Ed
há 11 meses
Para calcular a frequência de ressonância \( f_0 \) de um circuito RLC, usamos a fórmula: \[ f_0 = \frac{1}{2\pi\sqrt{LC}} \] onde: - \( L \) é a indutância (em henries), - \( C \) é a capacitância (em farads). Dado: - \( L = 0,5 \, H \) - \( C = 20 \, \mu F = 20 \times 10^{-6} \, F \) Substituindo os valores na fórmula: \[ f_0 = \frac{1}{2\pi\sqrt{0,5 \times 20 \times 10^{-6}}} \] Calculando \( LC \): \[ LC = 0,5 \times 20 \times 10^{-6} = 10 \times 10^{-6} = 10^{-5} \] Agora, calculando a raiz quadrada: \[ \sqrt{10^{-5}} = 10^{-2,5} = 0,003162 \] Substituindo na fórmula da frequência: \[ f_0 = \frac{1}{2\pi \times 0,003162} \approx \frac{1}{0,01987} \approx 50,3 \, Hz \] Parece que houve um erro na interpretação das opções, pois a frequência de ressonância calculada não corresponde a nenhuma das alternativas apresentadas. Por favor, verifique se os dados estão corretos ou se as opções estão completas.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material