A maior rede de estudos do Brasil

Transcrição


olá pessoal! Hoje vamos falar sobre renda certas, que é um assunto bastante importante dentro de matemática financeira, por isso vou quebrá lo em partes. Hoje será parte um e hoje a gente vai focar no chamado fator de valor atual. O exemplo que a gente vai trabalhar é o seguinte se dá, vai ao shopping e ao passar por uma vitrine, se apaixona por uma linda bolsa. Como não tinha dinheiro, parcelou a bolsa três prestações, cem reais cada, sem entrada. A primeira prestação vencendo em trinta dias. Sabendo que a loja cobra uma taxa de juros de cinco por cento ao mês, calcula o valor da bolsa à vista. Antes de começar a resolver, vale a seguinte informação Eu estou supondo que você já viu os meus vídeos anteriores, em que a gente fala sobre equivalência de capitais e sobre juros de desconto. Composto. Por que? Porque tudo isso aqui é pré requisito para o assunto de hoje? Então primeiro, se você não sabe esses assuntos, primeiro volte, Estude esses conceitos e depois veja o vídeo de hoje Supondo que você já tem estudado, vamos então começar a resolver a questão O primeiro passo seguinte Vou representar os pagamentos que a Síria deve fazer para a loja. Hoje vai ser a data zero em trinta dias. A gente tem a data em sessenta dias, temos a data dois em noventa dias temos a data três Na data um dois, três, ocorre os pagamentos de cem reais. Estou simbolizando esses pagamentos por setinhas. Essa figura que a gente acabou de fazer nada mais é do que o diagrama de fluxo de caixa. Como eu quero o valor à vista da bolsa. Eu quero o valor dela na data zero. Para ele, descobriu o valor dela na data zero Eu preciso pegar a primeira prestação e transportar para a data zero. Estou voltando no tempo. Como é que eu faço? Isso Tem sido um desconto racional. Depois faça a mesma coisa para a segunda prestação, desconto racional. Depois eu faço a mesma coisa para a terceira prestação, relembrando como é que eu calcula um desconto racional. Como é que é o valor atual que eu tenho um valor que lá na frente, que lá na frente vale cem reais, eu quero trazê lo ele meses para o passado, como é que eu faço? Eu divido por um mais a taxa de juros e coloca que o expoente o expoente é um número de períodos que eu estou voltando na linha do tempo. Quando eu fiz essa divisão, obtém o chamado valor atual, Então isso aqui nada mais é do que a fórmula do valor atual lá no desconto racional composto, que é um assunto já visto em vídeos anteriores, então a gente vai aplicar isso seguidas vezes para a primeira prestação, eu tenho então cem reais. Vou voltar no mesmo tempo? Então eu divido por um, mas a taxa de juros como expoente um porque estou voltando um mês, então ficaria com cem dividido por A taxa de juros é cinco por cento mais cinco por cento da um vírgula zero cinco elevado a um. Isso aqui, então será cem reais dividido por um vírgula zero cinco. O expoente um em nada altera, é apenas um ponto zero cinco. Então este aqui é o valor da primeira prestação quando transportado para a data zero. Agora faça a mesma coisa com a segunda prestação, então eu pego cem reais, cavar o valor dela lá na frente e divido por de novo mais a taxa de juros. Só que agora vou voltar dois meses no tempo, então expoentes dois, Então este aqui é o valor da segunda prestação quando transportado para a data zero. Para a terceira prestação, faça a mesma coisa, pega cem reais e volta três meses no tempo devido por mais a taxa. Respondi Será três, porque eu estou voltando três meses no tempo. Então isso aqui é o valor da terceira prestação quando transportado para data zero. Agora que eu já transportei todos os valores para a data zero, então já transportei a primeira prestação para data zero, a segunda prestação para data zero e a terceira para data zero. Todas já estão referidas na data da compra. Agora que eu fiz isso, todas estão na mesma data. Basta somar então o valor à vista. O valor atual do fluxo de caixa inteiro é o valor à vista da bolsa. Será então a soma dessas três parcelas que a gente acabou de calcular daqui a primeira parcela sem dividido por um vírgula. Zero cinco. Vou anotar o resultado lá na frente, sem dividido por um vírgula. Zero sim, mas segunda parcela sem dividido por um vírgula zero cinco ao quadrado, sem dividido por um vírgula zero cinco ao quadrado Terceira parcela sem dividido por um vírgula zero cinco Elevado ao cubo. Eu poderia simplesmente fazer essa divisão, calcular essa divisão, calcular essa divisão, somar tudo e encontrar a resposta. O problema disso é que dá um trabalho grande, um trabalho grande de contas e a gente quer um, um atalho, uma solução mais rápida. Então eu vou parar os cálculos aqui. A gente vai aguardar a situação essa que será a nossa equação. Vamos agora pegar essa equação e vamos multiplicar por um vírgula zero cinco. Então multiplica ao lado de um lado esquerdo da igualdade por um vírgula zero cinco! E agora vou multiplicar o lado direito também o primeiro tema sem dividir por um vírgula zero cinco Quando multiplicado por um vírgula zero cinco Denominador Se anula eu ficaria apenas com o número sem na segunda fração quando multiplicado por um vírgula zero cinco Eu vou simplificar esses doentes e aí a gente vai ficar com cem dividido por um vírgula zero cinco elevado à primeira na próxima Façam quando é multiplicar por um vírgula. Zero. Cinco Vão simplificar este expoentes o expoente vai ficar ao quadrado um vírgula zero cinco elevado ao quadrado, porque essa então será a nossa segundo equação segunda equação e agora vou fazer a segunda equação, menos a primeira, então este tema menos esse ficaremos com a que multiplica um vírgula zero cinco menos o próprio ar é igual e agora tem uma série de simplificações que a gente pode fazer. Então observem que esse cem dividido por um vírgula zero cinco ao quadrado simplifica com esse tema que ensina porque é porque eles são iguais. Quando eu fizer nos outros menos outra visão. Se anular este tema que cem dividido por um ponto zero cinco levado a primeira se a Lula com esse aqui de cima, então vai sobrar após a subtração, cem reais menos sem dividido por um ponto zero cinco ao cubo sem dividido por um vírgula zero cinco ao fundo, o que do lado esquerda tem um vírgula zero cinco vezes o valor atual. Menos uma vez o valor atual e posso colocar o valor atual em evidência. Ficaremos então com um vírgula cinco menos do lado direito. Vou colocar sem evidência, multiplicando cem em evidência multiplicando menos um vírgula zero cinco elevado ao como um vírgula zero cinco menos um. Essa parte que será igual a zero vírgula zero cinco Vou passar esse termo dividindo. Então nós teremos o valor atual. Será sim que multiplica. Vão mudar a cor. Agora vamos lá que multiplica um menos um sobre um vírgula zero cinco Elevado ao cubo dividido por zero vírgula zero Sim, agora sim. Agora deixa só voltar a cor agora. Nós vamos finalmente calcular a resposta, então o valor atual será igual. O valor atual será igual. Deixou pegar uma calculadora e vamos lá com menos um dividido por um vírgula zero cinco, elevado ao grupo vezes, sem dividido, dividido por zero vírgula zero cinco. Isso aqui está dando duzentos e setenta e dois reais aproximadamente. Então nossa resposta de aproximadamente duzentos e setenta e dois reais duzentos e setenta e dois reais. Então, essa nossa resposta para que a gente fez todo esse passo a passo aqui pelo seguinte motivo em vermelho a gente obteve um resultado bem interessante que facilita com que a gente consiga generalizar o resultado. Observem que cem reais foi o valor da prestação, vão copiar esse resultado para a próxima página? Então, qual foi? A nossa resposta? Foi cem reais cem reais É o valor da prestação. Agora, essa parte em vermelho, menos um dividido por um vírgula. Zero cinco ao corpo um dividido quem é um ponto zero cinco um ponto zero cinco mais A taxa de juros de onde veio esse três três é o número de prestações uma duas três. Vou chamar o número de prestações de higiene dividido por zero vírgula zero cinco, quem é cinco por cento e a taxa de juros. Então, se eu quiser generalizar o resultado, se