Buscar

Apostila MOTORES - Mecanização

Prévia do material em texto

1 
 
Série técnica 
Laboratório de Mecanização Agrícola 
Instituto Federal Catarinense – Campus Rio do Sul 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disciplina: Mecanização Agrícola 
 
 
MOTORES: Constituição, princípios de 
funcionamento e manutenção 
 
 
 
Admissão Compressão Expansão Escape 
Ar 
Gás 
Entrada 
diesel 
 
 
Admissão e compressão Expansão e escape 
 
 
 
2 
 
SUMÁRIO 
 
1. INTRODUÇÃO .......................................................................................................................... 1 
2. PARTES CONSTITUINTES DE UM MOTOR DE COMBUSTÃO INTERNA ...................... 3 
2.1. Partes fundamentais ............................................................................................................. 3 
2.2. Órgãos complementares ...................................................................................................... 9 
3. PRINCÍPIO DE FUNCIONAMENTO ..................................................................................... 11 
3.1. Motores do ciclo Otto ............................................................................................................. 11 
3.1.1 Motores de ciclo Otto de 4 Tempos .............................................................................. 11 
3.1.2 Motores de ciclo Otto de 2 Tempos .............................................................................. 12 
3.2. Motores do ciclo Diesel ..................................................................................................... 13 
4. SISTEMAS COMPLEMENTARES ......................................................................................... 14 
4.1. Sistema de válvulas ........................................................................................................... 15 
4.2. Sistema de alimentação ..................................................................................................... 18 
4.2.1. Sistema de alimentação de combustível ...................................................................... 18 
4.2.2. Sistema de injeção eletrônica ....................................................................................... 22 
4.2.3. Sistema de alimentação de ar ....................................................................................... 23 
4.2.3.1. Sobre-alimentação ..................................................................................................... 24 
4.2.3.2. Motor aspirado .......................................................................................................... 26 
4.2.3.3. Compressor ............................................................................................................... 26 
4.2.3.4. Turbocompressor ...................................................................................................... 26 
4.2.3.5. Intercooler ................................................................................................................. 27 
4.2.3.6 Cuidados com o motor turbo ...................................................................................... 27 
4.3. Sistema de arrefecimento................................................................................................... 27 
4.4. Sistema partida .................................................................................................................. 29 
4.5. Sistema de lubrificação ................................................................................................... 29 
4.5.1 Princípio de lubrificação dos mancais .......................................................................... 34 
5. MANUTENÇAO DOS MOTORES DOS TRATORES AGRÍCOLAS ................................... 35 
5. 1 Sistema de válvulas ........................................................................................................... 35 
5. 2 Sistema de lubrificação ...................................................................................................... 36 
5. 3 Sistema elétrico ................................................................................................................. 36 
5. 4 Sistema de alimentação ..................................................................................................... 36 
5. 4. 1 Combustível ................................................................................................................ 36 
e 
 
3 
 
5. 4. 2 Ar ................................................................................................................................ 37 
5. 5 Sistema de arrefecimento................................................................................................... 38 
5. 6 Resumo das manutenções periódicas ................................................................................ 39 
6. BIBLIOGRAFIA CONSULTADA........................................................................................... 39 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e 
 
1 
 
1. INTRODUÇÃO 
 
Na agricultura moderna tornou-se indispensável o uso dos tratores agrícolas, devido 
à necessidade de se realizar inúmeras tarefas com eficiência e rapidez. O motor, parte 
constituinte de um trator, transforma um tipo de energia em outro, ou seja, transforma a energia 
calorífica ou térmica dos combustíveis em energia mecânica, necessária às operações agrícolas. 
Os primeiros motores utilizavam-se do vapor, o qual era gerado fora do motor, sendo 
assim chamados de motores de combustão externa (Figura 1), estes apareceram no século XIII e 
o combustível utilizado era a lenha. Esses motores a vapor eram geralmente utilizados em 
máquinas estacionárias. 
 
Figura 01 – Motor de combustão externa ilustrada por uma locomotiva (fem.unicamp.br, 2011). 
 
A partir do século XIX apareceram os primeiros motores de combustão interna 
(MCI), onde o combustível é queimado dentro do próprio motor. O primeiro motor de 
combustão interna foi construído por Lenoir em 1860, o qual trabalhava com gás de iluminação. 
No ano de 1862 um pesquisador francês chamado Beau de Rochas estabeleceu princípios para o 
funcionamento de motores de combustão interna. Os requerimentos para o funcionamento do 
ciclo do motor com máxima economia eram: 
- menor razão superfície-volume possível por cilindro; 
- maior rapidez possível nos processos de expansão; 
- máxima expansão possível; 
- máxima pressão possível para iniciar o processo de expansão. 
A redução da perda de calor através das paredes do cilindro para um mínimo é 
possível através dos dois primeiros itens. O terceiro item preconiza que mais trabalho é 
produzido por maior expansão. 
 
2 
 
O engenheiro alemão Nikolaus Otto construiu no ano de 1878 o primeiro motor 
utilizando o princípio de Beau de Rochas. O motor era de quatro tempos e utilizava faísca 
elétrica para iniciar a combustão, ficando conhecido como Motor de Ciclo Otto. O primeiro 
trator agrícola com motor de ciclo Otto surgiu no ano de 1889. Em 1892 surge um tipo de motor 
capaz de queimar combustível sem o uso de faísca elétrica, que ficou conhecido como motor de 
ciclo Diesel, devido ao seu criador Rudolph Diesel. 
A evolução foi cada vez maior, com aperfeiçoamento de ignição de combustível, 
sistemas de refrigeração e superalimentação de ar por turbina e outros. 
O motor de combustão interna transforma energia térmica (calorífica) em trabalho 
mecânico (energia mecânica). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 
 
2. PARTES CONSTITUINTES DE UM MOTOR DE COMBUSTÃO INTERNA 
 
Segundo Mialhe (1980) os motores de combustão interna possuem partes 
fundamentais, responsáveis pela transformação da energia dos combustíveis em trabalho 
mecânico e sistemas complementares, responsáveis pelo fornecimento de condições favoráveis 
para que o processo se realize de forma eficiente e contínua. 
2.1.Partes fundamentais 
 
Bloco – é a maior parte do motor e suporta as demais partes constituintes (Figura 2A e 2B). No 
interior do bloco está contido o(s) cilindro(s), onde ocorre a queima do combustível e os mancais 
de apoio da árvore de manivelas. A disposição dos cilindros no bloco pode ser em linha, em “V” 
ou radial. Normalmente os blocos são construídos de ferro fundido, o que lhe proporciona boa 
resistência; trabalha a altas temperaturas, facilidade de usinagem e um menor custo. Alguns tipos 
de blocos possuem tubos removíveis, que formam as paredes do cilindro, estes são chamados de 
“camisas”. As camisas podem ser úmidas, quando o líquido de arrefecimento está em contato 
direto com a camisa e entre si trocam calor; ou secas, quando o líquido de arrefecimento não está 
em contato direto com a camisa, isto é, o bloco que entra em contato com a camisa e troca calor 
com o líquido. 
Cabeçote – é o órgão do motor que fecha o bloco na sua parte superior (Figura 2-A), também é 
confeccionado em ferro fundido. A união do bloco com o cabeçote é feita por meio de parafusos 
e uma junta de vedação de cobre asbesto, que veda os gases de combustão, o óleo e a água. O 
cabeçote ainda apresenta na sua parte inferior parte da câmara de combustão, orifícios para o 
alojamento das válvulas, bicos injetores, canais para a água de arrefecimento (motores 
arrefecidos à água) ou aletas (motores arrefecidos à ar), canais de admissão, escape e para óleo 
lubrificante. Os parafusos de fixação do cabeçote junto ao bloco devem ser apertados com torque 
determinado através de uma chave especial denominada de torquímetro, para impedir o 
empenamento. O cabeçote pode ser chamado de tampa de cilindros quando as válvulas forem 
presentes no bloco ou inexistirem (motores de dois tempos), sua função será somente fechar a 
parte superior do bloco e conter a vela. 
Cárter – normalmente confeccionado em aço estampado (Figura 2-B), é o órgão que fecha o 
bloco na sua parte inferior e também serve como depósito de óleo lubrificante para o motor. 
Deve Ter um formato adequado para permitir contato permanente do óleo lubrificante com a 
bomba desse sistema. O cárter é fixado ao bloco através de parafusos e junta de vedação de 
 
4 
 
cortiça. Na parte inferior do cárter existe um bujão que serve para escoamento do óleo 
lubrificante. 
 
Figura 02 - Partes constituintes de um motor de combustão interna sendo: A – I, motor arrefecido 
a ar com base no ciclo Otto e II, Motor arrefecido a água com base no ciclo Diesel 
(Fonte: Mialhe, 1980); B – motor arrefecido a ar em corte ilustrando seus 
componentes como: 1. Bloco do motor de quatro cilindros, 2. Cilindro da camisa, 3. 
Cavidade de circulação de água do motor (camisa molhada), 4. Orifício por onde 
passa as gruías do sistema de comando de válvulas, 5.Cárter, 6. Orifício que dá o 
seguimento das guias do sistema de comando de válvulas, 7. Orifício de circulação 
de água próximo ao escapamento (Fonte: Berlijn et al. 1982). 
 
Cilindro – local onde o êmbolo desloca-se com movimento retilíneo alternado, está contido no 
interior do bloco (Figura 2-B). Em motores arrefecidos a ar, possuem externamente aletas para 
aumentar a superfície de contato com o ambiente e dissipar melhor o calor. 
Êmbolo – também chamado de pistão (Figura 3) é o órgão do motor que recebe o movimento de 
expansão dos gases (primeira parte do motor a movimentar-se). Está presa a biela através do 
pino do êmbolo, possui um movimento retilíneo alternativo que através da biela é transformado 
em movimento rotativo contínuo na árvore de manivelas. O êmbolo possui três partes principais: 
topo, que é a parte superior, geralmente é plana ou levemente côncava; cabeça, onde estão 
localizadas as ranhuras para a colocação dos anéis de segmento, e por fim a saia, parte abaixo do 
orifício do pino do êmbolo. É desejável que o êmbolo seja tão leve quanto possível, sem porém, 
 
 
B A 
A 
B 
A 
I II 
I II 
 
5 
 
diminuir sua resistência e desgaste. Os materiais mais utilizados são ferro, aço e ligas de 
alumínio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 03 – Partes internas do motor de combustão interna, sendo: 1, Camisa do cilindro; 2, 
êmbolo; 3, anéis do pistão; 4, pino do êmbolo; 5, biela conectada ao êmbolo e 
árvore de manivelas (virabrequim); 6, árvore de manivelas; 7, disposição dos 
êmbolos e árvore de manivelas; 8, volante da árvore de manivelas (Fonte: Berlijn et 
al. 1982). 
 
Anéis de segmento – são localizados nas ranhuras da cabeça do êmbolo e construídos de ferro 
fundido cinzento especial (Figura 4). Segundo Mialhe (1980) suas principais funções são: 
a) efetuar a vedação da câmara do cilindro, retendo a compressão; 
b) reduzir a área de contato direta entre as paredes do êmbolo e do cilindro; 
c) controlar o fluxo de óleo nas paredes do cilindro; 
d) dissipar o calor do êmbolo pelas paredes do cilindro. 
Existem dois tipos fundamentais de anéis: 
- Anéis de compressão: responsáveis pela vedação da câmara do cilindro e são maciços e 
colocados na colocados nas canaletas próximas do topo do êmbolo; 
- Anéis de lubrificação: responsáveis pelo controle do fluxo de óleo entre a parede do êmbolo e 
cilindro. São providos de canaletas ou rasgos, interrompidos ao longo do perímetro. 
 Os anéis ditos de compressão podem se apresentar com variados perfis na área de 
contato com a parede do cilindro, conforme ilustra a Figura 4 a fim de proporcionar uma perfeita 
vedação da câmara do cilindro, evitando perda de compressão por vazamento dos gases para o 
 
6 
 
cárter. Para essa vedação ocorrem inúmeros fatores, tais como a pressão do anel contra a parede 
do cilindro, a película de lubrificante entre as superfícies em contato e as condições da parede 
interna do cilindro. 
 
 
Figura 04 – Tipos de anéis de segmento que podem ser montados nas canaletas da cabeça do 
êmbolo (Fonte: Mialhe, 1980). 
 
 
 Os anéis de lubrificação são colocados abaixo dos de compressão, na canaleta 
imediatamente acima do pino, ou próximo à saia do êmbolo. Têm por função distribuir o óleo 
nas do cilindro o curso ascendente do êmbolo, e durante o curso descendente, retira o excesso de 
lubrificante. A canaleta do êmbolo, que recebe o anel de lubrificação, possui orifícios para deixar 
passar o excesso de óleo removido da parede do cilindro pelo anel. 
Pino do êmbolo – possui forma oca (Figura 3), que lhe garante boa resistência à flexão com 
menor peso. Tem por função proporcionar uma ligação articulada entre a biela e o êmbolo. 
Biela – sua função é transformar o movimento retilíneo alternado do êmbolo em movimento 
circular contínuo na árvore de manivelas. A biela (Figura 5) apresenta o formato de uma barra 
(denominada de corpo ou haste) com orifícios nas extremidades. O orifício superior de menor 
diâmetro é denominado de “pé” ou “olho” onde é fixado ao êmbolo através do pino do êmbolo, o 
orifício inferior de maior diâmetro é denominado de “cabeça” ou “olho grande”. A cabeça da 
biela é separada em duas partes, sendo fixadas por meio de parafusos, a fim de fazer a união da 
biela com a árvore de manivelas. Entre o pé da biela e o pino do êmbolo e a cabeça da biela e a 
árvore de manivelas, são colocadas as bronzinas (também chamadas de casquilhos), 
confeccionados em bronze e revestidas de uma liga metálica antifricção, estas prolongam a vida 
útil do motor por evitar o contato direto entre as mesmas. Quando as bronzinas apresentarem 
 
7 
 
desgastes físicos resultará em uma folga excessiva prejudicando a lubrificação (Figura 6) e 
conduzindo o motor para ser “fundido”. 
 
Figura 05 – Biela do motor sendo: I, parte constituintes da biela e II, diagrama das forças 
envolvidas na transmissão do movimento do êmbolo a árvore de manivelas 
(virabrequim) (Fonte: Mialhe, 1980). 
 
 
Figura 06 – Casquilhos da biela sendo: I, localização dos casquilhos na cabeça da biela e II, 
efeito da folga excessivado casquilho prejudicando a lubrificação (Fonte: Mialhe, 
1980). 
 
 
 
8 
 
Árvore de manivelas – também chamado de eixo de manivelas ou eixo virabrequim (Figura 3 e 
7) são fabricados em aço forjado ou fundido. No seu interior existem vários canais que são 
responsáveis pela condução do óleo lubrificante até seus mancais e cabeças das bielas. Em cada 
manivela existe um moente, o qual se acopla o mancal da cabeça da biela, entre as manivelas 
existem os munhões que apóiam nos mancais do bloco. Em uma de suas extremidades a árvore 
de manivelas possui um flange que se acopla ao volante do motor e na outra às engrenagens de 
acionamento do comando de válvulas. 
 
 
 
Figura 07 – Árvore de manivela (virabrequim) de um motor de quatro cilindros sendo: I, 
disposição geral e II, corte da árvore de manivelas mostrando as galerias gerais 
oblíquas de lubrificação e as partes vazias para redução de peso (Mialhe, 1980). 
 
Volante – nada mais é do que um disco de ferro fundido de grande massa (Figura 8). Sua função 
é acumular energia cinética e manter uniforme a velocidade angular da árvore de manivelas, 
reduzindo as variações dos tempos do motor, dando equilíbrio no movimento rotativo. A energia 
cinética é acumulada no tempo de explosão e liberada nos demais tempos do motor, que apenas 
são consumidores de energia. O volante é constituído de flange, que se fixa a árvore de 
manivelas, coroa denteada (cremalheira) na qual se engrena o motor de partida. 
Válvulas – têm como função interromper o fluxo de gases de aspiração e descarga de acordo 
com os tempos do motor (4 tempos), são abertas por meio da árvore de comando de válvulas e 
fechadas por molas. Podem ser de dois tipos: admissão, entrada da mistura ar + combustível 
 
9 
 
(ciclo Otto) ou somente ar (ciclo Diesel) e escape, saída dos gases queimados resultante da 
combustão. Normalmente estão presentes no motor em número de duas por cilindro (admissão e 
escape), quando estão em número par, dividem-se igualmente, quando em número ímpar, existe 
uma válvula de admissão a mais que a de escape. Deve ser construída com aço de alta dureza. A 
Figura 09 e 10 mostra em detalhe as válvulas. 
Figura 08 – Partes constituintes do volante do motor (Mialhe, 1980). 
 
Árvore de comando de válvulas – comanda a abertura das válvulas, por meio de ressaltos no 
eixo (Figura 09 e 10), esta é acionada por meio de correias e/ou engrenagens pela árvore de 
manivelas, tem tantos ressaltos quanto o número de válvulas do motor. Para cada duas voltas da 
árvore de manivelas, gira apenas uma. 
2.2. Órgãos complementares 
 
São os sistemas auxiliares indispensáveis ao funcionamento do motor, são eles: 
sistema de válvulas, de alimentação, de ignição, de arrefecimento e de lubrificação, que serão 
tratados no item 4. Ainda existem os órgãos acessórios, que são: cobertura do cabeçote, suportes, 
filtros de combustível e óleo, juntas, instrumentos do painel. 
 
 
10 
 
 
Figura 09 – Sistema de válvulas e demais componentes sendo em que: 1, válvulas de escape; 2, 
válvulas de admissão; 3, árvore de comando de válvulas (Fonte: Berlijn et al. 1982). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 10 - Sistema de comando das válvulas associado aos demais componentes do motor sendo 
que: 1, cilindro; 2, câmara de combustão; 3, Pistão ou êmbolo; 4, biela; 5, 
virabrequim ou árvore de manivelas; 6, válvula e tubos de admissão; 7, válvula e 
tubos de escape; 8, árvore de comando de válvulas; 9, engrenagem de distribuição do 
sistema comando de válvulas; 10, tuchos que transferem o movimento da árvore de 
comando de válvula para as varetas; 11, varetas empurradoras; 12, balancins; 13, 
molas que pressionam a válvula; 14, bomba de injeção de combustível; 15, bico 
injetor de combustível; 16, pré-aquecedor na câmara de combustão (Fonte: Berlijn et 
al. 1982). 
3 
 
11 
 
 
3. PRINCÍPIO DE FUNCIONAMENTO 
 
O funcionamento dos motores de combustão interna se realiza em ciclos onde se 
distinguem quatro fases (tempos), admissão, compressão, explosão (expansão) e escape. Para a 
compreensão do funcionamento é necessário a caracterização de alguns termos: 
- Ponto Morto Superior (PMS): posição do êmbolo mais próxima a parte superior 
do bloco (posição máxima); 
- Ponto Morto Inferior (PMI): posição do êmbolo mais próxima a árvore de 
manivelas; 
- Câmara de Compressão: volume que fica no cilindro depois que o êmbolo atinge 
seu ponto máximo (PMS), também chamada de câmara de combustão; 
- Curso: espaço linear percorrido pelo êmbolo do PMI ao PMS e vise-versa; 
- Tempo: corresponde a um curso do êmbolo ou a meia volta da árvore de 
manivelas (180 graus). Assim como corresponde a um deslocamento do êmbolo 
no cilindro. 
3.1. Motores do ciclo Otto 
 
3.1.1 Motores de ciclo Otto de 4 Tempos 
 
Os motores de quatro tempos do ciclo Otto compreendem as seguintes fases: 
- Admissão: o êmbolo desloca-se do PMS movimentando-se para baixo até o PMI, criando uma 
depressão no interior da câmara (Figura 11). A válvula de admissão está aberta, fazendo com que 
a mistura (ar + combustível) seja aspirada para o interior do cilindro. A válvula de admissão 
abre-se um pouco antes do êmbolo iniciar a descida e se fecha logo depois que o mesmo atinge o 
PMI. Neste tempo a árvore de manivelas deu um giro de 180 graus. 
- Compressão: o êmbolo começa a deslocar-se do PMI, fecha-se a válvula de admissão, a 
mistura admitida no tempo anterior é então comprimida na câmara de combustão até que o 
êmbolo atinja o PMS (Figura 11). A árvore de manivelas deu mais um giro de 180 graus, 
completando agora uma volta completa. 
- Explosão/expansão: a vela de ignição produz uma centelha elétrica (um pouco antes do 
êmbolo atingir o PMS na fase de compressão), provocando a combustão da mistura ar + 
 
12 
 
combustível (Figura 11), que gera um aumento da temperatura e pressão no interior do cilindro, 
impulsionando o êmbolo do PMS ao PMI. A força do êmbolo transmite-se a biela e desta à 
árvore de manivelas, provocando assim o movimento de rotação do motor. É o chamado tempo 
motor, pois este é o único tempo em que o motor realiza trabalho, a energia produzida nesse 
tempo é acumulada pela massa do volante. Durante a expansão as válvulas de admissão e escape 
permanecem fechadas. A árvore de manivelas deu mais um giro de 180 graus, completando 
agora uma volta e meia. 
- Escape: ocorre o escape dos gases da combustão para o meio externo, a válvula de escape abre-
se e o movimento ascendente do êmbolo do PMI ao PMS elimina os gases (Figura 11). Quando o 
êmbolo atinge o ponto morto superior deste tempo, o cilindro já está pronto para reiniciar o ciclo, 
ou seja, recebe uma nova mistura de ar + combustível. Neste tempo a árvore de manivelas deu 
mais um giro de 180 graus, o que, somado aos demais tempos, corresponde a duas voltas 
completas. 
 
 
 
 
 
 
 
 
 
Figura 11 - Motores de quatro tempos do ciclo Otto compreendido em quatro fases (Fonte: 
Mialhe, 1980). 
 
3.1.2 Motores de ciclo Otto de 2 Tempos 
 
Os motores de dois tempos do ciclo Otto compreendem as seguintes fases: 
- Compressão e admissão: durante o movimento ascendente, do PMI ao PMS, o canal de 
admissão e as janelas de admissão e escape permanecem fechadas, devido à geometria de 
posição das mesmas em relação ao curso do êmbolo (Figura 12). Nessas condições, origina-se 
um vácuo parcial na parte inferior do motor, ao mesmo tempo que ocorre a compressão da 
mistura ar + combustível, na câmara de compressão. Próximo do PMS, a saia do êmbolo abre a 
 
Admissão Combustão Escape Compressão 
 
13 
 
janela de admissão e o vácuo formado succiona a mistura ar + combustível para a parte inferior 
do motor. 
- Expansão e escape: quando o êmbolo aproxima-se do PMS, ocorre uma centelha elétrica na 
vela e a conseqüência ignição da mistura comprimida (Figura 12). A pressão de expansão dos 
gases proveniente da combustãoatua sobre a cabeça do êmbolo, empurrando-o em direção ao 
PMI. Durante o curso descendente, o canal e a janela de admissão permanecem fechados, 
comprimindo-se assim a mistura ar + combustível, admitida na parte inferior do motor. Próximo 
do PMI, a cabeça do êmbolo abre o canal de admissão e a janela de escape, permitindo que os 
gases queimados sejam expelidos, ao mesmo tempo que a nova mistura ar + combustível é 
injetada para a câmara do cilindro, através do canal de admissão. Desta forma, a nova mistura, ao 
entrar no cilindro, ajuda a expelir os gases queimados pela janela de escape, fato comumente 
designado por ´´lavágem`` do cilindro. 
 
 
Figura 12 - Motores de quatro tempos do ciclo Otto compreendido em duas fases (Fonte: Mialhe, 
1980). 
3.2. Motores do ciclo Diesel 
 
Os motores de quatro tempos do ciclo Diesel compreendem as seguintes fases: 
- Admissão: neste tempo o êmbolo movimenta-se do PMS até o PMI. Com a válvula de 
admissão aberta ocorre a aspiração somente de ar no interior do cilindro (Figura 13). Diferencia-
se do ciclo Otto que ocorre a aspiração da mistura ar + combustível. A árvore de manivelas gira 
180 graus. 
- Compressão: com as duas válvulas fechadas, o êmbolo desloca-se do PMI até o PMS, 
ocorrendo então a compressão do ar (diferencia-se do ciclo Otto pelas altas pressões de 
 
Admissão e compressão Expansão e escape 
 
14 
 
compressão atingidas) (Figura 13). Neste tempo a árvore de manivelas gira mais 180 graus, 
completando 1 volta. 
- Explosão/expansão: quando o êmbolo está em sua posição máxima (PMS), o bico injetor 
pulveriza fina e fortemente certo volume de combustível no interior da câmara de combustão 
(Figura 13). Neste momento o ar está a uma temperatura de 500 a 700ºC e a alta pressão, o diesel 
injetado nessas condições faz com que ocorra a auto-ignição, impulsionando o êmbolo a PMI, 
fazendo com que a biela transmita a força à árvore de manivela. Neste tempo ocorre a realização 
de trabalho mecânico. 
- Escape: neste tempo, com a válvula de escape aberta, os gases queimados são expelidos para 
fora do cilindro pelo movimento do êmbolo do PMI ao PMS (Figura 13), encerrando-se assim o 
ciclo. 
 
 
 
 
 
 
 
 
 
Figura 13 - Motores de quatro tempos do ciclo Diesel compreendido em quatro fases (Fonte: 
Mialhe, 1980). 
4. SISTEMAS COMPLEMENTARES 
 
São os sistemas que proporcionam as condições necessárias para que o processo 
de transformação da energia interna dos combustíveis em trabalho mecânico se realize de forma 
eficiente e contínua. Os sistemas complementares dos motores de combustão interna são: 
- Sistema de válvulas 
- Sistema de alimentação 
- Sistema de arrefecimento 
- Sistema de lubrificação 
- Sistema de partida 
 
Admissão Compressão Expansão Escape 
Ar 
Gás 
Entrada 
diesel 
 
15 
 
4.1. Sistema de válvulas 
 
É o sistema responsável pelo controle da entrada e saída de gases entre a câmara 
do cilindro e o meio externo. 
Existem dois tipos de sistema de comando de válvulas: direto e indireto. O 
comando de válvulas direto é constituído por uma árvore de comando de válvulas, engrenagens, 
tucho, ressaltos ou cames, mola e válvulas (Figura 14-I). A árvore de comando de válvulas é 
acionada pela árvore de manivelas por meio de engrenagens (Figura 15). Ao longo da árvore de 
comando de válvulas encontram-se os ressaltos ou cames, cujo número depende do número de 
cilindros, sendo dois por cilindro. A árvore de comando de válvulas ao girar faz com que os 
ressaltos levantem os tuchos, os quais atuam diretamente no pé da válvula, comprimindo a mola 
e acionando a válvula. Conforme a árvore de comando gira, o ressalto baixo o tucho, a mola 
descomprime fazendo com que a válvula se feche, encaixando-se fortemente na sua base. 
O comando de válvulas indireto apresenta a mesma constituição do direto 
acrescentando as varetas e os balancins (Figura 14-II). A diferença no funcionamento dos dois 
comandos é que no indireto, o acionamento das válvulas é feito através das varetas e dos 
balancins, que se encontram entre o tucho e o pé da válvula. Os ressaltos movimentam os tuchos 
e as varetas, elevando uma das extremidades dos balancins, enquanto que a outra comprime a 
mola e aciona as válvulas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 14 – Tipos de mecanismos de comando de válvulas sendo: I, sistema direto e II, sistema 
indireto (Fonte: Mialhe, 1980). 
 
 
I II 
 
16 
 
Relativo ao período de abertura da válvula de admissão constata-se que esta se 
abra antes que o êmbolo atinja o PMS, durante o tempo de escape do último cilindro. Isto para 
que o fluxo de ar de admissão auxilie e expulsão dos gases queimados do último ciclo. Por outro 
lado, o fluxo de ar no seu acesso ao cilindro não tem tempo suficiente para encher 
completamente o volume deslocado pelo êmbolo. Por esta razão, a válvula de admissão 
permanece aberta até depois do PMI, permitindo que o fluxo de ar continue a entrar no cilindro, 
por causa de sua inércia. 
O período em que ambas as válvulas permanecem fechadas, observando o 
diagrama na Figura 15, mostra que esse período é indicado pelo arco de traço cheio, que 
corresponde ao tempo de compressão, e pelo traço tracejado, que corresponde ao tempo de 
expansão. 
 
Figura 15 – Partes componentes de uma sistema de comando de válvulas do tipo indireto, e 
respectivo diagrama de funcionamento, com ênfaze a válvula de admissão de um 
cilindro (Fonte: Mialhe, 1980). 
 
O período de abertura da válvula de escape acontece antes do êmbolo ter 
atingindo o PMI e fecha-se depois de ele ter ultrapassado o PMS. A abertura antes do PMI 
contribui para uma melhor exaustão dos gases queimados, devido à pressão de expansão ainda 
remanescente. 
 
17 
 
A regulagem das válvulas é de fundamental importância para o bom desempenho 
do motor, pois estas deverão estar sincronizadas com o êmbolo no cilindro (Figura 16). O 
aquecimento das válvulas durante o funcionamento do motor provoca dilatação de suas hastes. 
Por essa razão, há necessidade de deixar uma folga correta entre a extremidade da haste da 
válvula que esta em torno de 0,2 mm na válvula de admissão e 0,3 mm na válvula de escape, 
medida com o motor frio. 
 
 
Figura 16 – Regulagem da folga da válvula de um sistema de comando indireto, com detalhe do 
parafuso de regulagem que deverá ser movimentado pela chave-de-fenda o qual 
afasta-se ou aproxima a extremidade do balancim em relação à haste da válvula. A 
folga é medida por um calibre de lâminas (Finte: Mialhe, 1980). 
 
 Nos motores de quatro tempos encontram-se duas válvulas por cilindro: uma 
válvula de admissão, através da qual é admitido ar (ciclo Diesel) ou ar + combustível (ciclo Otto) 
na câmara do cilindro e uma válvula de escape através da qual os gases oriundos da combustão 
são expelidos para fora da câmara, indo para o coletor de escape e depois para o meio externo. 
As válvulas abrem somente uma vez por ciclo do motor, ou seja, a árvore de 
comando de válvulas da uma volta por ciclo (360
o
) enquanto que a árvore de manivelas das duas 
voltas por ciclo (720
o
). Isso ocorre porque as engrenagens responsáveis pela transmissão do 
movimento da árvore de manivelas para a árvore de comando de válvulas possuem tamanhos 
diferentes. A engrenagem fixa à árvore de comando de válvulas possui o dobro do número de 
dentes da engrenagem da árvore de manivelas, portanto, a velocidade angular da árvore de 
comando de válvulas é a metade da árvore de manivelas. 
O momento de abertura e fechamento das válvulas é determinado de forma a 
resultar numa maior eficiência do motor, ou seja, proporcionar uma melhoria na entrada de ar e 
 
18 
 
saída dos gases queimados dos cilindros. Por essa razão, a abertura e fechamento das válvulas 
não coincidem com os momentos que o êmbolo encontra-se nos pontos mortos. 
Para proporcionar maior entrada de ar no cilindro e auxiliara expulsão dos gases 
queimados no último ciclo, a válvula de admissão abre-se antes que o êmbolo atinja o ponto 
morto superior no tempo de escape do último ciclo, e para preencher completamente o volume 
deslocado pelo êmbolo, a válvula de admissão permanece aberta mesmo depois do ponto morto 
inferior. Por outro lado, a válvula de escape abre-se antes do êmbolo atingir o ponto morto 
inferior no tempo de expansão, para que ocorra uma melhor exaustão dos gases queimados. O 
fechamento da válvula de escape ocorre após o êmbolo ter atingido o ponto morto superior, para 
que ocorra uma melhor lavagem do cilindro. 
4.2. Sistema de alimentação 
 
É um conjunto de mecanismos que tem por função fornecer ao motor quantidades 
adequadas de ar e combustível de acordo com as condições que lhe são impostas como 
velocidade e carga. 
4.2.1. Sistema de alimentação de combustível 
 
Esse sistema deve dosar corretamente o combustível e pulverizá-lo na câmara de 
combustão em partículas muito pequenas, de forma a proporcionar uma melhor combustão. 
Existem algumas diferenças entre o sistema de alimentação de combustível de motores do ciclo 
Otto e Diesel. Em motores do ciclo Otto, a dosagem do combustível a ser misturado com o ar é 
feita pelo carburador (Figura 17). Nos motores de ciclo Diesel, essa dosagem é feita pela bomba 
e bico injetor (Figura 18). 
No ciclo Otto o primeiro tempo do motor admite a mistura de ar + combustível, 
sendo esta feita pelo carburador, que tem como função, dosá-la em proporções adequadas e 
enviá-la ao motor de acordo com as condições de carga e velocidade. A carburação consiste na 
pulverização do combustível líquido em proporções adequadas com o ar, que é a fonte de 
oxigênio para a queima da mistura. Um carburador básico deve possuir um tubo venturi 
(difusor), dentro deste existe um vaporizador, que está ligado a um reservatório com bóia, a qual 
mantém sempre no mesmo nível o combustível. Quando o ar é succionado pelo êmbolo, passa 
pelo difusor com alta velocidade e arrasta gotículas de combustível. A quantidade de 
combustível é dosada através de uma agulha que limita sua passagem. O controle da mistura 
gasosa é feita através de uma válvula de borboleta localizada na saída do tubo venturi. 
 
 
19 
 
 
 
 
 
 
 
 
 
 
 
Figura 17 – Carburador dos motores de ciclo Otto sendo: 1, câmara de sucção em marcha lenta 
(tubo de venturi); 2, abertura do sistema de sucção de gasolina em marcha lenta; 3, 
câmara de sucção de ar; 4, torneira / parafuso de controle de ar (ajustável); 5, 
válvula de borboleta localizada na saída do tubo venturi (Fonte: Berlijn et al. 1982). 
 
A constituição básica do sistema de alimentação de combustível (ciclo Diesel) é: 
tanque, bomba manual, filtros, bomba alimentadora, bomba injetora, bicos injetores, tubos de 
pressão e tubos de retorno. Podem-se distinguir dois tipos de sistema de alimentação: por 
gravidade e forçado. 
No sistema por gravidade, o tanque é colocado em um nível superior ao do motor 
e o combustível flui por gravidade até a bomba manual para se efetuar a sangria (retirada de 
bolhas de ar) e depois para o filtro para retenção de impurezas e decantação de água. 
Posteriormente, o combustível é conduzido até a bomba injetora. 
No sistema de alimentação forçada, o combustível é succionado do tanque até a 
bomba alimentadora, a qual apresenta um pré-filtro de copo incorporado. A bomba envia o 
combustível, sob pressão, aos filtros. São dois filtros colocados em série e que recebem a 
denominação de primário e secundário. O combustível sai dos filtros isento de impurezas e segue 
até a bomba injetora, a qual o dosa e envia-o aos bicos injetores sob alta pressão. Os bicos 
injetores ficam localizados nos porta injetores acoplados no cabeçote do motor. Um retorno de 
combustível ao tanque é apresentado pela bomba injetora, pelos filtros e bicos, o qual é feito 
através dos tubos de retorno. 
 
 
 
20 
 
 
Figura 18 – Constituição geral de injeção dos motores diesel sendo: I, sistema com alimentação 
forçada e II, sistema com alimentação por gravidade (Fonte: Mialhe, 1980). 
 
 
 
 
I 
II 
 
21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 19 – Bombas injetoras com vistas em corte utilizadas em motores a diesel sendo: I, 
bomba CAV e II, bomba Boch (Fonte: Mialhe, 1980). 
 
 
I 
II 
 
22 
 
4.2.2. Sistema de injeção eletrônica 
 
Nos motores mais modernos, aparecem os sistemas de injeção eletrônica, o 
sistema single point (Figura 20) tem apenas um bico injetor, o qual joga o combustível no duto 
de admissão e este o divide para todos os cilindros do motor. O sistema multpoint (Figura 20), 
mais eficiente, tem um bico para cada cilindro do motor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 20 – Sistema de injeção eletrônica sendo: I, sistema single point; II, sistema multpoint e 
III, sistema de injeção multi point (Fonte: http://www.envenenado.com.br, 2011). 
 
 
I II 
II
I 
 
23 
 
Também, no sistema multpoint os bicos injetam o combustível no coletor de 
admissão simultaneamente para todos os cilindros. O volume de combustível é eletronicamente 
dosado pela média entre os cilindros. Existe ainda o sistema multipoint seqüencial, onde os bicos 
injetam o combustível seqüencialmente, permitindo um maior controle no consumo de 
combustível. 
 
4.2.3. Sistema de alimentação de ar 
 
A função desse sistema é fazer com que seja admitido no cilindro quantidades de 
ar e que o mesmo esteja livre de impurezas. Portanto, é necessário um sistema de limpeza do ar, 
podendo ser encontrado dois tipos: 
Sistema de limpeza a banho de óleo: as impurezas maiores com folhas, 
partículas maiores de terra, as quais são retiradas no pré-purificador, sendo conduzidas 
posteriormente ao copo de sedimentação (Figura 21). O ar segue por um tubo até a cuba de óleo, 
entrando em contato com o mesmo, o que faz com que as partículas menores de poeira fiquem 
retidas nele. O ar, acompanhado de gotículas de óleo, segue até os elementos filtrantes, os quais 
retêm esse óleo juntamente com partículas ainda contidas nele. Ao sair do filtro, o ar está livre de 
impurezas e então, é conduzido aos cilindros pelos tubos de admissão. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 21 – Filtro de ar banho de óleo e seus detalhes construtivos (Fonte: Mialhe, 1980). 
 
24 
 
Figura 22 – Conjunto de elementos filtrantes de ar seco sendo: A, estrutura suporte; B, filtro 
primário; C, filtro secundário ou de segurança; D, sensor do indicador de restrição de 
falta de ar eletrônico (Fonte: Senar, 2003). 
 
Sistema de limpeza de ar seco: as impurezas são separadas por movimento 
inercial em um pré-purificador tipo ciclone, no qual o ar é admitido adquire um movimento 
circular (Figura 22). A força centrífuga faz com que as impurezas maiores sejam depositadas 
num reservatório. Em seguida, o ar passa pelos elementos filtrantes, primário e secundário. O 
primário é confeccionado de papel e o secundário de feltro. Cerca de 99,9% das partículas 
sólidas em suspensão são retidas no sistema, sendo o ar, então, conduzido ao motor. A diferença 
do sistema a óleo é que ele consegue alta eficiência mesmo em rotações baixas. 
 
4.2.3.1. Sobre-alimentação 
 
Sobre-alimentação é o ato de sobre-alimentar o motor, ou seja, substituir a 
admissão normal por uma mais eficiente para se obter um melhor enchimento de ar no cilindro. 
A B 
C D 
 
25 
 
É um recurso que aumenta a potência de um motor, sem incrementar a cilindrada e sem utilizar 
regimes de rotação muito alta. O compressor de sobre-alimentação envia ar com pressão superior 
á atmosférica aos cilindros, introduzindo uma quantidade maior de ar. 
Nos motores sobre-alimentados de ciclo Otto, adotam-se taxas de compressão 
mais limitadas para evitar o risco de detonação. Nos modelos á dieselesse risco não existe. Em 
compensação, se a pressão de sobre-alimentação é elevada, a taxa de compressão é reduzida para 
diminuir a solicitação aos componentes mecânicos. Como a sobre-alimentação também 
determina um aumento de calor ao qual são submetidos certos componentes como pistões, 
válvulas, essas peças muitas vezes são fabricadas com materiais mais sofisticados do que os 
empregados nas versões naturalmente aspiradas. 
Como aumenta-se o volume de ar no interior do cilindro, pode-se injetar mais 
combustível, podendo ter um incremento de potência e torque em até 30%, sem diminuir a vida 
útil do motor. 
Um motor de aspiração natural necessita de pressão atmosférica para encher os 
cilindros de ar, que será queimado com o combustível, para produzir força mecânica. O tempo de 
entrada de ar (quando a válvula está aberta) é relativamente curto, e esta quantidade de ar limita 
a injeção de combustível e, como conseqüência, a potência do motor. 
Para se obter um maior desempenho no motor, podem-se utilizar as seguintes 
opções: motor aspirado, compressor e turbocompressor (Figura 23). 
 
Figura 23 – Possibilidades de sobre-alimentação do motor com ar no sistema turbocompressor 
(Mialhe, 1980). 
 
26 
 
4.2.3.2. Motor aspirado 
 
O método aspirado baseia-se em obter maior potência do motor através da 
substituição da árvore de comando de válvulas, este faz com que as válvulas permaneçam abertas 
por mais tempo, proporcionando assim um melhor enchimento dos cilindros. A substituição da 
árvore de comando de válvulas sempre deve ser acompanhada da recalibração do carburador ou 
a substituição do mesmo e retrabalho do cabeçote, além de velas, bobina e filtro de ar. A 
principal vantagem desse método é o baixo custo. As desvantagens ficam por conta da perda de 
torque em baixas rotações e a instabilidade da marcha lenta. 
4.2.3.3. Compressor 
 
O compressor é um dispositivo que fornece ar, ou mistura carburada ao motor a 
uma pressão superior á atmosférica. Os compressores volumétricos que a cada giro da árvore 
deslocam sempre a mesma quantidade de ar são acionados pelo motor, roubando-lhe certa 
potência. Os compressores volumétricos são acionados pelo motor por meio de correias 
dentadas, cintas, engrenagens ou correias trapezoidais. O roubo de potência pode ser relevante se 
a pressão de sobre-alimentação for alta e determina uma elevação considerável do consumo 
específico. Em comparação com o turbocompressor, o compressor volumétrico assegura uma 
notável pressão de sobre-alimentação também em baixos regimes de rotação e permite que o 
motor responda prontamente em quaisquer condições de utilização. 
 
4.2.3.4. Turbocompressor 
 
O turbocompressor, instalado sobre o coletor de escape do motor, consiste de um 
conjunto de compressor centrífugo e uma turbina centrípeta acionada por gases de escape 
resultante da queima de combustível no motor. Ele alimenta o motor de graça, pois utiliza a 
energia contida nesses gases, não roubando potência do motor. Para existir uma inércia limitada, 
assegurando uma resposta imediata, os turbocompressores possuem rotores de dimensões 
reduzidas. Um eixo que atravessa o cárter central, apoiado por dois rolamentos lubrificados e 
arrefecidos por óleo sobre pressão proveniente do sistema de lubrificação do motor, liga o rotor 
da turbina diretamente ao rotor do compressor. As dimensões reduzidas, o peso limitado e a 
grande liberdade de posicionamento tornam os turbo-compressores muito adequados ao uso no 
campo automobilístico, uma vez que a ligação do motor é feita apenas por tubulações. 
O funcionamento baseia-se na saída dos gases queimados no quarto tempo do 
motor, que acionam uma turbina, enquanto que o excesso desses são expulsos pela válvula de 
alívio. A turbina, ao girar, movimenta o compressor que suga o ar ambiente e o comprime no 
motor, fazendo passar pelo radiador para resfriá-lo. Daqui vai ao carburador e depois ao cilindro 
(ciclo Otto) ou diretamente ao cilindro (ciclo Diesel). 
 
 
27 
 
4.2.3.5. Intercooler 
 
É um sistema de troca de calor, geralmente do tipo ar-ar, existindo também o 
intercooler do tipo ar-água. É usado para abaixar a temperatura do ar enviado aos cilindros nos 
motores turbo-alimentados, quando se adotam pressões elevadas de alimentação. Trata-se, então, 
de uma espécie de radiador do turbo. Tem aparência semelhante á de um radiador comum, mas 
normalmente é fabricado em um material de liga leve. No compressor, o ar pode atingir 
temperaturas elevadas de 160 à 200
o
C, e cabe ao intercooler abaixá-las. Dessa forma, o ar 
comprimido que entra no cilindro é mais denso, o que auxilia o rendimento do sistema e diminui 
a solicitação térmica exigida a componentes como válvula de exaustão, pistões e paredes das 
câmaras. O intercooler resfria ainda mais o ar que entra no cilindro, cabendo um volume maior, 
aumentando assim a potência e o torque. 
 
4.2.3.6 Cuidados com o motor turbo 
 
Durante a operação, o turbocompressor gira em alta rotação (cerca de 80.000 
rpm). Portanto, ao ligar o motor, deve-se mantê-lo girando sem carga por aproximadamente um 
minuto. Isso é necessário para estabilizar o fluxo de óleo de lubrificação antes de aumentar a 
rotação. Da mesma forma, antes de desligar o motor, mantenha-o girando sem carga por cerca de 
um minuto, a fim de permitir o esfriamento uniforme da turbina e do coletor. 
 
4.3. Sistema de arrefecimento 
 
O motor de combustão interna necessita de uma temperatura ótima para converter 
a energia do combustível em trabalho de forma eficiente. Para tanto, é necessário a existência de 
um sistema que mantenha a temperatura interna do motor dentro de certos limites. 
Esse sistema é o de arrefecimento. Quando o motor fica parado por muito tempo, 
sua temperatura interna fica abaixo do valor ótimo ao seu funcionamento, sendo necessário 
elevá-la. É o sistema de arrefecimento responsável por tal função. Por outro lado, somente 25 a 
35% da energia dos combustíveis são convertida em trabalho, os 65 a 75% restante são perdidos 
na forma de calor, o qual é transferido ao meio externo pelo sistema de arrefecimento. 
Dessa forma, deve-se dizer que a função do sistema de arrefecimento é manter a 
temperatura interna do motor a um nível ótimo para seu funcionamento, sendo errado dizer que 
sua função é de refrigeração. 
Para transferir o calor para o meio externo, utiliza-se um meio arrefecedor, o qual 
fica em contato com as partes do motor, absorvendo o calor. Os meios arrefecedores mais 
utilizados são o ar e a água. Assim, os tipos de sistemas de arrefecimento são: 
Sistema de arrefecimento a ar: usado em aviões, motocicletas, motores de 
veículos e alguns tratores. Esses motores apresentam aletas que tem por função aumentar a 
superfície de contato com o ar e, assim, melhorar o escoamento do calor (Figura 24-A). 
 
28 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 24 – Sistema de arrefecimentos sendo: A, sistema a ar; B, sistema a água; C, sistema a ar 
e água; D, vista de um radiador e seus elementos; E, detalhes do funcionamento da 
tampa do radiador (Fonte: Mialhe, 1980). 
 
 
 
 
B 
 
 
 
 C D 
E 
A B 
 
29 
 
Sistema de arrefecimento a água: usado em motores estacionários agrícolas e 
industriais. O controle da temperatura é feito através de uma válvula termostática e só ocorre 
superaquecimento se faltar água (Figura 24-B). 
Sistema de arrefecimento a ar e água: para motores de pequena, média e alta 
potência de tratores e veículos. A água absorve o calor dos cilindros e transfere-o ao ar por meio 
de um radiador (Figura 24-C). 
 
4.4. Sistema partida 
 
O sistema de partida é o responsável pelo início do funcionamento dos motores de 
combustão interna, promovendo asprimeiras explosões. Nos motores de uso agrícola, existem 
diversos tipos de partida: 
Partida manual: através de corda ou manivela. Esse sistema de corda é 
encontrado em motores estacionários e motosserras onde uma corda é enrolada no volante. A 
partida é dada puxando-se a corda, a qual movimenta o volante e este transmite o movimento à 
árvore de manivelas, à biela e finalmente aos êmbolos, iniciando, então, as primeiras explosões. 
As manivelas são encontradas em motores diesel monocilíndricos, onde a manivela age na 
árvore de manivelas até conseguir a rotação suficiente para o funcionamento do motor. 
Partida com motores a gasolina: esse sistema é composto por um motor de 
partida a gasolina cuja partida é dada por um cordão enrolado ao volante. O movimento é 
transmitido ao motor a diesel através de um conjunto pinhão embreagem. 
Partida com gasolina: alguns motores a diesel apresentam uma válvula de 
arranque, é uma câmara auxiliar com uma vela de ignição (Figura 25). A válvula de arranque 
serve para abaixar a razão de compressão até um valor igual a um motor a gasolina. O motor 
começa a funcionar com gasolina e depois de algum tempo passa a diesel. 
Partida com motor elétrico: atualmente, os motores de tratores apresentam como 
sistema de partida, motores elétricos de corrente contínua (Figura 26). Essa corrente contínua é 
proveniente da bateria. O movimento do motor elétrico é transferido ao motor do trator através 
de um pinhão que se acopla a uma coroa dentada fixa ao volante do motor. Ao ligar a chave de 
contato no painel do trator uma corrente elétrica passa para o motor de arranque, o pinhão se 
acopla à coroa e, só depois do engrenamento, que o motor de arranque é acionado. Ao iniciar o 
movimento do motor do trator, ocorre o desacoplamento da coroa e pinhão para que não haja 
danos ao motor de arranque. 
 
4.5. Sistema de lubrificação 
 
Lubrificação é a interposição de substâncias oleosas entre superfícies em contado 
de órgãos em movimento relativo. Em um motor diversas peças deslizam umas sobre as outras 
 
30 
 
gerando atrito e provocando o aquecimento e desgaste. Esse efeito é contornado através de uma 
lubrificação correta, e é o sistema de lubrificação o responsável pela manutenção de uma película 
de lubrificante entre essas peças em movimento. Assim, o sistema de lubrificação dos motores 
apresenta 4 funções básicas: 
- permitir que o óleo lubrificante forme uma película na interface de contato entre as superfícies 
móveis, reduzindo o atrito e, por conseqüência, limitando a perda de energia mecânica e o 
desgaste dos materiais, facilitando o movimento das partes deslizantes; 
- Promover uma circulação ininterrupta do óleo nos pontos que exigem lubrificação a fim de 
contribuir para manter dentro de certos limites a temperatura das partes móveis, sob as quais a 
ação do sistema de arrefecimento não é efetivo, tais como nos pistões, recebendo o calor e 
dissipando-o no cárter; 
- Fazer com que o óleo lubrificante promova a limpeza dos pontos de lubrificação, removendo 
resíduos da combustão, partículas metálicas; 
- Permitir que o óleo forme uma fina película de vedação entre a parede do cilindro e os anéis do 
êmbolo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 25 – Sistema de partida por conversão temporária de um motor diesel em motor a 
gasolina, sendo aberta uma terceira válvula, além das de admissão e escape, põe em 
comunicação a câmara auxiliar com a de combustão, durante o período inicial de 
funcionamento como motor a gasolina (Fonte: Mialhe, 1980). 
 
31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 26 – Sistema de partida com motor elétrico sendo: 1, bateria; 2, cabo de alta amperagem 
entre bateria e motor de arranque; 3, interruptos do tipo eletromagnético; 4, chave de 
contato; 5, mecanismo de engate para conectar pinhão e corroa; 6, pinhão e corroa; 7, 
mola para desconectar pinhão e corroa do volante depois do arranque; 8, 
amperímetro no circuito de carga; 9, circuito de carga do alternador aos reguladores; 
10, chave para acionamento da partida do motor de arranque o qual aciona o circuito 
eletromagnético do motor de partida; 11, conexão luzes e acessórios elétricos; 12, 
posição da chave de contato desconectando o circuito de carga; 13, posição da chave 
de contato conectando aos circuitos; 14, posição da chave para ativar o circuito do 
interruptor de arranque (eletromagnético) (Fonte: Berlijn et al., 1982). 
 
Os sistemas de lubrificação são classificados de acordo com a forma de distribuição 
do óleo pelas diferentes partes do motor, podendo ser encontrados os seguintes tipos: sistema de 
 
32 
 
mistura com combustível, sistema de borrifo, sistema de circulação e borrifo e sistema de 
circulação sob pressão. 
O sistema de mistura com combustível é encontrado em motores 2 tempos, e o 
lubrificante é adicionado ao combustível. 
O sistema de borrifo é encontrado nos motores estacionários (Figura 27-A). Nesse 
sistema, um prolongamento localizado no pé da biela (pescador) toca no óleo contido no cárter 
fazendo com que o lubrificante seja jogado até as demais partes do motor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 27 – Sistemas de lubrificação utilizados nos motores agrícolas sendo: A, Sistema por 
borrifo; B, sistema de lubrificação e borrifo; C, sistema de lubrificação sob pressão 
(Fonte: Mialhe, 1980). 
A B 
C 
 
33 
 
No sistema de lubrificação e borrifo (Figura 27-B), o óleo do cárter é enviado até as 
calhas através de uma bomba, onde é borrifado pelo pescador. 
O sistema de lubrificação sob pressão (Figura 27-C) é encontrado nos motores dos 
tratores e apresenta a seguinte constituição: 
- cárter: armazena o óleo lubrificante e abriga a bomba de óleo; 
- bomba de óleo: distribui óleo armazenado no cárter para as partes internas do 
motor; 
- válvula reguladora de pressão: mantém constante a pressão, permitindo uma 
vazão uniforme de escoamento do óleo nos pontos de lubrificação. Localiza-se 
próximo à saída da bomba; 
- filtros: retiram as impurezas do lubrificante, tais como partículas metálicas, 
resíduos da combustão; 
- manômetros: indica a resistência que o óleo encontra ao ser forçado pelo sistema, 
ou seja, indica a pressão do óleo. 
Esse sistema apresenta o seguinte funcionamento: a bomba capta o óleo do cárter e 
envia-o a árvore de manivelas e a rede de distribuição. O eixo de manivelas possui orifícios que 
levam o óleo aos mancais das bielas e aos eixos fixos (Figura 28). A biela possui um pequeno 
orifício coincidindo com o furo de escavação da árvore de manivelas, fazendo com que o óleo 
seja esguichado para as paredes do cilindro. Como a bomba recebe acionamento do eixo de 
distribuição, quando aumenta a rotação do motor, a pressão também aumenta. Há um limite 
operacional e, por isso, existe a válvula de alívio para controlar a pressão, a qual é indicada por 
um manômetro. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 28 – Orifícios localizados em certas posições na biela permitem que jatos de lubrificantes 
sob pressão atinjam determinados pontos do êmbolo e cilindro (Fonte: Mialhe, 
1980). 
 
34 
 
4.5.1 Princípio de lubrificação dos mancais 
 
 As fases da formação de uma película de óleo sob o munhão dos mancais da 
árvore de manivelas são mostradas na Figura 29. Quando a árvore começa a girar, o pequeno 
movimento permitido pela folga entre o munhão e o apoio possibilita a formação de uma película 
de óleo. Aumentando-se a velocidade angular da árvore, surge o efeito de bombeamento do 
munhão, separando-se as superfícies de contato por uma lâmina de óleo em forma de cunha. 
Nessas condições, não ocorre contato de metal contra metal (atrito seco) e a carga é suportada 
pela pressão do lubrificante (atrito fluido), oriundo do movimento relativo do munhão e da 
viscosidade do óleo.Portanto, uma vez que se tenha estabelecido uma película, as propriedades 
químicas do lubrificante diminuem de importância à medida que cada munhão e mancal se 
transformam em bombas de óleo. Quando a folga dos mancais é aumentada, devido ao desgaste 
natural do motor pelo uso, ocorrerá um extravasamento maior de óleo dos mancais, conforme 
mostra a Figura 29. 
Figura 29 – Fases da formação de película de óleo em e da ´´cunha`` de lubrificação que separam 
as superfícies do mancal da árvore de manivelas. Quando a parte carregada do 
mancal apresenta uma ranhura, a cunha de óleo é interrompida, ocorrendo nesse 
ponto atrito seco (Fonte: Mialhe, 1980). 
 
35 
 
5. MANUTENÇAO DOS MOTORES DOS TRATORES AGRÍCOLAS 
 
Manutenção consiste em toda atividade realizada para se reparar ou conservar um 
equipamento. Portanto existem 2 tipos de manutenção. Quando o objetivo é reparar alguma falha 
devido ao desgaste natural ou quebra acidental de algum componente, diz-se então, que é uma 
manutenção corretiva. Quando o objetivo é conservar o equipamento para se evitar alguma falha, 
através de inspeção e ajuste, diz-se que é uma manutenção periódica. Na maioria dos casos, a 
manutenção corretiva é mais onerosa por exigir troca de peças e, em algumas vezes, requerer 
serviços especializados não podendo ser executada pelo próprio operador. A necessidade da 
manutenção corretiva pode ser por falta de manutenção periódica ou quando esta não é 
executada de forma correta. Portanto, a manutenção periódica, quando executada corretamente e 
com a freqüência necessária proporciona as condições para o perfeito funcionamento do motor 
ou equipamento. A freqüência com que é realizada, ou seja, o intervalo de tempo entre um 
mesmo trabalho de manutenção é que determina as diversas manutenções periódicas a serem 
realizadas. Esse intervalo de tempo e dado por hora de trabalho, e no caso de tratores, deve ser 
controlado pelo horímetro do painel de instrumentos. Assim tem-se a manutenção de 10 horas, 
50 horas, 200 horas etc. 
Nos motores agrícolas, as manutenções são realizadas nos sistemas 
complementares. 
5. 1 Sistema de válvulas 
 
O funcionamento do motor provoca o aquecimento de seus componentes que 
conseqüentemente podem sofrer dilatação, como por exemplo, as hastes das válvulas. Por esse 
motivo, é preciso deixar uma folga para compensar essa dilatação, entre a extremidade da haste e 
a ponta do braço do balancim (no comando indireto) ou entre a extremidade da haste e o 
parafuso de regulagem (no comando direto). 
Essa folga é de aproximadamente 0,2 mm e 0,3 mm, respectivamente para a 
válvula de admissão e escape (Figura 16). A regulagem deve ser feita com um canivete de 
lâminas próprio para essa atividade e com o motor frio. 
Se a regulagem não for feita corretamente e a folga for menor, a válvula não 
fechará corretamente e causará perda de compressão. Além disso, as válvulas abrirão muito cedo 
e fecharão muito tarde. Se a folga for maior, as válvulas não abriram completamente, 
prejudicando a admissão de ar que acaba causando deficiência na combustão e impedindo a 
expulsão completa dos gases da combustão. 
 
36 
 
 
5. 2 Sistema de lubrificação 
 
Para se obter um funcionamento adequado do sistema de lubrificação, é de 
extrema importância a manutenção regular do mesmo. A cada 10 horas de trabalho, deve-se 
verificar o nível de óleo do motor. Para realizar tal tarefa, deve-se manter o trator em terreno 
nivelado e de preferência com o motor frio. Se o motor estiver funcionando, deve-se pará-lo e 
aguardar cerca de 15 minutos para que o óleo retorne ao cárter. Em seguida retire a vareta, 
limpe-a e recoloque-a no bocal. É importante observar que a vareta deve ser limpa com um pano, 
evitando-se limpar com estopa, pois a mesma pode soltar fiapo, o qual pode contaminar o óleo 
ao retornar a vareta no bocal. Retire novamente a vareta e verifique o nível, que deve estar dentro 
da faixa hachurada ou entre as marcas de mínimo e máximo. 
Se o nível estiver abaixo do mínimo, completa-se com o mesmo tipo de óleo. O 
período para troca de óleo do motor, dependendo da marca do trator, esta em torno de 200 horas. 
Para a substituição do óleo, deve-se ligar o motor até atingir a temperatura normal de 
funcionamento. Desta forma, com a temperatura mais alta, o óleo fica menos viscoso (mais 
fluido), podendo escoar mais facilmente. Desligue o motor, retire o bujão de dreno e esgote 
totalmente o óleo. Recolocar o bujão e, antes de abastecer com o óleo novo, troque o filtro. Para 
tal, retire o filtro, limpe a face do suporte com um pano, aplique uma película de óleo ou graxa 
ao vedador e coloque o filtro novo, tomando o cuidado para não apertá-lo demasiadamente. 
Coloque o óleo no cárter e verifique o nível. 
 
5. 3 Sistema elétrico 
 
A manutenção é feita basicamente na bateria. A cada 50 horas de trabalho 
aproximadamente, deve-se verificar o nível da solução eletrolítica na qual ficam submersas as 
placas acumuladoras de energia. 
Primeiramente deve-se limpar a superfície externa da bateria e os terminais com 
um pano umedecido com uma solução fraca de água e amônia ou bicarbonato de sódio. Remova 
as tampas de enchimento da bateria e verifique o nível do eletrólito, o qual deve manter-se entre 
1 e 2 cm acima das placas acumuladoras. Se necessário, complete com água destilada. 
 
5. 4 Sistema de alimentação 
5. 4. 1 Combustível 
 
O bom funcionamento do motor depende, em grande parte, da manutenção feita 
nesse sistema, pois, alguns componentes como bomba e bicos injetores exigem um combustível 
isento de impurezas e água para que o mesmo seja fornecido adequadamente aos cilindros. Desta 
 
37 
 
forma, os principais pontos de manutenção desse sistema são: tampa do tanque de combustível, 
bomba alimentadora, sedimentador, bomba e bicos injetores. 
A tampa do tanque de combustível apresenta uma válvula que permite a entrada 
de ar para compensar o volume de combustível consumido. Para tanto, ela trabalha com uma 
determinada pressão negativa, que é específica para cada trator. Portanto, em caso de perdas ou 
danos na tampa, deve-se fazer a reposição com uma tampa original de acordo com a marca e 
modelo do trator, pois uma tampa não aprovada pode não ser segura. Para manter um bom 
funcionamento desse componente, deve-se verificar se o mesmo não esta entupido com terra ou 
outras impurezas. 
Outro fator importante a ser considerado é com relação ao abastecimento do 
tanque, o qual deve ser feito logo após o término do trabalho. Caso contrário, com o 
“esfriamento” do trator, o vapor d’água que ocupa o tanque se condensa e acaba contaminando o 
combustível com água. 
A bomba alimentadora apresenta em seu interior um filtro de tela para reter as 
impurezas que poderiam interferir no seu funcionamento. Esse filtro deve ser limpo 
periodicamente. Também pode ser encontrado um pré-filtro de copo montado junto à bomba. O 
seu elemento filtrante, de tela de nylon ou de arame inoxidável, deve ser lavado com querosene 
limpo ou óleo diesel. 
No sedimentador deve ser feita a remoção da água ou impurezas através do dreno, 
deixando escorrer um pouco de combustível. Ao fechar o dreno, o mesmo não deve ser forçado. 
Deve-se utilizar somente a pressão dos dedos. 
O filtro de combustível é responsável pela retenção das impurezas que não 
decantaram no sedimentador. Se o elemento filtrante for de feltro, este pode ser lavado e 
reaproveitado. Se for de papel, então devem ser substituídos por um novo após determinado 
período. 
Na bomba injetora, a manutenção deve ser feita por um técnico especializado, não 
podendo ser realizada pelo próprio operador, pois se trata de um componente mais complexo. 
Nos bicos injetores deve ser observada a pressão de trabalho, a qual deve ser 
calibrada a cada 1000 horas de serviço. Tal como a bomba injetora, os bicos também requerem 
uma manutenção especializada. 
 
5. 4. 2 ArO desempenho e vida útil do motor dependem muito da manutenção correta desse 
sistema. Os períodos de limpeza e troca dos filtros devem ser respeitados, caso contrário o motor 
pode perder potência, aumentar o consumo de combustível e provocar superaquecimento. 
 
38 
 
Assim, a cada 10 horas de serviço, deve-se efetuar a limpeza do copo coletor de 
pó (pré-filtro), o qual é responsável pela retenção das partículas sólidas maiores. Para realizar tal 
tarefa, basta retirar o copo coletor de pó, localizado próximo ao filtro de ar, e limpá-lo com um 
pano. 
No filtro de ar a óleo, a manutenção é feita eliminando-se o sedimento depositado 
no fundo da cuba de óleo, verificando-se o nível de óleo da cuba e trocando-o, quando 
necessário, e ainda limpar o elemento filtrante. 
Se o trator for equipado com filtro de ar a seco, a manutenção deve ser feita no 
elemento filtrante principal. Entretanto, a limpeza do elemento filtrante só deve ser feita quando 
a luz indicadora de restrição no painel se acender. 
A limpeza do filtro é feita batendo-o contra a palma da mão. É importante não 
batê-lo contra uma superfície dura nem deixá-lo cair no chão, isso pode danificar o elemento 
filtrante. 
A troca do elemento filtrante primário é feita a cada 4 ou 5 limpezas ou a cada 
1.000 horas. O filtro de ar a seco também apresenta um elemento de segurança, o qual deve ser 
trocado a cada duas trocas do elemento primário. 
 
5. 5 Sistema de arrefecimento 
 
A manutenção deve ser feita a cada 10 horas de trabalho, verificando o nível do 
líquido de arrefecimento do radiador. É importante salientar que a manutenção não pode ser feita 
com o motor quente. Para abrir a tampa do radiador, cubra-a com um pano, girando-a lentamente 
para aliviar a pressão e, depois, retire-a completamente. O nível do líquido deve estar de 3 a 6 cm 
abaixo do dreno do bocal. Se necessário, adicione água limpa, mas somente se o motor estiver 
frio. 
Recomenda-se, uma vez ao ano, drenar completamente o sistema e adicionar água 
limpa mais aditivo anticongelante, na proporção via regra geral de 0,5 L de aditivo para cada 10 
L de água, porém é interessante consultar a recomendação específica de cada fabricante. 
Realizar a verificação da folga da correia lisa que aciona bomba de água / 
ventilador com alternador via virabrequim. 
 
39 
 
 
5. 6 Resumo das manutenções periódicas 
 Cuidados de 10 horas ou diários, verificar: nível de óleo lubrificante do motor; 
drenagem do pré-filtro ou do sedimentador e do filtro de combustível; nível de água do radiador 
e completar o tanque de combustível ao final de cada jornada de trabalho. 
 Cuidados de 50 horas: limpeza de tela na entrada da bomba alimentadora; tenção 
da correia do ventilador do sistema de arrefecimento; nível da solução da bateria; nível de óleo 
lubrificante da bomba injetora (apenas em alguns tratores) e condições de limpeza dos terminais 
da bateria. 
 Cuidados de 100 horas: verificação do funcionamento do indicador de restrição 
do filtro de ar; 
 Cuidados de 200 horas: trocar de óleo e filtro do carter do motor; trocar filtro de 
combustível (realizar sangria no pré-filtro, no filtro de combustível e na bomba injetora); 
 Cuidados de 750 horas: calibração de bicos e da bomba injetores; 
 Cuidados de 1.000 horas: troca do elemento filtrante do filtro de ar. 
6. BIBLIOGRAFIA CONSULTADA 
 
MIALHE, L. G. Máquinas motoras na agricultura V1. 1.ed. São Paulo: Editora da Universidade 
de São Paulo, 1980. 367p. 
BERLIJN, I. J. et al. Motores agrícolas. México: Editora Trillas, 1982. 94p.

Continue navegando

Outros materiais