonso de Medeiros. Aprendendo 
Matemática, 7: Geometria Plana. São Paulo: FTD, 1993. 
[5] IEZZI, Gelson; Et al. Matemática e Realidade: 7ª série. 5 ed. São Paulo: Atual, 2005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referências 
 
44 
 
 
 
 
COORDENADORES DO PROJETO 
 
Diretoria de Articulação Curricular 
Adriana Tavares Mauricio Lessa 
 
Coordenação de Áreas do Conhecimento 
Bianca Neuberger Leda 
Raquel Costa da Silva Nascimento 
Fabiano Farias de Souza 
Peterson Soares da Silva 
Marília Silva 
 
 COORDENADORA DA EQUIPE 
 Raquel Costa da Silva Nascimento 
Assistente Técnico de Matemática 
 
 PROFESSORES ELABORADORES 
 Ângelo Veiga Torres 
Daniel Portinha Alves 
Fabiana Marques Muniz 
Herivelto Nunes Paiva 
Izabela de Fátima Bellini Neves 
Jayme Barbosa Ribeiro 
 Jonas da Conceição Ricardo 
Reginaldo Vandré Menezes da Mota 
Tarliz Liao 
Vinícius do Nascimento Silva Mano 
 Weverton Magno Ferreira de Castro 
 
REVISÃO DE TEXTO 
Isabela Soares Pereira 
 
Equipe de Elaboração

Continue navegando