Buscar

Geoprocessamento unidade 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 60 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 1/60
GEOPROCESSAMENTOGEOPROCESSAMENTO
EVOLUÇÃO E APLICAÇÕES DOSEVOLUÇÃO E APLICAÇÕES DOS
SISTEMAS GPSSISTEMAS GPS
Autor: Me. Felipe Rodrigues Macedo
R e v i s o r : K e l l y C r i s t i n a d e M e l o
I N I C I A R
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 2/60
introduçãoIntrodução
Os sistemas de posicionamento por satélite, vão além do GPS. Nesta unidade, abordaremos sobre os
sistemas GPS, além da estrutura de sistemas de informações geográ�cas e seus tipos de dados. Veremos
também os fundamentos básicos do Sensoriamento Remoto, a teoria, o espectro eletromagnético, o
comportamento dos alvos, as características das imagens de satélite multiespectrais e a composição das
bandas. Isso posto, seremos capazes de entender os usos dos sistemas de posicionamento por satélite e as
diferenças nos dados geoespaciais utilizados nos SIGs. Compreenderemos a fundamentação teórica do
Sensoriamento Remoto e seus diversos usos, desde mapeamentos de vegetação, passando por expansão
urbana e outros, como dados climáticos, relevo e etc.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 3/60
Histórico e Evolução dosHistórico e Evolução dos
Sistemas deSistemas de
Posicionamento porPosicionamento por
SatéliteSatélite
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 4/60
No ano 1973, o Departamento de Defesa dos Estados Unidos desenvolveu um sistema de posicionamento
por satélite para �ns militares, nascia o NAVSTAR GPS (Navigation Satellite with Time And Ranging - Global
Positioning System) que passou por dois períodos de testes, um até 1979 e o outro até 1985. Na terceira fase,
o departamento produziu os aparelhos de GPS e terminou a rede com 24 satélites. A utilização inicial do GPS
foi para facilitar os deslocamentos de tropas, a localização de tropas inimigas e a navegação de alta precisão
para transporte militar. O GPS foi testado na Guerra do Golfo (1990-1991), facilitando a locomoção das
tropas pelo deserto. Em 1994, o sistema GPS foi totalmente �nalizado e foi possível integrá-lo às operações
de levantamentos terrestres (CARVALHO; ARAÚJO, 2009). Atualmente o GPS é referência quando se trata
de Sistema Global de Navegação por Satélite (Global Navigation Satellite System – GNSS). Entretanto, ele não é
o único sistema ativo, existem pelo menos outros três sistemas conhecidos: GLONASS (Global Orbiting
Navigation Satellite System), Beidou (Compass) e Galileo.
O GLONASS nasceu em paralelo ao GPS, porém na antiga União da Repúblicas Socialistas Soviéticas (URSS).
Ele também possuía como objetivo a área militar e desde 1988 era utilizado pela sociedade civil. Com o �m
da URSS, a Federação Russa assumiu o projeto, ele foi �nalizado em 1995, mas devido a problemas muitos
satélites foram desativados, chegando a possuir apenas 9 dos 25 originais no ano de 2002. Esse sistema
passou por modernizações, e em 2010 atingiu o número de 23 satélites em funcionamento (DOMPIERI;
SILVA, NOGUEIRA JÚNIOR, 2015).
O Galileo surgiu após a recusa do Estados Unidos de permitir que outros países desenvolvessem o GPS.
Assim, a União Europeia decidiu desenvolver um sistema próprio. Entre os anos de 1999 e 2002 ocorreu a
fase de de�nição da arquitetura do sistema e do segmento espacial. Em 2005 o primeiro satélite foi lançado,
o projeto previa ao menos 30 satélites em operação (DOMPIERI; SILVA, NOGUEIRA JÚNIOR, 2015).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 5/60
Por �m, o Beidou ou Compass foi iniciado em 1983, porém seu primeiro satélite foi lançado no ano 2000. A
expectativa do Governo Chinês é até 2020 o sistema estar �nalizado com 35 satélites em órbita.
Das Características dos Sistemas de
Posicionamento por Satélite
Cada sistema de posicionamento global possui características próprias, mas todos seguem algumas regras,
por exemplo, para que um sistema seja global são necessários pelo menos 24 satélites. Um receptor na
superfície terrestre precisa de no mínimo 4 satélites disponíveis, três são su�cientes para determinar as
coordenadas e o quarto para determinar o tempo, tendo em vista a diferença nos relógios dos satélites e do
receptor. O levantamento das coordenadas determina a posição por meio da latitude, longitude e altitude, e
quando comparada por outros métodos de levantamentos topográ�cos e geodésicos, o sistema por satélite é
mais preciso por não necessitar da visualização entre as estações. Um levantamento por satélite pode ser
feito em qualquer terreno e em qualquer tipo de clima (DOMPIERI; SILVA, NOGUEIRA JÚNIOR, 2015).
O sistema GPS possui como característica a presença de 24 satélites em órbita média distribuídos em seis
planos orbitais igualmente separados e espaçados com quatro satélites em cada um, todos em uma altitude
média de 20.200 metros e com inclinação de 55° em relação ao Plano do Equador e com um período orbital
de aproximadamente 12 horas siderais. O sistema consegue manter pelo menos quatro satélites disponíveis
em qualquer parte do globo a qualquer hora (MONICO, 2008).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 6/60
Por sua vez, o GLONASS também possui 24 satélites ativos e três de reserva. Eles estão distribuídos em três
planos orbitais de 120° e com inclinação de 64,8°, cada um com oito satélites igualmente espaçados. A
altitude média é deles é de 19.100 metros, já o período orbital é de 11h15min siderais. Por ter um ângulo de
inclinação maior que o do GPS, a constelação do GLONASS pode proporcionar melhor cobertura em altas
latitudes. O GLONASS possui de 6 a 11 satélites visíveis em qualquer lugar do planeta (MONICO, 2008).
Já o Galileo prevê 30 satélites, sendo 27 operacionais e 3 de reserva. Ele está a 23.600 km de altitude e com
inclinação de 56° em relação ao plano do Equador. O seu período orbital é de 14h4min siderais. Com a
disposição dos satélites, os sinais do Galileo mantêm uma boa recepção mesmo em latitudes acima de 75°
(DOMPIERI; SILVA, NOGUEIRA JÚNIOR, 2015).
Por �m, o Beidou será composto por 5 satélites geoestacionários e 30 não geoestacionários. Esses últimos se
dividem em 3 satélites em órbita geossíncrona e 27 em órbita média. A altitude média é de 35,786 km para
os cinco geoestacionários e os três geossíncronos está a 21.528 km para os 27 de órbita média. A inclinação
dos satélites não geoestacionários é de 55° em relação ao Plano do Equador. Quando os quatro sistemas
estiverem em total funcionamento existirão aproximadamente 120 satélites disponíveis para os usuários de
GNSS (LI et al., 2015).
praticar
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 7/60
praticarVamos Praticar
O GPS é um sistema de posicionamento por satélite muito conhecido e quase um sinônimo dessa tecnologia, embora
não seja o único. Assinale a alternativa que apresenta quais são os outros três sistemas mais conhecidos.
a) GLONASS, Beidou e Galileo.
b) GLONASS, Beidou e LANDSAT.
c) Beidou, Galileo, CBERS.
d) GLONASS, Galileo, IKONOS.
e) GLONASS, Beidou, Endeavour.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 8/60
Os sistemas de informação geográ�ca (SIGs) são a combinação de recursos humanos (Peopleware) e técnicos
(Hardware/Software). Uma velha frase do mundo computacional de um técnico da IBM, George Fuechsel, diz
“Garbage in... garbage out” que numa tradução seria “lixo que entra, lixo que saí”. Essa frase é utilizada
Estrutura de um SistemaEstrutura de um Sistema
de Informaçõesde Informações
Geográ�casGeográ�cas
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller9/60
também nos SIGs, pois se os dados geográ�cos inseridos forem ruins ou de má qualidade ou errados, o
resultado �nal será ruim ou errado. Não tem como “salvar” um dado ruim, o sistema apenas irá reproduzir
aquele erro, então a qualidade dos dados é o que vai determinar o produto �nal. O início da �ltragem de bons
dados passa pela estrutura deles mesmos.
Estrutura de Dados Geoespaciais: Dados raster
e dados vetoriais
Dados SIGs são divididos em duas partes. Os dados espaciais e os dados alfanuméricos. Os dados espaciais
são considerados aqueles que podem ser representados espacialmente, ou seja, em uma forma grá�ca. Esses
dados são divididos em dois tipos de dados os vetoriais e os matriciais (FITZ, 2008).
Os dados vetoriais são uma estrutura grá�ca composta por três tipos distintos. Os pontos, as linhas e os
polígonos. Os pontos abrangem todas as entidades geográ�cas que podem ser posicionadas por um único par
de coordenadas (x, y).  A localização no espaço é feita considerando uma superfície plana (ROSA, 2013). Os
pontos podem ser utilizados para uma localização como uma escola, um posto de saúde, uma empresa, um
poste de iluminação e etc.
As linhas são na verdade um conjunto de pelo menos dois pontos. Além das coordenadas dos pontos que
compõem a linha, deve-se armazenar informações que indiquem o atributo que está associado a aquela linha
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 10/60
(ROSA, 2013). Linhas podem representar rodovias, linhas de transmissão de energia elétrica ou telefonia,
ferrovias, rios e córregos e etc.
As áreas ou polígonos possuem por objetivo descrever as propriedades topológicas de áreas c, de tal maneira
que os atributos associados aos elementos da área representada possam ser manipulados da mesma forma
em que um mapa temático analógico. Nesta representação cada elemento tem área, perímetro e formato
individualizado (ROSA, 2013). Exemplos de áreas são os vetores que indicam a forma de um município, de
uma bacia hidrográ�ca, as quadras de um bairro e etc.
Esses dados podem ser variados como medições de GPS e topográ�cos realizados em campo, além de mapas
topográ�cos, pedológicos, geológicos, de divisas municipais, banco de dados com nome de lugares e etc.
Os dados matriciais, também são conhecidos como raster, eles podem ser armazenados em uma estrutura
matricial. Esse é um tipo estrutura de dados em que uma matriz com linhas e colunas contendo células,
denominadas de pixel. Apresentam um valor z que pode indicar, por exemplo, uma cor ou tom de cinza a ele
atribuído. Imagens de satélites, fotogra�as aéreas digitais e mapas digitalizados, são os exemplos mais
comuns de dados raster (FITZ, 2008).
Já os dados alfanuméricos “são dados constituídos por caracteres (letras, números ou sinais grá�cos) que
podem ser armazenados em tabelas, as quais podem formar um banco de dados” (FITZ, 2008, p. 56).
Geralmente são dispostos em tabelas que possuem atributos e que estão vinculados a uma estrutura
espacial georreferenciada. Este tipo de dado, geralmente, é utilizado junto de uma estrutura vetorial (FITZ,
2008).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 11/60
Os dados vetoriais possuem vários formatos. O formato mais utilizado em SIGs é o .shp (shape�le).
Originalmente, ele foi desenvolvido pela ESRI® e é utilizado no software comercial (pago) ArcGis. Porém,
outros softwares também conseguem ler e editar os arquivos Shape�le. Todo arquivo .shp (que é o principal)
possui outros dois arquivos o .dbf (dBASE table) e .shx (Index �le). O formato .shp é a geometria do mapa
(estrutura espacial). Uma limitação do shape�le é que só é possível conter um tipo de geometria, ou seja, o
arquivo é somente pontos, ou linhas, ou polígonos e nunca será híbrido como arquivos .dwg (formato vetorial
do tipo CAD), por exemplo.
O formato .dbf armazena os atributos da geometria em formato de tabela e pode contar com dados sobre a
população, densidade demográ�ca, tipo de solos e rochas e etc. Como limitação o nome das colunas no
arquivo não podem conter mais de 10 caracteres. Por último, o formato .shx é a ligação entre o .shp e o .dbf.
Portanto, são sempre necessários esses três arquivos. Outro arquivo do Shape�le é o .prj, ele foi criado
quando se determina os Sistemas geodésico, de coordenadas e a projeção da geometria do mapa.
Os arquivos raster, por serem imagens, utilizam formatos de imagem comuns como o .jpg, .bmp, .png.
Geralmente eles utilizam os formatos .tiff e sua variação o Geotiff. A vantagem do Geotiff é a possibilidade de
inserir dados geoespaciais como sistema de coordenadas, datum horizontal na imagem. Esse formato não é
recomendado para armazenar estruturas multidimensionais complexas, nem para dados vetoriais.
Modelagem Espacial
Para transferir a superfície da Terra para um modelo digital virtual é preciso realizar procedimentos que
estabelecem práticas para o objeto contido no arquivo criado e que nele se possui informações. Por exemplo,
uma escola criada em um arquivo vetorial, ela será apenas um ponto, mas possui informações a ela
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 12/60
vinculadas, como suas dimensões, localização espacial, quantidade de alunos etc. No SIGs, os objetos devem
relacionar-se geogra�camente e podem ou não participar do processamento dos dados. A estrutura da
modelagem depende das características dos objetos envolvidos e das necessidades do usuário (FITZ, 2008).
Os modelos são aproximações subjetivas, porque não conseguem apresentar todas as observações ou
medidas associadas aos objetos, mas possuem valor por permitirem a análise de aspectos da realidade.
Assim, modelo é uma apresentação formal de relações entre entidades de�nidas nos termos físicos ou
matemáticos. Um modelo pode especi�car três tipos de variáveis: as variáveis de entrada, que são
independentes do modelo e permitem a variação dos valores associados. As variáveis de saída, que já são
totalmente dependentes do modelo, e procuram mostrar as saídas como resultados de características de
diferentes entradas; E, as variáveis status, que especi�cam certas condições relevantes, porém são mantidas
constantes durante o funcionamento do modelo (ROSA, 2013).
De modo geral, os modelos são classi�cados em físicos, analógicos e matemáticos. O modelo físico
representa, na maioria dos casos, o sistema por um molde em escala menor. Os modelos analógicos
aproveitam-se da analogia das equações que conduzem diferentes fenômenos. Já os modelos matemáticos
ou digitais são os que representam a natureza do sistema através de equações matemáticas. Esses são os
modelos mais utilizados nos SIGs (ROSA, 2013).
O desenvolvimento de um modelo utiliza a simulação de fenômenos complexos através de uma combinação
de informações espaciais e não-espaciais. Neste ponto, geralmente, é necessário um especialista na área de
conhecimento. Em geral, na simulação há três fases: o ajuste, a veri�cação e a aplicação. O ajuste é a fase da
simulação, em que os parâmetros devem ser identi�cados. A veri�cação é a utilização do modelo já calibrado.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 13/60
Nesta etapa é necessário conferir a validade do modelo e do ajuste em diferentes condições. A aplicação é a
fase em que o modelo é utilizado para representar situações quando não se conhece a saída do sistema
(ROSA, 2013).
Tipos de Dados: Geo-campos e Geo-objetos
O espaço geográ�co é modelado de duas formas: modelo de campos e de objetos. O modelo de campos
entende o espaço geográ�co como uma superfície contínua, sendo que os fenômenos observados são
variados. Por exemplo, um mapa de solos mostra a distribuição de cada tipo de solo em cada ponto do mapa.
Já o modelo de objetos representa o espaço geográ�cocomo um grupo distinto e identi�cável.
Exempli�cando, os lotes de um município identi�cados como um dado individual, contendo atributos que os
distinguem uns dos outros. O mesmo pensamento serve para os rios de uma bacia hidrográ�ca (CÂMARA;
MEDEIROS, 1998).
Podemos de�nir então que:
De�ne-se uma região geográ�ca R como uma superfície qualquer pertencente ao espaço
geográ�co, que pode ser representada num plano ou reticulado, dependente de uma projeção
cartográ�ca (CÂMARA; MEDEIROS, 1998, p. 25).
A região geográ�ca é um suporte para a localização dos atributos que serão representados por um ou mais
pontos em R. Já os geo-campos podem ser de�nidos como “a distribuição espacial de uma variável que possui
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 14/60
valores em todos os pontos pertencentes a uma região geográ�ca, num dado tempo t” (CÂMARA; MEDEIROS,
1998, p. 25).
Podemos ter múltiplas representações do mesmo geo-campo em diferentes épocas. Um exemplo são mapas
da cobertura do solo que mostram a diferenças no uso e ocupação ao longo do tempo.
Os geo-campos podem ter especi�cidade: o temático quando a região geográ�ca possui um tema como, por
exemplo, vegetação, solos e etc. O numérico quando associa um ponto a um valor real, como o mapa
altimétrico.   Por último, o dado_sensor_remoto sendo esta classe um tipo de numérico, obtida através de
quantização da resposta de uma área da superfície terrestre recebida por um sensor remoto (CÂMARA;
MEDEIROS, 1998).
Já os geo-objetos podem ser de�nidos como “um elemento único que possui atributos não-espaciais e está
associado a múltiplas localizações geográ�cas. A localização pretende ser exata e o objeto é distinguível de
seu entorno” (CÂMARA; MEDEIROS, 1998, p. 26).
Então, os geo-campos podem ser divididos em 5 tipos: as isolinhas que podem ser curvas de nível, por
exemplo; polígonos adjacentes como na divisão de municípios; tesselação, como as imagens de satélite;
amostragem como o caso dos pontos cotados nas cartas topográ�cas e; rede triangular irregular (TIN) que
pode ser utilizada na geração de modelos digitais de elevação ou de terreno (MDE, MDT). 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 15/60
praticarVamos Praticar
Os dados geográ�cos são importantes no trabalho com os Sistemas de Informações Geográ�ca. Assinale a alternativa
que apresenta quais os dois tipos de dados geoespaciais.
a) Vetorial e alfanumérico.
b) Matricial e alfanumérico.
c) Ponto e linha.
d) Matricial e Vetorial.
e) Linha e polígono.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 16/60
Uma das principais bases para a elaboração de produtos cartográ�cos são os produtos obtidos por meio do
sensoriamento remoto.
Sensoriamento remoto é a arte e a ciência na obtenção de informações sobre um objeto sem,
necessariamente, estar em contato físico com ele. Não existe uma distância pré-determinada que diga o que
pode ser considerado remoto, por exemplo, um satélite pode observar outros planetas e sistemas estelares,
Fundamentos deFundamentos de
Sensoriamento RemotoSensoriamento Remoto
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 17/60
um microscópio eletrônico pode ser utilizado para obter fotogra�as de objetos extremamente pequenos, um
instrumento de raio-X pode ser utilizado para “enxergar” ossos ou outra matéria interna sem tocar na pele ou
nos músculos (JENSEN, 2009).
Para sensoriamento remoto a energia solar é a base de todos os princípios que se enquadram nesta
tecnologia, mesmo sensores ativos funcionam a base de energia solar (MOREIRA, 2005). Os sensores são
divididos em dois tipos: ativos e passivos. Os sensores ativos são aqueles que possuem uma fonte de energia
própria, eles podem emitir uma quantidade de energia na direção dos objetos alvo para captar a sua re�exão.
Um exemplo de sensor ativo é o Radar (FITZ, 2008).
Já os sensores passivos não possuem fonte própria de energia e necessitam de fontes externas para captar a
re�exão dos alvos. Uma �lmadora ou uma câmera fotográ�ca sem spot ou �ash enquadram-se nesta
categoria (FITZ, 2008). Nessa categoria temos os principais sensores dos principais satélites em órbita
utilizados no Sensoriamento remoto, como a série Landsat, CBERS, entre outros.
Evolução do Sensoriamento Remoto
A origem do Sensoriamento Remoto começa nas primeiras imagens aéreas capturadas. No início o uso era
militar, em meados de 1860 durante a Guerra civil americana. Existia uma divisão de balonistas para obter
essas fotogra�as, porém foi durante a Primeira Guerra Mundial que as fotogra�as áreas passaram a ser
obtidas com o uso de aviões. Durante a Segunda Guerra Mundial houve o desenvolvimento de novas
tecnologias como o �lme infravermelho para melhorar as imagens capturadas e diferenciar alvos camu�ados
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 18/60
na vegetação. Além disso, ocorreu também o advento do Radar e avanço nos sistemas de comunicações
(FLORENZANO, 2002).
Durante a chamada Operação Bodyguard, que serviu de cortina de fumaça para a Operação Overlord,
conhecida como a invasão da Normandia, os aliados criaram uma série de planos de invasão falsos e
transmitiam aos alemães para causar certa confusão do local exato do desembarque das tropas aliadas.
Como parte dos vários planos os aliados utilizaram um dos seus mais conhecidos generais George S. Patton,
muito respeitado pelo exército Alemão. Patton �cou responsável pela divisão �ctícia baseada na cidade de
Dover, Inglaterra. Nesta divisão havia milhares de tanques, aviões e outros equipamentos de guerra de
mentira, eram todos balões in�áveis e os sons foram todos produzidos por sistemas de alto-falante.
Devido as fotogra�as áreas não terem muita resolução, na época, essa tática causava certa confusão em
quem analisasse as imagens e o uso do General Patton, fez com que os alemães acreditassem que ele fosse
liderar a invasão a Europa pela região de Pas-de-Calais (França), o que não aconteceu. A inteligência alemã
não foi totalmente convencida e o plano do exército fantasma dos aliados não foi tão útil, mas ajudou a
atrasar o envio de tropas alemãs para a região que efetivamente foi invadida, na Normandia. Esse exército foi
utilizado em outros eventos durante a Guerra.
Entretanto, foi durante a Guerra Fria que o Sensoriamento Remoto avançou, principalmente no
desenvolvimento de equipamentos de espionagem. Durante a corrida espacial, as primeiras imagens orbitais
foram capturadas e, com isso, viu-se o potencial e as vantagens deste tipo de fotogra�a. Assim, em abril de
1960 o satélite meteorológico da série TIROS foi lançado. Em julho de 1972 foi lançado o primeiro satélite de
recursos terrestres, o ERTS-1, rebatizado para LANDSAT-1 (FLORENZANO, 2002).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 19/60
A Radiação Eletromagnética (REM)
A radiação eletromagnética é originária dos átomos e estão presentes em toda a matéria existente, algumas
partículas dos átomos possuem uma carga elétrica e produzem uma energia, essa energia é descrita como um
movimento em ondas. As ondas, por sua vez, possuem dois tipos: a eletricidade e o magnetismo. Assim como
outras ondas, as ondas eletromagnéticas possuem picos e vales, a distância entre o pico de uma onda e o pico
da onda seguinte é chamado comprimento de onda. Nas ondas eletromagnéticas os comprimentos de onda
variam de acordo com o tipo de onda. Dentro do espectro eletromagnético existem vários tipos de ondas que
possuem diferentes comprimentos de ondas.
As ondas eletromagnéticas são do tipo transversal e, por isso, não necessitam de um meio de propagação,
assim, propagam-se até mesmo no vácuo(MOREIRA, 2005). A radiação eletromagnética é gerada toda vez
que uma carga elétrica é acelerada. O comprimento de onda REM tem relação com a duração do tempo que a
partícula carregada é acelerada. O comprimento de onda é a distância média entre dois picos e é
normalmente medido em micrômetros (µm) ou nanômetros (nm). Já a frequência é o número de
comprimentos de onda num determinado ponto medido no tempo. A onda que emite um pico a cada segundo
e completando um ciclo, é aquela que possui uma frequência de um ciclo por segundo, ou um hertz, abreviado
como 1 Hz (JENSEN, 2009).
A radiação eletromagnética gera dois tipos de campos: o elétrico e o magnético, eles são perpendiculares
entre si e oscilam no mesmo sentido de propagação da onda. É possível ser demonstrado, �sicamente, que
um campo elétrico gera um campo magnético e um campo magnético gera um campo elétrico (FITZ, 2008). A
Figura 2.1 mostra um esquema da Onda Eletromagnética. 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 20/60
O Sol é a mais importante fonte natural de radiação eletromagnética. Ao chegar na superfície terrestre, a
energia solar causa diversos fenômenos físicos, entre eles se destacam os relacionados à absorção, ao
aquecimento, à re�exão e à transmissão de energia. Quando a energia é re�etida, ela pode ser captada por
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 21/60
sensores acoplados em satélites arti�ciais que orbitam a Terra (FITZ, 2008). A Figura 2.2 apresenta um
esquema básico de como são obtidas as imagens de sensoriamento remoto. 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 22/60
O Espectro Eletromagnético
O espectro eletromagnético é uma representação contínua da radiação eletromagnética no que se refere aos
comprimentos de onda, frequência ou energia. Ele está subdividido em faixas, que representam regiões
possuindo características especí�cas sobre os processos ou mecanismos físicos geradores ou detectores de
energia (ROSA, 2013). Todos os objetos acima do zero absoluto (-273 ºC ou 0 K) emitem energia
eletromagnética. Todos incluindo a água, solo, rocha, vegetação, seres vivos (JENSEN, 2009).
Fitz (2008) lista algumas das principais faixas do espectro eletromagnético, conforme Quadro 2.1. 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 23/60
Faixa do espectro
eletromagnético
Características Comprimento de Onda
Faixa das ondas de rádio e TV
Muito utilizadas na
comunicação.
 maior que 30 cm
  Faixa das micro-ondas
Apresenta bons resultados
para sensores como o Radar, já
que essa radiação é pouco
afetada pela atmosfera.
1 mm a 30 cm
Faixa do infravermelho
Muito utilizada em trabalhos
de sensoriamento remoto pelo
fato de estar associada ao
calor. Esse tipo de radiação é
emitido por corpos aquecidos.
0,7 μm a 1,0 mm
Faixa do visível
Essa é a principal porção do
espectro eletromagnético
para uso em sensoriamento
remoto.
0,4  μm a 0,7 μm  
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 24/60
Quadro 2.1 - Divisões do espectro eletromagnético 
Fonte: Adaptado de Fitz (2008).
Nesse sentido, o Infravermelho subdivide-se em:
Infravermelho próximo (entre 0,7 μm e 5 μm);
Infravermelho médio (entre 5 μm e 30 μm);
Faixa do ultravioleta (UV) Sua radiação é essencial para a
existência da vida na Terra,
mas que também pode causar
danos ao ser humano
(queimaduras, alergias ou
câncer de pele). É pouco
utilizada para trabalhos em
Sensoriamento Remoto.
10 nm a 0,4 μm  
Raio X
Frequentemente utilizada na
medicina.
0,01 nm a 10 nm
Raios gama
Utilizada na medicina em
tratamentos de radioterapia.
0,003 nm a 0,01 nm
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 25/60
Infravermelho distante (entre 30 μm e 1,0 mm).
A porção situada entre cerca de 8 μm a 14 μm é chamada de infravermelho termal, pois nela se estabelecem
as emissões máximas de calor de um corpo (FITZ, 2008).
A faixa do visível subdivide-se em: 
Violeta
0,380 μm a 0,440 μm
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 26/60
Na Figura 2.3 podemos observar o Espectro eletromagnético. 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 27/60
A principal faixa do espectro eletromagnético utilizado pelo sensoriamento remoto está situada entre o
ultravioleta e o infravermelho termal. É nessa região do espectro que mais sofre os efeitos da atmosfera
terrestre, devido a isto, dependendo do comprimento de onda emitido, haverá uma maior ou menor
resistência. As micro-ondas utilizadas pelo radar não sofrem in�uência signi�cativa das nuvens. (FITZ, 2008).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 28/60
Com a propagação da radiação eletromagnética pela atmosfera, ela vai sendo seletivamente absorvida por
vários constituintes, como: vapor d’água, ozônio, dióxido de carbono etc. Nas faixas do ultravioleta e visível, o
ozônio é o principal atenuador por absorção, enquanto que na faixa do infravermelho o vapor d’água e o
dióxido de carbono são os principais atenuadores. Existem algumas regiões no espectro eletromagnético em
que a absorção atmosférica é relativamente pequena. Essas regiões são conhecidas como janelas
atmosféricas e se caracterizam por possuírem uma boa transparência. Nessas regiões desenvolvemos
praticamente todas as atividades de sensoriamento remoto (ROSA, 2013). A Figura 2.4 apresenta essas
janelas. 
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 29/60
No espalhamento a radiação solar incidente na atmosfera interage com ela, gerando um campo de luz difusa
que se propaga em todas as direções. Devido a isto, é necessário que, tanto no processo de planejamento da
aquisição de dados, quanto no processo de interpretação de produtos advindos de sensores remotos é
importante considerar o fenômeno de espalhamento, porque a radiação eletromagnética coletada no sensor
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 30/60
não provém somente do alvo, uma vez que a radiação espalhada pela atmosfera e por outros alvos poderá
também atingir o sistema sensor, mascarando, total ou parcialmente a informação desejada (ROSA, 2013).
Para exempli�car, a energia solar é absorvida pelos gases e vapores d'água existentes nas nuvens, que por
sua vez, se dispersam ou espalham na atmosfera. Quanto maior o volume da nuvem, os efeitos serão mais
percebidos. A coloração da nuvem muda de branca (pouca taxa de absorção e espalhamento) para cinza-
escuro (alta taxa de absorção e espalhamento), a coloração azul do céu (presença de vapor d'água) e as
variações de tons no início e no �nal do dia (presença de partículas) são exemplos do espalhamento da
energia solar (FITZ, 2008). 
praticarVamos Praticar
No sensoriamento remoto é necessário o uso de sensores para capturar as informações dos alvos. Assinale a
alternativa que apresenta quais são os tipos de sensores utilizados no Sensoriamento remoto.
a) Megapixels.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 31/60
b) LANDSAT e CBERS.
c) Ativo e passivo.
d) Raios gama e micro-ondas.
e) IKONOS e SPOT.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 32/60
Toda a superfície terrestre possui um comportamento espectral diferente e isso modi�ca a sua intensidade
de re�ectância, alterando a maneira como os sensores capturam a imagem dessesalvos e, principalmente, a
maneira como analisamos as imagens de Sensoriamento Remoto. A Figura 2.5 mostra três alvos água, solo e
vegetação.
ComportamentoComportamento
Espectral de AlvosEspectral de Alvos
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 33/60
O comportamento espectral para Minerais e Rochas leva em consideração os elementos e substâncias
presente neles. A faixa do espectro re�etido (0,4 a 2,5 µm) são íons ferroso e férrico, água e hidroxila. Os
elementos químicos mais frequentes como o silício, alumínio e magnésio possuem interesse secundário
(ROSA, 2013).
Figura 2.5 – Curvas espectral da água, vegetação e solo 
Fonte: Florenzano (2002, p. 12).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 34/60
Em solos esse comportamento está ligado a porcentagem de matéria orgânica, a granulometria, a
composição mineralógica, a umidade e a capacidade de troca catiônica (CTC) do solo. O aumento da matéria
orgânica provoca uma diminuição da resposta espectral. Para granulometria, o aumento da concentração de
minerais félsicos (minerais claros), causa um aumento nos valores de re�ectância e atenuação das bandas de
absorção. Quando aumenta a concentração dos minerais má�cos (minerais escuros), ocorre o efeito ao
contrário. Os solos úmidos possuem menor re�ectância que os solos secos na faixa do espectro (ROSA,
2013).
Para a vegetação, considerando que o comportamento espectral típico de uma folha verde está no intervalo
de 0,4 a 2,5 μm, na região do visível a re�ectância é baixa, devido à forte absorção da radiação dos pigmentos
do grupo da cloro�la. Existem duas bandas de absorção, aproximadamente, em 0,48 μm, devido à presença
de carotenos, e 0,68 μm, por causa do processo de fotossíntese. O pico em torno de 0,5 μm correspondente à
região verde do espectro visível, por isso a coloração da vegetação é verde. A outra faixa importante é entre
0,7 a 1,3 μm (infravermelho próximo). Esse pico tem relação com a estrutura interna celular da folha, ele é
importante para a folha manter um equilíbrio no balanço de energia e não se superaqueça, evitando a
destruição da cloro�la (ROSA, 2013). Os dados de vegetação são para uma única folha verde sadia. No
entanto, devido aos diferentes tipos de plantas, esses valores são alterados para mais ou para menos.
Para a água limpa a re�ectância diminui com o aumento dos comprimentos de onda, ou seja, os picos estão na
região do visível, especi�camente, nos comprimentos de onda do azul e verde, decrescendo em direção ao
infravermelho. Com o aumento de sedimentos na água, o pico de re�ectância aumenta na direção dos
maiores comprimentos de onda causando uma re�ectância maior que o da água limpa (ROSA, 2013).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 35/60
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 36/60
Resoluções e Classi�icações de Imagens de
Sensoriamento Remoto
A obtenção de imagens de Sensoriamento Remoto é realizada por meio de satélites arti�ciais que estão na
órbita da Terra. Existem vários tipos de satélites, como os militares, cientí�cos, de comunicação,
meteorológicos, de recursos naturais e de observação da Terra. Os satélites podem ser classi�cados pela sua
forma de orbitar a Terra sendo mais de duas formas orbitais: polar (heliossíncrona) e geoestacionário, veja na
Figura 2.6 esses dois tipos.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 37/60
Os satélites orbitais utilizados em sensoriamento remoto podem possuir órbitas polares, quando passam
próximas dos polos com inclinação aproximada de 90° em relação ao plano do Equador (FITZ, 2008). Os
satélites em órbita heliossíncrona possuem inclinação menor de 90°, mas não são equatoriais, como
exempli�cado na Figura 2.6.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 38/60
Os satélites geoestacionários permanecem numa posição que lhes permita um deslocamento velocidade
igual e no mesmo sentido do movimento de rotação terrestre. Em termos de sensoriamento remoto, os
satélites geoestacionários são utilizados para obter imagens que auxiliam nas previsões meteorológicas
(FITZ, 2008). Portanto, os satélites com órbita geoestacionária �cam “girando” no junto da Terra o que dá a
impressão de estarem parados (estacionados).
As imagens de Sensoriamento Remoto utilizam sensores para a captura de imagens. Um sensor é um
dispositivo que identi�ca à radiação eletromagnética em uma faixa pré-determinada do espectro
eletromagnético, ele faz um registro e gera um produto adequado para ser interpretado pelo usuário. O
sistema do sensor, geralmente, é constituído por um coletor (lente, espelho ou antena) e um sistema de
registro (detector ou �lme) (ROSA, 2013).
Os sensores possuem resoluções diferentes e de características especí�cas de�nidas pelas próprias imagens
coletadas. Resolução temporal é o tempo que o sensor leva para retornar a uma área previamente imageada.
Já a Resolução espacial é a área real da superfície terrestre por cada pixel correspondente na imagem
(observe na Figura 2.7). E, a Resolução espectral é dada pela banda espectral compatível com o
equipamento, ou seja, a capacidade de absorção (número de canais) do sensor em relação aos comprimentos
de onda, conforme a Figura 2.8 (FITZ, 2008).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 39/60
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 40/60
A Resolução radiométrica está relacionada com a quantidade de níveis digitais existentes na imagem.
Quanto maiores os níveis digitais, maior será a resolução radiométrica e a qualidade da imagem será melhor.
Essa resolução é representada pelos níveis de cinza (ou cores) de uma imagem e, geralmente, está na forma
Figura 2.8 – Diferentes resoluções espectrais. A identi�cação de estradas de terra no infravermelho próximo é
melhor que na banda do visível 
Fonte: Meneses (2012b, p. 29).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 41/60
binária, ou bits, necessários para o seu armazenamento (Figura 2.9). Resolução digital dada pela quantidade
de pixels (ppi) ou pontos por polegada (dpi) (FITZ, 2008).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 42/60
Nesse sentido, quanto maior o dpi maior é a resolução da imagem, ou seja, ela será mais nítida, mas não
necessariamente terá mais detalhes dos alvos na imagem, pois isso tem relação com a resolução espacial.
Duas imagens do mesmo alvo podem ter 300 dpi, que é o mínimo recomendado, porém uma pode estar com
resolução de 20 metros (cada pixel representa 20 metros no terreno), e outra com resolução de 1 metro.
Nesse caso, a última mostrará detalhes que não poderão ser vistos na outra imagem.
Sistema de Sensores
Cada satélite carrega consigo vários tipos de sensores, e cada um obtém um tipo de imagem diferente. O
mais comum é o sensor Pancromático, responsável por imagens preto e branco e que, geralmente, possui
uma resolução espacial maior em relação aos outros sensores. O sensor pancromático é muito utilizado em
estudos que requerem maior resolução da imagem como, por exemplo, estudos relacionados à expansão
urbana. Os sensores multiespectrais possuem várias bandas do espectro eletromagnético e conseguem
obter imagens na faixa do visível até o infravermelho termal. O uso dessas imagens é variável para cada
�nalidade.
Para entendermos a formação dessas imagens é preciso entender o espaço de cores RGB. As cores RGB são
uma combinação entre o vermelho, verde eazul, formando as cores secundárias ciano, magenta e amarelo. A
junção de todas essas cores forma a cor branca. Outro sistema muito utilizado é o CMYK, em que o ciano,
magenta e amarelo formam as cores secundárias vermelho, verde e azul. A união de todas as cores forma a
cor preta. Uma maneira simples de entender isso é o monitor de computador que, geralmente, trabalha em
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 43/60
RGB, essas cores formam o branco. Já o CMYK é mais utilizado em impressoras, essas cores formam o preto.
Impressoras coloridas trabalham com tinta (toner) nas cores ciano, magenta e amarelo, além do preto.
As imagens de sensoriamento remoto são, em geral, no sistema RGB. Os sensores multiespectrais capturam
as imagens no seu comprimento de onda suportado pelo sensor. Desse modo, uma imagem de satélite pode
possuir seis, sete ou mais bandas espectrais, cada uma em um comprimento de onda. Portanto, o usuário
deve selecionar três bandas que possuam o máximo da informação desejada, a �m de gerar uma imagem
colorida. As melhores bandas são aquelas situadas nas regiões de maior diferença de re�ectância entre os
alvos (MENESES, 2012a).
Para exempli�car, vamos analisar o satélite Landsat 7 (indisponível desde 2003). Ele possui um sensor
multiespectral ETM+ com 8 bandas, com suas respectivas resoluções espaciais sendo:
B1: 0,45 - 0,52 μm (azul - 30 m);
B2: 0,52 - 0,60 μm (verde - 30 m);
B3: 0,63 - 0,69 μm (vermelho - 30 m);
B4: 0,76 - 0,90 μm (infravermelho próximo - 30 m);
B5: 1,55 - 1,75 μm (infravermelho médio - 30 m);
B6: 10,4 - 12,5 μm (infravermelho termal - 120 m);
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 44/60
B7 2,08 - 2,35 μm (infravermelho médio – 30 m);
B8 0,52 – 0,90 μm (Pancromático – 15 m).
Para montar uma imagem colorida é necessário o uso de 3 bandas para o sistema RGB, ou seja, uma para o
azul, uma para o verde e outra para o vermelho. Não é necessário o uso das bandas azul, verde e vermelho
nesta ordem. Podemos usar vermelho, infravermelho próximo e infravermelho médio como RGB que
obteremos uma composição colorida real, ou seja, onde a vegetação é verde.
As imagens coloridas dependem da quantidade de energia re�etida pelo alvo, da mistura das cores e da
associação das cores com as imagens. Se um objeto é totalmente branco ou preto e em todas as imagens em
preto e branco, ele continua com sua cor na colorida. Já os tons de cinza se tornam coloridos. Se em alguma
imagem preto e branco ele se torna cinza, na foto colorida ele passará a ter alguma cor, isso ocorre em áreas
urbanizadas, elas podem ser brancas em determinados comprimentos de onda e cinza em outros. A
composição colorida pode ganhar tons magenta ou ciano, isso depende de como é composta a imagem
colorida (FLORENZANO, 2002).
As Figuras 2.10, 2.11 e 2.12 trazem esse tipo de composição para o satélite LANDSAT-7. Na Figura 2.10 foi
mantido o RGB, porém as bandas escolhidas foram do vermelho, infravermelho próximo e infravermelho
médio. Essa composição mantém a vegetação numa cor esverdeada e as áreas urbanizadas o tom magenta.
Na Figura 2.11 foi mantida a composição RGB, porém utilizada as bandas respectivas para cada cor. O
resultado é uma imagem mais próxima do real. A Figura 2.12 foi montada com as bandas 3, 4 e 5, como na
Figura 2.10, porém ocorreu uma troca, a banda do infravermelho próximo (4) recebeu a cor vermelha. Isso
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 45/60
fez com que a vegetação ganhasse cores avermelhadas, devido ao pico da curva espectral da vegetação ser
no infravermelho próximo. Essa técnica é útil para destacar os objetos de interesse em uma imagem.
Figura 2.10 - Imagem colorida de Ubatuba, SP, obtida a partir das imagens ETM+ do LANDSAT-7,
11/08/1999, dos canais 3, 4 e 5 com as cores azul, verde e vermelho respectivamente 
Fonte: Florenzano (2002, p. 21).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 46/60
Figura 2.11 - Imagem colorida de Ubatuba, SP, obtida a partir das imagens ETM+ do LANDSAT-7 dos canais 1,
2 e 3 com as cores azul, verde e vermelho respectivamente 
Fonte: Florenzano (2002, p. 21).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 47/60
A composição de imagens coloridas pode auxiliar o usuário na interpretação dos objetos da cena. Isso é útil
quando se quer destacar o avanço do desmatamento ou o avanço da urbanização, épocas chuvosas ou de
seca, além de seus efeitos no terreno, entre outras utilidades.
Figura 2.12 - Imagem colorida de Ubatuba, SP, obtida a partir das imagens ETM+ do LANDSAT-7 dos canais 3,
4 e 5 com as cores azul, vermelho e verde respectivamente 
Fonte: Florenzano (2002, p. 21).
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 48/60ti
saiba maisSaiba mais
Durante a década de 1970, o Governo Federal Brasileiro iniciou o
Projeto RADAM (Radar da Amazônia) com o objetivo de realizar
o levantamento aerofotogramétrico de radar na Amazônia. Esse
sistema foi escolhido por ser um sensor ativo que consegue
ultrapassar as nuvens e a vegetação da região amazônica. Devido
ao sucesso do projeto, o Governo Federal estendeu para todo o
país. Dessa forma, surgiu o projeto RADAMBRASIL. Conheça
mais sobre esse projeto, acessando o link a seguir.
ACESSAR
http://www.cprm.gov.br/publique/Geologia/Sensoriamento-Remoto-e-Geofisica/RADAM-D-628.html
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 49/60
praticarVamos Praticar
O comportamento espectral do alvo é de suma importância em estudos do Sensoriamento Remoto. Assinale a
alternativa que apresenta em qual faixa do espectro eletromagnético ocorre o pico máximo da vegetação.
a) Azul.
b) Verde.
c) Vermelho.
d) Infravermelho médio.
e) Infravermelho próximo.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 50/60
indicações
Material
Complementar
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 51/60
L I V R O
Sensoriamento Remoto do Ambiente: Uma Perspectiva
em Recursos Terrestres
Editora: Parêntese Editora
Autor: John R. Jensen
ISBN: 978-85-60507-06-1
Comentário: O Livro aborda a teoria e os usos do Sensoriamento Remoto.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 52/60
F I L M E
Desbravar, Conhecer, Mapear: Memórias do Projeto
RADAM/RADAMBRASIL
Ano: 2018
Comentário: O vídeo aborda algumas das histórias do desenvolvimento do
projeto RADAM, narrado por pesquisadores que trabalharam no projeto.
T R A I L E R
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 53/60
conclusão
Conclusão
Nessa unidade abordamos os sistemas de posicionamento por satélite GPS, GLONASS, Beidou e Galileo.
Além disso, tratamos sobre a arquitetura de sistemas de informações geográ�cas, a importância dos dados
geoespaciais matriciais e vetoriais e os dados alfanuméricos que se associam as informações espaciais pelos
arquivos vetoriais. Aprendemos sobre os fundamentos do Sensoriamento Remoto, a evolução desde das
imagens obtidas de um balão até aquelas obtidas por satélites em órbita. Nesse sentido, vimos sobre o
espectro eletromagnético, que é extremamente importante para a compreensão de como a luz solar é
re�etida e captada pelos sensores dos satélites. Vimos o comportamento dos alvos e suas diferentes
maneiras de re�etir a luz solar em diferentes comprimentos de onda. Além disso, vimos também as
características das imagens de satélite multiespectrais e a construçãode composições coloridas. Essas
de�nições e exempli�cações nos ajudam a construir a ideia de uso do sensoriamento remoto na elaboração
de mapas por uso dos SIGs. É a partir do comportamento espectral de alvos que podemos elaborar índices,
elaborar mapeamentos e realizar o monitoramento da superfície terrestre.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 54/60
referências
Referências
Bibliográ�cas
CÂMARA, G.; MEDEIROS, J. S. Geoprocessamento para projetos ambientais. São José do Campos: INPE,
1998.
CARVALHO, E. A.; ARAÚJO, P. C. Noções básicas de sistema de posicionamento global GPS. Natal: UFRN,
2009.
DOMPIERI, M. H. G.; SILVA, M. A. S. D.; NOGUEIRA JÚNIOR, L. R. Sistemas de referência terrestre e
posicionamento por satélite. Aracaju: Embrapa Tabuleiros Costeiros, 2015.
FITZ, P. R. Geoprocessamento sem complicação. São Paulo: O�cina de Textos, 2008.
FLORENZANO, T. G. Imagens de satélite para estudos ambientais. São Paulo: O�cina de Textos, 2002.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 55/60
GRÁFICA CARTEX. Diferenças entre os sistemas de cores CMYK e RGB. Grá�ca Cartex, 27 fev. 2019.
Disponível em: http://www.gra�cacartex.com.br/diferenca-entre-cmyk-e-rgb/. Acesso em: 17 maio 2019.
INMET. Exemplo de imagem do satélite geoestacionário GOES-16, 2019. Disponível em:
http://www.inmet.gov.br/satelites/. Acesso em: 17 maio 2019.
INPE. Divisão de Geração de imagens, 2019a. Disponível em:
http://www.dgi.inpe.br/documentacao/satelites. Acesso em: 8 maio 2019.
INPE. Exemplo de imagens dos satélites orbitais CBERS-4 e Landsat 8, 2019b. Disponível em:
http://www.inpe.br/noticias/noticia.php?Cod_Noticia=4819. Acesso em: 8 maio 2019.
JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. São José dos
Campos: Parêntese Editora, 2009.
LI, X.; ZHANG, X.; REN, X.; FRITSCHE, M.; WICKERT, J.; SCHUH, H. Precise positioning with current multi-
constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scienti�c Reports, v.
5, n. 1, p. 8328, 9 fev. 2015. ISSN 2045-2322. Disponível em: https://doi.org/10.1038/srep08328. Acesso em:
20 fev. 2019.
MENESES, P. R. Modelos de cores aplicados às imagens. In: MENESES, P. R.; ALMEIDA, T. D. (Org.).
Introdução ao processamento de imagens de sensoriamento remoto. Brasília: CNPq, 2012a. p. 121-137.
MENESES, P. R. Princípios de sensoriamento remoto. In: MENESES, P. R.; ALMEIDA, T. D. (Org.). Introdução
ao processamento de imagens de sensoriamento remoto. Brasília: CNPq, 2012b. p. 1-34.
http://www.graficacartex.com.br/diferenca-entre-cmyk-e-rgb/
http://www.inmet.gov.br/satelites/
http://www.dgi.inpe.br/documentacao/satelites
http://www.inpe.br/noticias/noticia.php?Cod_Noticia=4819
https://doi.org/10.1038/srep08328
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 56/60
MONICO, J. F. G. Posicionamento pelo GNSS: descrição, fundamentos e aplicações. 2. ed. São Paulo: Editora
UNESP, 2008.
MOREIRA, M. A. Fundamento do sensoriamento remoto e metodologias de aplicação. 3. ed. Viçosa: Ed.
UFV, 2005.
ROSA, R. Introdução ao Geoprocessamento. Uberlândia: UFU, 2013.
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 57/60
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 58/60
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 59/60
28/10/2020 Ead.br
https://fmu.blackboard.com/webapps/late-Course_Landing_Page_Course_100-BBLEARN/Controller 60/60

Continue navegando