A maior rede de estudos do Brasil

Determinar a dedução da equação de bernoulli

Física I

FATEC


2 resposta(s)

User badge image

Samyla Samyla

Há mais de um mês

Como o líquido está em movimento a uma determinada altura, ele possui energia potencial gravitacional e energia cinética. Dessa forma, a energia de cada porção de fluido é dada pelas equações:

E1 = mgh1 + m v12 e E2 = mgh2 + m v22

         2                   2

Como os volumes e a densidade das duas porções do fluido são iguais, podemos substituir a massa m na expressão acima por:

m = ρ.V

As equações acima podem ser reescritas da seguinte forma:

E1 = ρ.V (gh1 + 1v12 ) e E2 = ρ.V(gh2 + 1v22 )

           2                     2

A variação de energia pode ser associada ao trabalho realizado pelo fluido durante o deslocamento entre as duas posições, como afirma o Teorema do Trabalho da Energia Cinética. Assim, podemos obter a equação:

E2 – E1 = F1.S1 – F2.S2

A força pode ser obtida pela expressão:

F = P.A

Dessa forma, a equação acima pode ser reescrita como:

ρ.V(gh2 + 1v22 ) - ρ.V (gh1 + 1v12 ) = (P1 – P2) . V

2              2      

Agrupando os fatores que apresentam o subíndice 1 do lado esquerdo da igualdade e os que têm o subíndice 2, podemos rearranjar a expressão acima e obter a equação de Bernoulli:

ρ.V.g.h1 + ρ.V. v12 + P1.V = ρ.V.g.h2 + ρ.V. v22 + P2.V

     2                     2

Essa equação também pode ser rescrita da seguinte forma:

ρ.V.g.h + ρ.V. v2 + P.V = Constante

2     


Como o líquido está em movimento a uma determinada altura, ele possui energia potencial gravitacional e energia cinética. Dessa forma, a energia de cada porção de fluido é dada pelas equações:

E1 = mgh1 + m v12 e E2 = mgh2 + m v22

         2                   2

Como os volumes e a densidade das duas porções do fluido são iguais, podemos substituir a massa m na expressão acima por:

m = ρ.V

As equações acima podem ser reescritas da seguinte forma:

E1 = ρ.V (gh1 + 1v12 ) e E2 = ρ.V(gh2 + 1v22 )

           2                     2

A variação de energia pode ser associada ao trabalho realizado pelo fluido durante o deslocamento entre as duas posições, como afirma o Teorema do Trabalho da Energia Cinética. Assim, podemos obter a equação:

E2 – E1 = F1.S1 – F2.S2

A força pode ser obtida pela expressão:

F = P.A

Dessa forma, a equação acima pode ser reescrita como:

ρ.V(gh2 + 1v22 ) - ρ.V (gh1 + 1v12 ) = (P1 – P2) . V

2              2      

Agrupando os fatores que apresentam o subíndice 1 do lado esquerdo da igualdade e os que têm o subíndice 2, podemos rearranjar a expressão acima e obter a equação de Bernoulli:

ρ.V.g.h1 + ρ.V. v12 + P1.V = ρ.V.g.h2 + ρ.V. v22 + P2.V

     2                     2

Essa equação também pode ser rescrita da seguinte forma:

ρ.V.g.h + ρ.V. v2 + P.V = Constante

2     


User badge image

Jéssica Lima

Há mais de um mês

A equação de Bernoulli é obtida a partir do Teorema da Conservação de Energia Mecânica e da relação entre o trabalho mecânico e a energia dos corpos. É utilizada para descrever o comportamento dos fluidos em movimento no interior de um tubo. Ela recebe esse nome em homenagem a Daniel Bernoulli, matemático suíço que a publicou em 1738.

Essa pergunta já foi respondida por um dos nossos estudantes