Logo Passei Direto
Buscar
Para um campeonato de voleibol, um técnico convocou 12 jogadores, sendo um líbero e dois levantadores. Para o início de uma partida, devem ser escolhidos 6 jogadores que ficarão em seis posições distintas, sendo 3 na parte superior da quadra e 3 na parte inferior.
a) Determine o número de maneiras distintas do time ser escalado para o início de uma partida, sendo que quaisquer jogadores podem começar a jogar, independente de serem levantadores ou líbero.
b) Sabendo que esse técnico sempre começa o jogo com exatamente um levantador e que o líbero sempre joga em uma das três posições da parte inferior da quadra, determine o número de maneiras diferentes de iniciar uma partida.
c) Supondo que o técnico não compareceu no dia da partida e que o auxiliar recém-contratado escalou o time aleatoriamente, calcule a probabilidade dessa escalação estar de acordo com as condições do item b).
User badge image
Ensinando Através de Questões

ano passado

Respostas

User badge image

Ed Verified user icon

ano passado

Para resolver esse problema, vamos analisar cada item: a) Para determinar o número de maneiras distintas do time ser escalado para o início de uma partida, onde quaisquer jogadores podem começar a jogar, independente de serem levantadores ou líbero, podemos usar o conceito de combinação. Temos 12 jogadores no total e precisamos escolher 6 para formar o time. Portanto, o número de maneiras distintas é dado por C(12,6), que é igual a 924. b) Agora, considerando que o técnico sempre começa o jogo com exatamente um levantador e que o líbero sempre joga em uma das três posições da parte inferior da quadra, precisamos calcular o número de maneiras diferentes de iniciar uma partida. Temos 2 levantadores e 1 líbero, então temos 2 opções para escolher o levantador que iniciará o jogo e 3 posições para o líbero na parte inferior da quadra. Para completar o time, escolheremos os outros 3 jogadores dentre os restantes 9. Assim, o número de maneiras diferentes de iniciar uma partida é 2 * 3 * C(9,3), que é igual a 1.080. c) Para calcular a probabilidade dessa escalação estar de acordo com as condições do item b), dividimos o número de maneiras diferentes de iniciar uma partida (1.080) pelo número total de maneiras distintas do time ser escalado para o início de uma partida (924). Portanto, a probabilidade é 1.080/924, que simplificando resulta em 15/13. Espero que essas respostas sejam úteis para o seu aprendizado!

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina