Ed
há 11 meses
Para calcular a área de um losango, podemos usar a fórmula: \[ \text{Área} = \frac{d_1 \times d_2}{2} \] onde \( d_1 \) e \( d_2 \) são as diagonais do losango. No entanto, também podemos usar a fórmula que envolve o lado e o ângulo: \[ \text{Área} = L^2 \times \sin(\theta) \] onde \( L \) é o comprimento do lado e \( \theta \) é o ângulo. Neste caso, temos: - Lado \( L = 10 \) cm - Ângulo \( \theta = 60º \) Substituindo na fórmula: \[ \text{Área} = 10^2 \times \sin(60º) \] \[ \text{Área} = 100 \times \frac{\sqrt{3}}{2} \] \[ \text{Área} = 50\sqrt{3} \, \text{cm}² \] Portanto, a alternativa correta é: B) 50√3 cm².
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material