Text Material Preview
AVALIAÇÃO PARCIAL 1a Questão (Ref.:201403703608) Acerto: 1,0 / 1,0 Uma das etapas do processo de modelagem se refere à formulação do modelo. Assinale a alternativa que representa o significado dessa etapa. e. Identificar a existência de possíveis erros na formulação do problema. b. Representa a determinação da solução ótima. d. Traduzir em linguagem matemática para facilitar o processo de resolução. c. Aplicação da solução a fim de verificar se pode ser afetado por alguma outra variável. a. Reconhecimento do problema a ser estruturado. 2a Questão (Ref.:201403150888) Acerto: 1,0 / 1,0 Dentre as fases do estudo em Pesquisa Operacional temos a formulação do problema, e nesta fase é correto afirmar que: É realizado um teste com dados empíricos do sistema,caso haja dados históricos, estes serão aplicados ao modelo, gerando desempenho que pode ser comparado ao desempenho observado mno sistema. Os modelos que interessam em Pesquisa Operacional são os modelos matemáticos , isto é, modelos formados por um conjunto de equações e inequações. A construção e experimentação com o modelo identificam parâmetros fundamentais para solução do problema. O administrador e o responsável pelo estudo em Pesquisa Operacional, discutem para colocar o problema de maneira clara e coerente, definindo os objetivos a alcançar e quais os possíveis caminhos para que isso ocorra. Além disso, são levantadas as limitações técnicas do sistema, a fim de criticar a validade de possíveis soluções. A solução será apresentada ao administrador ,evitando-se o uso da linguagem técnica do modelo. Esta fase deverá ser acompanhada para se observar o comportamento do sistema com a solução adotada. 3a Questão (Ref.:201402706659) Acerto: 1,0 / 1,0 A Esportes Radicais S/A produz pára-quedas e asa-deltas em duas linhas de montagem. A primeira linha de montagem tem 100 horas semanais disponíveis para a fabricação dos produtos, e a segunda linha tem um limite de 42 horas semanais. Cada um dos produtos requer 10 horas de processamento na linha 1, enquanto que na linha 2 o pára-quedas requer 3 horas e a asa-delta requer 7 horas. Sabendo que o mercado está disposto a comprar toda a produção da empresa e que o lucro pela venda de cada pára-quedas é de R$60,00 e para cada asa-delta vendida é de R$40,00, encontre a programação de produção que maximize o lucro da Esportes Radicais S/A. Elabore o modelo. Max Z=60x1+40x2Z=60x1+40x2 Sujeito a: 10x1+10x2≤10010x1+10x2≤100 3x1+7x2≤423x1+7x2≤42 x1≥0x1≥0 x2≥0x2≥0 Max Z=40x1+60x2Z=40x1+60x2 Sujeito a: 10x1+10x2≤10010x1+10x2≤100 3x1+7x2≤423x1+7x2≤42 x1≥0x1≥0 x2≥0x2≥0 Max Z=40x1+40x2Z=40x1+40x2 Sujeito a: 10x1+10x2≤10010x1+10x2≤100 3x1+7x2≤423x1+7x2≤42 x1≥0x1≥0 x2≥0x2≥0 Max Z=60x1+40x2Z=60x1+40x2 Sujeito a: 10x1+x2≤10010x1+x2≤100 3x1+7x2≤423x1+7x2≤42 x1≥0x1≥0 x2≥0x2≥0 Max Z=60x1+40x2Z=60x1+40x2 Sujeito a: 10x1+10x2≤10010x1+10x2≤100 7x1+7x2≤427x1+7x2≤42 x1≥0x1≥0 x2≥0x2≥0 4a Questão (Ref.:201403139607) Acerto: 1,0 / 1,0 Uma pessoa precisa de 10, 12 e 12 unidades dos produto s químico s A, B e C , respectivamente , para o seu jardim. Um produto líquido contém : 5, 2 e 1 unidades d e A, B e C , respectivamente , por vidro . Um produto em pó contém : 1, 2 e 4 unidades d e A, B e C , respectivamente , p o r caixa . Se o produto líquido custa R $ 3,00 p o r vidro e o produto e m p ó custa R $ 2,00 por caixa , quantos vidros e quanta s caixas ele deve comprar para minimizar o custo e satisfazer as necessidades ? Para poder responder a esta pergunta , utilizando-s e o método gráfico , em qual ponto solução s e obterá o custo mínimo ? (12; 10) (12; 0) (0; 10) (1; 5) (4; 2) 5a Questão (Ref.:201403685785) Acerto: 1,0 / 1,0 Um produto passa por quatro operações em sequência, cada uma executada por uma máquina diferente. O gerente dessa linha de produção dispõe de uma equipe composta por quatro funcionários e precisa decidir qual de seus funcionários será responsável por operar cada máquina de modo a aumentar a produtividade da linha. Dessa forma, o gerente decide levantar o tempo, em minutos, que cada funcionário (Pedro, José, João e Manoel) leva, em média, para realizar a operação em cada máquina (1, 2, 3 e 4). Tais médias são apresentadas na tabela abaixo: Máquina Máquina Máquina Máquina FUNCIONÁRIO 1 2 3 4 Pedro 48 48 45 47 José 45 50 46 46 João 44 47 48 50 Manoel 50 48 49 47 De modo a minimizar o tempo total de operação da linha de produção, o funcionário Manoel deve ser alocado para a operação de qual máquina? 3 4 2 1 2 OU 4, indiferentemente 6a Questão (Ref.:201403709511) Acerto: 1,0 / 1,0 Uma empresa fabrica dois tipos de semicondutores A e B. Os do tipo A são vendidos por R$12,00 e os do tipo B, R$15,00. O custo de produção de cada circuito corresponde a R$8,00 e R$10,00 respectivamente. No processo produtivo, ambos os tipos de circuitos passam por duas máquinas. Na primeira máquina os circuitos são trabalhados durante 4 horas os do tipo A e 5 horas os do tipo B. Na outra máquina os circuitos passam 4 horas e 3 horas, respectivamente. A primeira máquina pode funcionar durante um máximo de 32 horas, enquanto a outra máquina não pode exceder as 24 horas de funcionamento. Determine o valor da função objetivo no ponto ótimo para maximização do lucro. R$ 40,00 R$ 19,20 R$ 32,00 R$ 32,50 R$33,00 7a Questão (Ref.:201402656409) Acerto: 1,0 / 1,0 Uma empresa fabrica dois modelos de cintos de couro. O modelo M1, de melhor qualidade, requer o dobro do tempo de fabricação em relação ao modelo M2. Se todos os cintos fossem do modelo M2, a empresa poderia produzir 1000 unidades por dia. A disponibilidade de couro permite fabricar 800 cintos de ambos os modelos por dia. Os cintos empregam fivelas diferentes, tipos A e B, cuja disponibilidade diária é de 400 para M1 (tipo A) e 700 para M2 (tipo B). Os lucros unitários são de R$ 4,00 para M1 e R$ 3,00 para M2. A quantidade que sobra de fivelas tipo A é: 250 150 100 180 200 8a Questão (Ref.:201402706667) Acerto: 1,0 / 1,0 Considere o relatório de respostas do SOLVER para um problema de Programação Linear abaixo. Com relação a este relatório é SOMENTE correto afirmar que (I) A solução ótima para a função objetivo é 2,8. (II) O SOLVER utilizou o método do Gradiente Reduzido. (III) O problema consiste em 3 variáveis de decisão e cinco restrições não negativas. (I) (I) e (II) (II) e (III) (II) (I), (II) e (III) 9a Questão (Ref.:201402706665) Acerto: 1,0 / 1,0 Estabelecendo o problema dual do problema de maximização abaixo, obtemos Max Z=x1+2x2Z=x1+2x2 Sujeito a: 2x1+x2≤62x1+x2≤6 x1+x2≤4x1+x2≤4 −x1+x2≤2-x1+x2≤2 x1≥0x1≥0 x2≥0x2≥0 Min 6y1+4y2+2y36y1+4y2+2y3 Sujeito a: 2y1+y2−y3≥12y1+y2-y3≥1 y1+2y2+y3≥2y1+2y2+y3≥2 y1≥0y1≥0 y2≥0y2≥0 y3≥0y3≥0 Min 4y1+6y2+2y34y1+6y2+2y3 Sujeito a: 2y1+y2−y3≥12y1+y2-y3≥1 y1+y2+y3≥2y1+y2+y3≥2 y1≥0y1≥0 y2≥0y2≥0 y3≥0y3≥0 Min 6y1+4y2+2y36y1+4y2+2y3 Sujeito a: y1+y2−2y3≥1y1+y2-2y3≥1 y1+y2+y3≥2y1+y2+y3≥2 y1≥0y1≥0 y2≥0y2≥0 y3≥0y3≥0 Min 6y1+4y2+2y36y1+4y2+2y3 Sujeito a: 2y1+y2−y3≥12y1+y2-y3≥1 y1+2y2+2y3≥2y1+2y2+2y3≥2 y1≥0y1≥0 y2≥0y2≥0 y3≥0y3≥0 Min 6y1+4y2+2y36y1+4y2+2y3 Sujeito a: 2y1+y2−y3≥12y1+y2-y3≥1 y1+y2+y3≥2y1+y2+y3≥2 y1≥0y1≥0 y2≥0y2≥0 y3≥0y3≥010a Questão (Ref.:201403417112) Acerto: 1,0 / 1,0 Analisando o Dual do modelo Primal abaixo apresentado, assinale a resposta correta: Max Z = 70x1+ 90x2 S. a: 6x1+ 4x2 ≥ 22 2x1+ 3x2 ≥ 16 3x1+ 5x2 ≥ 18 x1; x2≥0 O valor do coeficiente de y1 na primeira Restrição será 22 A Função Objetivo terá 3 Variáveis de Decisão A Função Objetivo será de Maximização O valor da constante da primeira Restrição será 90 Teremos um total de 3 Restrições