Buscar

Corrente Elétrica e os Circuitos CC

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 46 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Construção dos conceitos da corrente elétrica, da Lei de Ohm, da resistência elétrica, da potência elétrica, das regras de
Kirchhoff e suas aplicações como fundamento à análise e ao projeto dos circuitos elétricos CC.
PROPÓSITO
Compreender os conceitos de corrente elétrica, lei de Ohm, resistência elétrica, potência elétrica e as aplicações das regras
de Kirchhoff que, somado aos conceitos prévios de campo, potencial elétrico e capacitância, além de contribuir para o
avanço na compreensão da eletrodinâmica clássica, agora para sistemas elétricos com corrente elétrica, é fundamental para
a análise e projeto dos circuitos elétricos de corrente contínua, C.C.
PREPARAÇÃO
Antes de iniciar o conteúdo deste tema, tenha em mãos uma calculadora científica.
OBJETIVOS
MÓDULO 1
Identificar a corrente elétrica, a Lei de Ohm, a resistência e a potência elétrica
MÓDULO 2
Aplicar as regras de Kirchhoff aos circuitos CC resistivos
 
Fonte: ShutterStock
INTRODUÇÃO
Os circuitos elétricos com corrente contínua (CC), que são sistemas elétricos com fluxo uniforme de cargas, constituem a
base conceitual e fundamental de toda a tecnologia de distribuição elétrica e dos circuitos elétricos, desde os sistemas
simples até os modernos sistemas elétricos.
Para a análise e o projeto desses circuitos, necessitamos das conceituações aplicadas da corrente elétrica, da Lei de Ohm,
da resistência elétrica, da potência elétrica e das regras de Kirchhoff — essas regras são aplicações práticas dos princípios
de conservação da carga e da energia.
Vamos avançar no estudo da Eletrodinâmica Clássica e definir os circuitos CC resistivos, de forma a compreender seus
fundamentos e as soluções para projetá-los.
Assista no vídeo a uma introdução para este tema.
MÓDULO 1
 Identificar a corrente elétrica, a Lei de Ohm, a resistência e a potência elétrica
CORRENTE ELÉTRICA
A corrente elétrica é uma grandeza completamente distinta da diferença de potencial elétrico, a conhecida tensão elétrica.
Pode ser definida como uma quantidade de cargas elétricas em movimento em determinado intervalo de tempo, geralmente
em um condutor elétrico, como um filamento elétrico.
 
Fonte: Chones/Shutterstock.com
CORRENTE ELÉTRICA
A corrente elétrica é conceituada como o número de cargas elétricas em circulação, em um intervalo de tempo, com unidade
Ampere (A) no sistema internacional de unidades (SI).
POTENCIAL ELÉTRICO
Por outro lado, para efeito de comparação, o potencial elétrico é conceituado como a energia, por unidade de carga, que
cada carga elétrica possui, nesse condutor ou rede elétrica.
DITO DE OUTRA FORMA: NUMA REDE ELÉTRICA, OU CIRCUITO ELÉTRICO, CADA
PORTADOR DE CARGAS (NOME GENÉRICO DOS ELEMENTOS QUE
javascript:void(0)
javascript:void(0)
TRANSPORTAM CARGAS ELÉTRICAS.) POSSUI UMA ENERGIA ESTABELECIDA
PELA REDE ELÉTRICA, OU CIRCUITO ELÉTRICO, E O NÚMERO DE PORTADORES
CARREGADOS EM MOVIMENTO EM UM INTERVALO DE TEMPO, CARACTERIZA A
CORRENTE ELÉTRICA NESSA REDE, OU CIRCUITO.
 ATENÇÃO
Para que se tenha uma corrente elétrica, em uma rede ou circuito elétrico, é necessário que haja uma diferença de
potencial elétrico, que fará os portadores de cargas se moverem, estabelecendo a corrente elétrica.
É possível haver correntes elétricas em quaisquer meios materiais, mesmo no vácuo, não somente em circuitos condutivos.
Para isso, basta que a não condutividade desse meio, a sua resistência à condução elétrica, seja rompida.
A esse fenômeno chamamos de rompimento da rigidez dielétrica, que é a transformação de um meio isolante, portanto
não condutivo, em um meio condutor elétrico.
 
Fonte: Tami Story Photography/Shutterstock.com
Isso é o que visualizamos em uma tempestade elétrica, quando a diferença de potencial nuvem-terra, ou nuvem-nuvem,
atinge um valor tão alto que a rigidez dielétrica do ar atmosférico é rompida, produzindo as descargas elétricas atmosféricas
 
Fonte: John D Sirlin/Shutterstock.com
O fenômeno das descargas atmosféricas é bem mais complexo do que os fenômenos de Maxwell, adentrando outros
fenômenos físicos, como a emissão de radiação de altas energias e fenômenos da Física dos Plasmas, tamanha a escala de
energias. Entretanto, é útil como ilustração de correntes elétricas naturais.
APROVEITANDO AS IMAGENS, VOCÊ SABE POR QUE AS
DESCARGAS ELÉTRICAS ATINGEM CERTOS LUGARES, COMO
PARA-RAIOS, ÁRVORES OU PESSOAS EM CAMPO ABERTO?
RESPOSTA
A corrente elétrica segue o caminho de menor custo energético.
Vamos entender melhor. As cargas elétricas com suficiente energia se movimentam no sentido de encontrar o menor valor do
potencial elétrico. Na presença de um campo elétrico e uma diferença de potencial elétrico, as cargas se movem do maior
potencial para o menor valor do potencial elétrico, pois a força elétrica age sobre elas. Se, nesse intervalo de espaço, um
eventual ponto de menor magnitude do potencial elétrico, que esteja aterrado, estiver mais elevado do que o solo, esse ponto
será o alvo das descargas elétricas, uma vez que, sendo a distância menor entre os potenciais, o custo energético será
menor. Logo, o trabalho para mover as cargas será menor.
 
Fonte: Aita/Shutterstock.com
javascript:void(0)
Pode ser um para-raios, uma árvore ou um indivíduo. Infelizmente, áreas descampadas e até praias são perigosas em dias
de tempestade elétrica.
 
Fonte: Zuhairi Ahmad/Shutterstock.com
Pode ser um para-raios, uma árvore ou um indivíduo. Infelizmente, áreas descampadas e até praias são perigosas em dias
de tempestade elétrica.
COMO É POSSÍVEL A UM OPERÁRIO DE MANUTENÇÃO DE GRANDES LINHAS DE
TRANSMISSÃO ELÉTRICA REALIZAR SEU TRABALHO EM CIMA DESSAS LINHAS,
COM CENTENAS DE MILHARES DE VOLTS DE POTENCIAL ELÉTRICO?
A resposta à questão está na diferença de potencial elétrico e no princípio das superfícies equipotenciais. Cargas
elétricas somente serão movimentadas se houver uma diferença de potencial elétrico. No entanto, ao longo de uma
superfície equipotencial, não há diferença de potencial e, portanto, as cargas podem se mover, nessa superfície de mesmo
potencial, sem custo energético algum, sem trabalho. Assim, quando um operário de manutenção equilibra (ajusta) seu
potencial elétrico ao da linha de alta tensão, não sofre as consequências de uma corrente elétrica atravessar seu corpo, pois
não haverá diferenças de potencial elétrico que possam produzir correntes elétricas.
De outra forma, se colocarmos nossa mão em uma fase elétrica — um polo da tomada elétrica doméstica —
necessariamente com os pés isolados da terra, não permitindo a condução elétrica para a terra, como não haverá diferença
de potencial elétrico, também não haverá corrente elétrica circulando em nosso corpo e nenhum risco à saúde.
Entretanto, se colocarmos a outra mão em contato com o outro polo da tomada elétrica doméstica, que chamamos de neutro
(fase neutra), teremos uma diferença de potencial estabelecida, e uma corrente elétrica atravessará nosso corpo com grande
risco à saúde.
 
Fonte Mike Mareen/Shutterstock.com
VAMOS, AGORA, DEFINIR A CORRENTE ELÉTRICA
MATEMATICAMENTE.
Essencialmente, corrente elétrica é a quantidade de cargas elétricas que atravessam um ponto num intervalo de tempo.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pense em um fio condutor, se o alimentarmos com uma diferença de potencial elétrico, entre suas extremidades, então
cargas elétricas serão movimentadas nesse fio e teremos uma corrente elétrica. Desse modo, para que haja corrente
elétrica, , é necessário que tenhamos uma diferença de potencial elétrico no meio (material) em que surge a corrente.
Na presença dessa diferença de potencial elétrico, cargas são aceleradas, como na mecânica clássica, pois ao adquirirem
energia potencial, a transformam em energia cinética.
Clique abaixo e aprenda nossas primeiras grandes lições:
LEIA 
ATENTAMENTE
Potencial elétrico e corrente elétrica são grandezas totalmente diferentes.
Potencial elétrico tem unidade Volt(V) e corrente elétrica tem unidade Ampere (A), no S.I., em que 1A = 1C/s.
Para que haja corrente elétrica, será preciso haver uma diferença de potencial elétrico.
É a diferença de potencial elétrico que pode produzir um deslocamento de cargas, uma corrente elétrica.
CORRENTE ELÉTRICA COMO FLUXO DE CARGAS
Vamos fazer uma analogia com as correntes aéreas. O que chamamos de vento é provocado pela circulação de porções de
ar atmosférico que se movimentam impulsionadas por diferenças de pressão atmosférica local.
 EXEMPLO
Em um dia de vento atmosférico, se permitirmos que correntes de ar circulem em nossas casas, certamente será porque
deixamos abertos, para essa circulação, ao menos dois pontos de passagem do ar. Como há uma diferença de pressão entre
esses dois pontos, surgem correntes de ar. Se fecharmos uma dessas passagens de ar, as correntes de ar cessarão, pois
teremos equilibrado as pressões. Então, o vento é fluxo aéreo.
I =
dq
dt
I
Assim, a corrente elétrica é fluxo de cargas. Para que tenhamos corrente elétrica, precisamos de uma diferença de potencial
elétrico. Se interrompermos a condução elétrica, não teremos corrente elétrica, pois teremos equilibrado os potenciais
elétricos.
Não será possível haver corrente elétrica em uma superfície equipotencial, porque não há diferença de potencial que
permita a formação de corrente, nesse caso.
NÃO É POSSÍVEL ACUMULAR, DE FORMA ALGUMA, CORRENTES ELÉTRICAS, JÁ
QUE TRATA-SE DE FLUXO DE CARGAS. PODEMOS ACUMULAR CARGAS
ELÉTRICAS OU POTENCIAL ELÉTRICO (ENERGIA POR CARGA) EM
CAPACITORES E BATERIAS, POR EXEMPLO, MAS NÃO PODEMOS ACUMULAR
CORRENTE ELÉTRICA, POIS É FLUXO.
 ATENÇÃO
Uma ou algumas cargas elétricas individualizadas em movimento não constituem formação de corrente elétrica. Para
definirmos corrente elétrica, precisamos de um fluxo de cargas.
Correntes elétricas em meios condutores são as clássicas correntes em circuitos elétricos. Correntes elétricas em meios
fluídicos são formadas por portadores de cargas. Correntes elétricas no vácuo são descargas elétricas na ausência de meio
material para circulação, por exemplo, descargas elétricas no espaço ou em feixes de partículas em laboratórios, por meio de
aceleradores de partículas, onde fez-se vácuo.
PORTADORES DE CARGAS
Íons moleculares que circulam em fluidos formando correntes.
 ATENÇÃO
Podemos ter corrente elétrica independentemente do meio de circulação de cargas, que poderá ser um condutor elétrico
(material sólido), um meio fluídico (líquidos ou gases) ou o vácuo.
Aprendemos a definir fluxo com a Lei de Gauss. Então, vamos definir a corrente elétrica, , que é uma grandeza escalar,
como o fluxo da densidade de corrente elétrica, , que é uma grandeza vetorial. Assim:
I
→
J
I =
 
∫
c
→
J . n̂ dA
javascript:void(0)
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que é o vetor unitário direcional normal ao plano de área A.
Cada carga elétrica, q, ou portador de carga, possui uma velocidade média de deslocamento no meio de condução, , que
chamaremos de velocidade de migração dos portadores de carga.
Se tivermos n portadores de cargas por unidade de volume, que é uma densidade volumétrica do número de portadores de
cargas, então uma porção de cargas, ∆Q, transportadas em um fio condutor de área de seção reta, A, em um trecho retilíneo
de comprimento e em um intervalo de tempo Δt será:
 
Fonte: O autor
 Portadores de cargas em condutores
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A corrente elétrica, I, definida anteriormente, é o limite quando ∆t → 0, ou seja:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, desse exemplo do fio retilíneo condutor, temos a definição do vetor densidade de corrente elétrica, também
chamado de densidade de fluxo elétrico.
 ONDE 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
n̂
→
v
Δx = ∣∣
→
v ∣∣  Δ t 
ΔQ = n q  Δ Volume    →     Δ Q = n q A  Δ x    →     Δ Q = n q A 
∣
∣
→
v ∣∣  Δ t
I =   =   lim
Δt→0
=  n q A 
∣
∣
∣
→
v
∣
∣
∣
dq
dt
ΔQ
Δt
→
J =  n q 
→
v
∣
∣
∣
→
J
∣
∣
∣
= I/A
LEI DE OHM E A RESISTÊNCIA ELÉTRICA
A Lei de Ohm, na forma mais conhecida, foi proposta originalmente como uma lei fenomenológica e, depois, verificada como
um subproduto das equações que definem a teoria eletrodinâmica clássica, chamadas de equações de Maxwell, quando em
interação com a matéria condutora.
 
Fonte: O autor
 Relação Tensão x Corrente em um circuito resistivo
Relaciona o potencial elétrico, V, com a corrente elétrica, I, em materiais consumidores de energia elétrica que apresentam
comportamento funcional linear, chamados de materiais ôhmicos. A constante de proporcionalidade dessa equação é o que
chamamos de resistência elétrica, R, e sua unidade S.I. é o ohm, 1 Ω = 1V/A.
 
Fonte: O autor
O gráfico anterior apresenta esse comportamento linear, em que R é o coeficiente angular gráfico da função V = RI
Os materiais não ôhmicos, ao contrário, não satisfazem a expressão linear da Lei de Ohm e apresentam outros
comportamentos mais complexos.
O circuito ao lado é um esquema de montagem de um circuito elétrico composto de uma fonte (CC) de corrente e tensão
contínua, que fornece uma diferença de potencial elétrico, V, a um componente elétrico de resistência, R, em um circuito
fechado de uma malha, isto é, uma única circulação fechada de corrente constante, I.
 
Fonte: O autor
No mesmo circuito elétrico, usamos a convenção de Benjamin Franklin e consideramos que a corrente elétrica, I, é composta
por cargas de atributo positivas, que circulam do potencial elétrico mais alto, no polo positivo, para o potencial elétrico mais
baixo, no polo negativo.
Na realidade, sabemos que as cargas elétricas disponíveis capazes de compor correntes elétricas são de atributo
negativas, que também foi convencionado. Assim, o padrão adotado para a orientação da corrente elétrica é, na verdade,
contrário à realidade. Entretanto, isso não é capaz de interferir na análise de circuitos, como veremos. A definição dos polos
elétricos segue essa convenção de B. Franklin e deve ser interpretada como operacional, quando o que importa é que existe
uma diferença de potencial elétrico.
CARGAS ELÉTRICAS
1. Cargas elétricas ocorrem em dois atributos
Cargas elétricas são acúmulos ou deficit de cargas eletrônicas fundamentais. Assim, um material carregado
positivamente possui um deficit de cargas fundamentais eletrônicas. E um material carregado negativamente possui um
superavit de cargas fundamentais eletrônicas.
Para os fenômenos da teoria eletrodinâmica, esse mecanismo, de motivação histórica, de atribuição de sinais às
cargas, não faz diferença desde que possamos identificar os dois atributos fenomenologicamente diferentes do
superavit ou deficit de cargas fundamentais eletrônicas, que foram historicamente chamadas de cargas negativas e
positivas, respectivamente, e mantidas por razões operatoriais e de convenção.
O fato é que cargas elétricas ocorrem em dois atributos, e essas nomenclaturas de cargas positivas e negativas são,
atualmente, apenas convencionais, usadas somente para identificar os dois atributos de cargas, não possuindo maior
fundamentação física.
2. Cargas elétricas são conservadas
A totalidade de cargas elétricas no universo é constante. Se retirarmos cargas negativas ou positivas de um corpo,
essas cargas irão para outro corpo. Dizemos que as cargas se conservam global e localmente.
3. A carga elétrica é quantizada
javascript:void(0)
Todo material carregado eletricamente o será em múltiplos inteiros da carga fundamental eletrônica. Esse fato de
origem quântica não tem explicação na teoria eletrodinâmica de Maxwell. Essa questão habita o universo das teorias
quânticas.
4. Cargas elétricas são a fonte (causa) dos campos e das forças elétricas estáticas
Ao “gerarem” campos eletrostáticos, as cargas elétricas estáticas informam o universo vizinhode sua existência. Do
ponto de vista quântico, são partículas de luz (fótons) que constituem os campos, bem como percorrem o espaço
disponível até excitarem outras cargas e induzirem forças elétricas de Coulomb a distância.
RESISTORES ELÉTRICOS
Resistores elétricos, de resistência R, são componentes elétricos/eletrônicos que dificultam a condução elétrica ao reduzir o
potencial elétrico disponibilizado, V, convertendo parte da energia elétrica em energia térmica, por meio do efeito Joule, e
dispersando essa energia térmica no ambiente. Ou seja, os resistores se aquecem quando alimentados com corrente elétrica
e dispersam essa energia térmica para o meio externo ao circuito. 
Todos os materiais apresentam certa resistência à condução elétrica, sendo menor a resistência elétrica nos bons condutores
e maior a resistência nos maus condutores elétricos.
A resistência elétrica, R, é uma função da geometria e da condutividade do material.
 
Fonte: Sergiy Kuzmin/Shutterstock.com
 Resistores elétricos
RESISTIVIDADE E CONDUTIVIDADE ELÉTRICA
Os condutores ôhmicos, são classificados por sua condutividade elétrica, σ, também definida como o inverso da
resistividade elétrica, ρ, que tem unidade Ω.m (ohm. metro), no S.I.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
σ = 1/ρ
Uma representação menos conhecida da Lei de Ohm relaciona o vetor densidade de corrente elétrica, , com o campo
elétrico, , interno aos materiais condutores.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
VOCÊ DEVE ESTAR SE PERGUNTANDO COMO PODE A DENSIDADE DE
CORRENTE ELÉTRICA ESTAR RELACIONADA AO CAMPO ELÉTRICO EM
CONDUTORES ELÉTRICOS, SE SEU CAMPO ELÉTRICO INTERNO É ZERO?
Na verdade, o campo elétrico interno será zero em condutores ideais, perfeitos, em equilíbrio eletrostático. Para esses
condutores ideais, a condutividade elétrica, σ, seria infinita. Para os demais condutores, o campo elétrico necessário para
deslocar cargas é quase desprezível e sua condutividade elétrica, σ, muito grande.
Vamos, agora, obter a dependência da resistência elétrica, R, de materiais condutores retilíneos com sua geometria. Para
isso, acompanhe o fluxo abaixo:
Consideremos um fio condutor retilíneo e cilíndrico de comprimento L, com área de seção reta A.

Se alimentarmos esse material retilíneo com uma diferença de potencial elétrico, V, o módulo do campo elétrico interno, ,
será constante, pois a mesma diferença de potencial será verificada em cada trecho. Logo, usando a definição do potencial
elétrico, , temos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal


Para a corrente elétrica invariante I (consequência dos circuitos CC), temos da definição de densidade de corrente para o fio
com área de seção A:
→
J
→
E
→
J = σ
→
E
→
E
V = − ∫ b
a
→
E .  
→
dl
V =
∣
∣
∣
→
E
∣
∣
∣
L
 Atenção! Para visualização completa da equação utilize a rolagem horizontal

Substituindo na equação ao lado, , em módulo, aplicando , e também , temos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ou seja, a dependência da resistência elétrica de materiais condutores com a resistividade elétrica, ρ, ou a
condutividade, σ, é proporcional ao comprimento retilíneo do fio, L, e inversamente proporcional à área de seção reta, A.
A RESISTIVIDADE DOS MATERIAIS, USUALMENTE OS METAIS, É FUNÇÃO DE
SUA TEMPERATURA E DE UM COEFICIENTE DE TEMPERATURA, Ρ = Ρ20 [1 + Α(T -
20°C)], EM QUE Α É O COEFICIENTE DE TEMPERATURA DO MATERIAL E A
MEDIDA É PADRONIZADA EM 20° C
POTÊNCIA ELÉTRICA
No modelo clássico da condução elétrica, quando um condutor elétrico é percorrido por uma corrente elétrica, seus
portadores de cargas submetidos a uma diferença de potencial, na presença de um campo elétrico, adquirem energia
elétrica, aumentando sua energia cinética, que é continuamente convertida em energia térmica, devido aos choques entre
esses portadores de cargas e os íons da rede cristalina do material condutor.
Apesar de os portadores de cargas adquirirem continuamente energia cinética do campo elétrico, em um condutor elétrico,
esta é continuamente convertida em energia térmica, e tal conversão em energia térmica é dependente da classe dos
materiais, quanto à sua condutividade.
Maus condutores elétricos e resistores elétricos são mais eficientes na conversão em energia térmica.

Bons condutores elétricos convertem menor energia térmica, comparativamente aos maus condutores.
A ESSE FENÔMENO, DE CONVERSÃO DE ENERGIA EM ENERGIA TÉRMICA,
DAMOS O NOME DE EFEITO JOULE.
I =
∣
∣
∣
→
J
∣
∣
∣
 A
→
J = σ
→
E V = R I σ = 1/ρ
R = ρ      ou    R =    L
A
L
σ A
DEMONSTRAÇÃO
Vamos, agora, demonstrar a construção do conceito de perda de potência elétrica por efeito Joule, em um condutor
elétrico, submetido a uma diferença de potencial, V, quando uma corrente elétrica constante, I, o atravessa.
Considerando a relação entre energia elétrica e potencial elétrico, , a perda de energia elétrica (–W) em um intervalo
de tempo será a taxa de variação temporal dessa energia elétrica convertida em energia térmica.
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pois a diferença de potencial, V, considerada, será constante.
Então, da definição de corrente elétrica, , podemos definir a perda de potência elétrica, P, relembrando da definição
de potência da mecânica clássica, .
Dessa forma:
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
E suas outras representações, por meio da Lei de Ohm, V = R I,
 E 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÃO NA MASSA
V = Wq
W = q V
= = V  
d(W)
dt
d(qV )
dt
dq
dt
I =
dq
dt
P = dW
dt
P =   = V  
d(W)
dt
dq
dt
P = V I
P = RI 2 P = V
2
R
1. EM UMA EXPERIÊNCIA ELETROQUÍMICA, 2,0 × 109 ELÉTRONS PERCORREM A SOLUÇÃO,
ENTRE DOIS ELETRODOS, EM UM INTERVALO DE TEMPO DE 100 MS. CALCULE A CORRENTE
ELÉTRICA NESSA REAÇÃO QUÍMICA, CONSIDERANDO QUE POSSA SER MANTIDA
CONSTANTE. LEMBRE-SE DE QUE O VALOR ABSOLUTO DA CARGA FUNDAMENTAL DO
ELÉTRON É DE, APROXIMADAMENTE, QE = 1,6 × 10-19C.
A) I = 3,2 A
B) I = 0,032 A
C) I = 32 A
D) I = 0,32 A
E) I = 320 A
2. UM CABO DE TRANSMISSÃO ELÉTRICA TRANSPORTA O EQUIVALENTE A N = 2,5 × 1018
ELÉTRONS LIVRES AO LONGO DE SUA EXTENSÃO, A CADA SEGUNDO. SE ESSE CABO TIVER
3,0 CM DE DIÂMETRO, OBTENHA A MAGNITUDE DA DENSIDADE DE CORRENTE ELÉTRICA
QUE É CAPAZ DE CONDUZIR, A CADA SEGUNDO, CONSIDERANDO QUE SUA CORRENTE
ELÉTRICA SEJA HOMOGÊNEA E CONSTANTE.
A) 
B) 
C) 
D) 
E) 
3. EM UMA PRÁTICA LABORATORIAL, UM ESTUDANTE MONTOU UM CIRCUITO DE UMA FONTE
DE TENSÃO ∆V E UM RESISTOR ÔHMICO R. VARIANDO A TENSÃO NESSA FONTE, ANOTOU
DADOS DE VALORES DA TENSÃO DE ALIMENTAÇÃO DO RESISTOR E DA CORRENTE
ELÉTRICA NO CIRCUITO. DUAS DAS TOMADAS DE DADOS DOS VALORES NOMINAIS DE
TENSÃO E CORRENTE ELÉTRICA ESTÃO REPRESENTADAS NA TABELA: 
V (VOLT) I (AMPERE)
7,3 0,002
12,5 0,004
 ATENÇÃO! PARA VISUALIZAÇÃOCOMPLETA DA TABELA UTILIZE A ROLAGEM HORIZONTAL
565,88 A
m2
0,40 A
3,5  × 1021 A
m2
0,40  A
m2
1,777,76  A
m2
 
OBTENHA O VALOR DA RESISTÊNCIA ELÉTRICA R DESSE CIRCUITO, CONSIDERANDO OS
DADOS TABELADOS.
A) 3125 Ω
B) 3750 Ω
C) 3438 Ω
D) 2600 Ω
E) 0 Ω
4. CONSIDERE UM CABO CONDUTOR DE COBRE, COM RESISTIVIDADE Ρ = 1,7 × 10-8 Ω.M,
CONDUZINDO UMA CORRENTE ELÉTRICA CONSTANTE I = 5,0 AMPERES. O CABO TEM
COMPRIMENTO LINEAR DE 30 M E DIÂMETRO DE D = 0,13 CM. CALCULE A QUEDA DE
POTENCIAL ELÉTRICO NESSE CABO.
A) ΔV = 1,92 V
B) ΔV = 0,384 Ω
C) ΔV = 0,384 V
D) ΔV = 0 V
E) ΔV = 0,48 V
5. EM ALGUMAS REGIÕES DO PAÍS, O CUSTO DA ENERGIA ELÉTRICA CORRESPONDE A R$
0,95 POR KWH (103 WATT. HORA). SE UM CHUVEIRO ELÉTRICO TIVER POTÊNCIA DE CONSUMO
DE 5500 W, SUPONHA UMA UTILIZAÇÃO DE 30 DIAS NO MÊS, COM 1 HORA DIÁRIA DE USO
MÉDIO PARA UMA FAMÍLIA COM 4 PESSOAS. QUAL SERÁ O CUSTO EM REAIS DA UTILIZAÇÃO
DESSE CHUVEIRO ELÉTRICO?
A) R$ 174,17
B) R$ 7,18
C) R$ 192,98D) R$ 183,33
E) R$ 156,75
6. CALCULE A POTÊNCIA DISSIPADA POR UM RESISTOR DE 10 Ω, SE A DIFERENÇA DE
POTENCIAL A QUE FOI SUBMETIDO FOR DE 220 V. CALCULE TAMBÉM A CORRENTE ELÉTRICA
QUE O PERCORRE.
A) P = 10 W I = 22 A
B) P = 22 W I = 4840 A
C) P = 4840 W I = 22 A
D) P = 22 W I = 10 A
E) P = 484 W I = 2 A
GABARITO
1. Em uma experiência eletroquímica, 2,0 × 109 elétrons percorrem a solução, entre dois eletrodos, em um intervalo
de tempo de 100 ms. Calcule a corrente elétrica nessa reação química, considerando que possa ser mantida
constante. Lembre-se de que o valor absoluto da carga fundamental do elétron é de, aproximadamente, qe = 1,6 × 10-
19C.
A alternativa "D " está correta.
Se a corrente elétrica, na reação química, pode ser mantida constante, então I = ∆Q/∆t.
Assim, ∆Q = N × qe, em que N é o número de elétrons conduzidos no intervalo de tempo considerado. Devemos converter o
intervalo de tempo para segundos.
Logo:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Um cabo de transmissão elétrica transporta o equivalente a N = 2,5 × 1018 elétrons livres ao longo de sua
extensão, a cada segundo. Se esse cabo tiver 3,0 cm de diâmetro, obtenha a magnitude da densidade de corrente
elétrica que é capaz de conduzir, a cada segundo, considerando que sua corrente elétrica seja homogênea e
constante.
A alternativa "A " está correta.
Veja a resolução da questão no vídeo a seguir:
3. Em uma prática laboratorial, um estudante montou um circuito de uma fonte de tensão ∆V e um resistor ôhmico R.
Variando a tensão nessa fonte, anotou dados de valores da tensão de alimentação do resistor e da corrente elétrica
no circuito. Duas das tomadas de dados dos valores nominais de tensão e corrente elétrica estão representadas na
tabela: 
V (Volt) I (Ampere)
7,3 0,002
I = =  0,32 A
(2,0 ×1017 × 1,6×10−19C)
100×10−3s
12,5 0,004
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
 
Obtenha o valor da resistência elétrica R desse circuito, considerando os dados tabelados.
A alternativa "D " está correta.
Veja a resolução da questão no vídeo a seguir:
4. Considere um cabo condutor de cobre, com resistividade ρ = 1,7 × 10-8 Ω.m, conduzindo uma corrente elétrica
constante I = 5,0 Amperes. O cabo tem comprimento linear de 30 m e diâmetro de d = 0,13 cm. Calcule a queda de
potencial elétrico nesse cabo.
A alternativa "A " está correta.
Vamos calcular a resistência elétrica e, em seguida, calcular a queda de potencial elétrico. A área de seção reta do fio é um
disco de área A = π (d/2)2. O diâmetro, de centímetros, deve ser convertido para o metro.
Então:
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Logo, ΔV = 1,92 V, que serão consumidos em 30 metros de cabo.
5. Em algumas regiões do País, o custo da energia elétrica corresponde a R$ 0,95 por KWh (103 Watt. hora). Se um
chuveiro elétrico tiver potência de consumo de 5500 W, suponha uma utilização de 30 dias no mês, com 1 hora diária
de uso médio para uma família com 4 pessoas. Qual será o custo em reais da utilização desse chuveiro elétrico?
A alternativa "E " está correta.
P = 5500 W = 5.5 kW ⟹ t = 1 h × 30 dias = 30 h
E = 5.5 kW × 30 h = 165 kWh
Custo = 165 kWh × 0,95 R$/kWh
Custo = R$ 156,75
6. Calcule a potência dissipada por um resistor de 10 Ω, se a diferença de potencial a que foi submetido for de 220 V.
Calcule também a corrente elétrica que o percorre.
R = ρ         ⟹        R = = 0 ,384  ΩL
A
( 1,7 × 10−8 )  Ω.m × 30 m
π ( )
2
m2
0,13×10−2
2
ΔV = RI  ⟹    Δ V = 0 ,384  Ω  ×  5 Ampere
ΔV = 1,92 V
A alternativa "C " está correta.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
TEORIA NA PRÁTICA
Considere um condutor elétrico real, retilíneo e de comprimento L, com área de seção reta A, atravessado por uma corrente
elétrica constante, I, quando submetido a uma diferença de potencial elétrico V. Demonstre a obtenção da forma mais
conhecida da Lei de Ohm, V = R I, a partir da segunda forma da lei, , considerando que resistência elétrica é uma
função da resistividade elétrica, .
RESOLUÇÃO
Vamos lembrar que . Assim, . Além disso, e como, nesse condutor elétrico, o
potencial elétrico é constante, teremos , pois o campo elétrico será constante no condutor. Assim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Entretanto, . Logo, como :
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Veja a seguir a solução desta questão:
P = = = 4840 W
P = V I     ⇒      4840 W = 220 I
I = 22 A
V 2
R
(220)2
10
→
J = σ
→
E
R = ρ  L
A
σ =   1
ρ
→
J =
→
E1
ρ
V (r) =   − ∫ r
a
→
E .  d
→
l
V =
∣
∣
∣
→
E
∣
∣
∣
L
∣
∣
∣
 
→
J  ∣∣  =  
∣
∣
→
E
∣
∣
∣
     ⟹      
∣
∣
∣
 
→
J  
∣
∣
∣
=    1ρ
1
ρ
V
L
∣
∣
∣
→
J
∣
∣
∣
= I/A R = ρ  L
A
=             ⇒        V = I (ρ  )        ⇒        V = R II
A
1
ρ
V
L
L
A
VERIFICANDO O APRENDIZADO
1. CONSIDERE UM CILINDRO, DE COMPRIMENTO Z, CONSTITUÍDO DE MATERIAL CONDUTOR
COM RESISTIVIDADE HOMOGÊNEA Ρ CONSTANTE, OCO E COM UMA ESPESSURA TAL QUE O
RAIO INTERNO CILÍNDRICO SEJA A E O RAIO EXTERNO CILÍNDRICO SEJA B. SE UMA
DIFERENÇA DE POTENCIAL ELÉTRICO FOR ESTABELECIDA ENTRE OS RAIOS INTERNO E
EXTERNO DESSE CILINDRO RESISTOR, UMA CORRENTE ELÉTRICA FLUIRÁ RADIALMENTE.
CALCULE SUA RESISTÊNCIA ELÉTRICA, COMO FUNÇÃO DE SUA GEOMETRIA.
A) 
B) 
C) 
D) 
E) 
2. UM CIRCUITO ELÉTRICO RESISTIVO COM UM RESISTOR R= 4 Ω É ALIMENTADO POR UMA
FONTE DE TENSÃO CONSTANTE ∆V=12 VOLTS. NO ENTANTO, SABEMOS QUE TODA FONTE DE
TENSÃO POSSUI UMA RESISTÊNCIA INTERNA, NOTADAMENTE PORQUE SE AQUECE. UM
AMPERÍMETRO, USADO PARA MEDIR A CORRENTE ELÉTRICA NESSE CIRCUITO, INDICA UMA
CORRENTE I=2 A. CALCULE A POTÊNCIA ELÉTRICA CONSUMIDA, PR, PELA RESISTÊNCIA
INTERNA NA FONTE DE TENSÃO.
A) Pr = 24 W
B) Pr = 16 W
C) Pr = 8 W
D) Pr = 12 W
E) Pr = 4 W
R = ρ   Z
A
 R =     ln r
ρ
2π Z
 R =    
ρ
2π r Z
 R =     lnZ 
ρ
2π r
 R =     ln
ρ
2π Z
b
a
GABARITO
1. Considere um cilindro, de comprimento Z, constituído de material condutor com resistividade homogênea ρ
constante, oco e com uma espessura tal que o raio interno cilíndrico seja a e o raio externo cilíndrico seja b. Se uma
diferença de potencial elétrico for estabelecida entre os raios interno e externo desse cilindro resistor, uma corrente
elétrica fluirá radialmente. Calcule sua resistência elétrica, como função de sua geometria.
A alternativa "E " está correta.
 
Considere um corte de seção reta do cilindro, com raio a ≤ r ≤ b, como indicado abaixo:
 Corte em seção reta do resistor cilíndrico oco
A resistência R como função da resistividade terá de ser adaptada para esse problema cilíndrico. Se, antes, L
era o comprimento de um fio, agora, terá de ser a distância radial cilíndrica r, pois a corrente aqui flui radialmente no cilindro.
Vamos calcular para um elemento de resistência dR em uma casca cilíndrica e integrar de a até b.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, a área da casca cilíndrica de comprimento Z e espessura r será:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para calcular dR, usaremos o elemento de distância radial dr:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, integrando de a até b, temos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ou seja, a resistência elétrica é função da geometria do componente.
2. Um circuito elétrico resistivo com um resistor R= 4 Ω é alimentado por uma fonte de tensão constante ∆V=12
Volts. No entanto, sabemos que toda fonte de tensão possui uma resistência interna, notadamente porque se
ρ :  R = ρ  L
A
R = ∫ b
a
dR
A = 2π r Z 
dR =               ⟹          dR =  
ρ dr
A
ρ dr
2π r Z
R   =   ∫ ba dR   =    ∫
b
a       ⟹     R =     ln  
ρ
2π Z
dr
r
ρ
2π Z
b
a
aquece. Um amperímetro, usadopara medir a corrente elétrica nesse circuito, indica uma corrente I=2 A. Calcule a
potência elétrica consumida, Pr, pela resistência interna na fonte de tensão.
A alternativa "C " está correta.
 
A potência elétrica fornecida pela fonte de tensão é consumida, no circuito, como consequência do princípio de conservação
da energia. Então, vamos calcular as contribuições de potências elétricas geradas e consumidas. A potência elétrica que a
fonte de tensão seria capaz de fornecer, caso fosse ideal e não se aquecesse, é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A potência consumida pelo resistor R é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Claramente, há uma discrepância entre a potência que a fonte seria capaz de gerar com a potência consumida pelo resistor.
Como deve haver o equilíbrio, visto que de outra forma a corrente elétrica teria valor diferente, significa que a fonte elétrica
possui uma resistência interna e se aquecerá, consumindo energia, por efeito Joule. O valor de potência discrepante é
exatamente a potência consumida pela resistência interna da fonte. Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÓDULO 2
 Aplicar as regras de Kirchhoff aos circuitos CC resistivos
CIRCUITOS CC
Um circuito de corrente contínua (CC) é um arranjo elétrico ou eletrônico que envolve uma ou mais fontes de tensão elétrica
contínua e componentes consumidores elétricos, em uma circulação fechada de corrente elétrica.
Essa fonte de tensão foi chamada de f.e.m. – força eletromotriz. Entretanto, do ponto de vista dimensional da grandeza
física, sabemos que de força não tem nada. O nome remete à compreensão histórica, dos primórdios da investigação dos
fenômenos elétricos, da fonte elétrica de origem mecânica ou química capaz de produzir uma diferença de potencial elétrico
e mover máquinas ou produzir esforços mecânicos.
 COMENTÁRIO
PΔV = V  I = 12 volts  ×  2 A = 24 W
PR = R I
2 =  4 Ω  ×  (2A)2 = 16 W
PΔV −  PR = 24 W − 16 W = 8 W
Tal nomenclatura continua largamente utilizada ainda hoje. Também se costuma chamar de f.e.m. as fontes de tensão
alternadas, que deixaremos para mais tarde.
Os circuitos CC podem ser montados ou projetados em malhas, que são sessões ou partes, do circuito todo, sempre com
circulação fechada de corrente elétrica. As figuras ilustram circuitos elétricos CC com mais de uma malha:
 
Fonte: Thepalerider12/Wikimedia Commons/CC-BY-SA-3.0
Na figura a temos um circuito CC com uma fonte de tensão contínua (f.e.m.) em três malhas, que correspondem às três
sessões no mesmo circuito, conectados nos pontos indicados.
 
Fonte: Thepalerider12/Wikimedia Commons/CC-BY-SA-3.0
Na figura b, temos um circuito CC com três fontes elétricas em duas malhas.
Além disso, chamamos de nó cada ponto de um circuito que corresponde a uma divisão de corrente elétrica. Nas figuras
anteriores, ilustrativas de circuitos CC, todo ponto indicado que conecta três ou mais linhas condutoras é chamado nó.
 
Fonte: Thepalerider12/Wikimedia Commons/CC-BY-SA-3.0
Na figura a temos, em princípio, quatro nós, nos pontos A, B, C e D.
 
Fonte: Thepalerider12/Wikimedia Commons/CC-BY-SA-3.0
Na figura b, temos dois nós, nos pontos B e C.
TODOS OS DEMAIS PONTOS DAS LINHAS CONDUTORAS DOS DOIS CIRCUITOS,
INDICADOS OU NÃO, NÃO CONSTITUEM NÓS, POIS AS CORRENTES ELÉTRICAS
NÃO SERÃO DIVIDIDAS NESSES PONTOS, MAS APENAS CONDUZIDAS.
Ambos os circuitos das figuras envolvem fontes CC e resistores elétricos, que são consumidores de energia elétrica, ou seja,
convertem energia elétrica em energia térmica por efeito Joule. Vamos chamá-los de circuitos CC resistivos.
 ATENÇÃO
Uma fonte de tensão somente poderá disponibilizar energia elétrica por meio de uma diferença de potencial elétrico. Ainda
que, às vezes, sejam referidas como fontes de correntes, não o são. Essa falha conceitual, de creditar a uma f.e.m. como a
fonte da corrente elétrica, levaria a outros conceitos incorretos. Não podemos chamá-las de fontes de corrente elétrica.
Não é possível acumular nem ceder corrente elétrica, pois corrente é fluxo. As correntes elétricas surgem como
consequência de diferenças de potencial elétrico. Somente energia elétrica e cargas elétricas podem ser acumuladas e,
então, cedidas. As fontes de potencial elétrico, quando conectadas em circuitos elétricos, estabelecem desequilíbrios
elétricos de energia e cargas elétricas. A natureza, ao buscar o equilíbrio dos sistemas físicos, com distribuição de cargas e
equipartição de energias, propicia o surgimento de correntes, por meio da movimentação de cargas elétricas.
ASSOCIAÇÃO DE RESISTORES
Neste módulo, vamos abordar os circuitos CC resistivos, que são circuitos com fontes de tensão e resistores elétricos. Antes,
porém, vamos analisar como trabalhar com associações ou arranjos de resistores em série e em paralelo.
Nesse sentido, resistores elétricos podem ser conectados em associações de resistores em série e em paralelo. Sempre
que conectarmos resistores, com arranjos em série e em paralelo, o resultado será o de uma resistência equivalente.
Se precisarmos de um resistor elétrico de determinado valor de resistência, podemos associar outros resistores de forma a
obter a resistência equivalente desejada.
NÃO CONFUNDA RESISTORES (COMPONENTES) COM RESISTÊNCIA
(FENÔMENO).
ARRANJO 
EM SÉRIE
Vamos considerar o arranjo de N resistores em série, como ilustrado na figura a seguir:
 
Fonte: Omegatron/Wikimedia Commons/CC-BY-SA-3.0
 Resistores em série
Perceba que uma diferença de potencial elétrico total ∆V será a soma das quedas de potenciais em cada resistor em série.
Assim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Nesse arranjo em série, cada resistor conduzirá a mesma corrente elétrica, I. Então, a resistência elétrica equivalente em
série com a aplicação da Lei de Ohm, será:
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ARRANJO 
EM PARALELO
Vamos, agora, considerar o arranjo de N resistores em paralelo, como ilustrado na figura a seguir:
ΔV = ∑Ni=1 Vi
Reqsérie
V = R I
ΔV total = V1 + V2 + ⋯ + VN
Req . I = I (R1 + R2 + ⋯ + RN)
Reqsérie = ∑
N
i=1 Ri
 
Fonte: Omegatron/Wikimedia Commons/CC-BY-SA-3.0
 Resistores em paralelo
Perceba que a corrente elétrica total que percorre o sistema de resistores em paralelo será a soma das correntes elétricas
que percorrem cada resistor em paralelo Ri, em que i = 1, 2, 3, ..., N. Ou seja:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Nesse caso, como cada resistor será alimentado pelo mesmo potencial elétrico, ΔV, pois estão associados em paralelo, a
resistência elétrica equivalente em paralelo, com a aplicação da Lei de Ohm, será:
 
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 ATENÇÃO
Como a expressão anterior lida com quantidades inversas, é preciso ter cuidado com o cálculo operacional da resistência
equivalente em paralelo.
Agora, vamos analisar como projetar e solucionar circuitos CC resistivos em uma ou mais malhas. Nem sempre poderemos
usar as associações de resistores, assim como de outros componentes, para solucionar simplificadamente os circuitos.
REGRAS DE KIRCHHOFF
Para a análise e solução dos circuitos elétricos, de uma ou mais malhas e com diversos componentes elétricos possíveis
(como veremos adiante), usamos duas regras que são consequência de dois princípios físicos gerais e fundamentais
aplicados ao problema:
Itotal = ∑Ni=1 Ii
Reqparalelo
V = R I
Itotal = I1 + I2 + ⋯ + IN
= + + ⋯ +ΔV
Req
ΔV
R1
ΔV
R2
ΔV
RN
= ∑Ni=1
1
Reqparalelo
1
Ri
PRINCÍPIO DE CONSERVAÇÃO DA CARGA ELÉTRICA
O princípio de conservação da carga elétrica estabelece que a totalidade das cargas elétricas em um sistema físico deve ser
conservada. No contexto da eletrodinâmica clássica, cargas elétricas não podem ser criadasnem destruídas.
PRINCÍPIO DE CONSERVAÇÃO DA ENERGIA
O princípio de conservação da energia estabelece que a totalidade da energia de um sistema físico isolado não pode ser
alterada, mas somente transformada.
Como consequência desses dois princípios físicos, para a análise e solução dos circuitos elétricos, temos as regras de
Kirchhoff:
REGRA DOS NÓS
A soma de todas as correntes elétricas que chegam a um nó de um circuito elétrico deve ser igual à soma de todas as
correntes elétricas que saem desse mesmo nó. Ou seja, a totalidade das correntes elétricas em um nó deve ser igual a zero.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
REGRA DAS MALHAS
A soma de todos os acréscimos de potencial elétrico ao longo de uma malha de um circuito elétrico deve ser igual à soma
dos decréscimos de potencial na mesma malha. Ou seja, a totalidade dos aumentos e das diminuições de potencial elétrico
em uma malha deve ser igual a zero.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Com as duas regras de Kirchhoff, podemos construir sistemas algébricos de equações lineares acopladas típicas da álgebra
linear, para a análise e solução de circuitos elétricos
DEMONSTRAÇÃO
Consideremos o circuito CC, a seguir, com quatro resistores e três fontes de tensão ideais. Vamos calcular as soluções das
correntes elétricas I, I1 e I2, conhecendo os dados das fontes de tensão E1,E2 e E3 e dos resistores R1,R2,R3 e R4, de
acordo com a tabela e a figura a seguir. Ao final, vamos calcular as potências fornecidas pelas fontes de tensão e as
potências consumidas pelos resistores. Considere as orientações das correntes indicadas.
∑i Ii = 0
∑i Vi = 0
javascript:void(0)
javascript:void(0)
 
Fonte: O autor
 Circuito CC resistivo de duas malhas
E (fontes de tensão) R (resistores)
E1 = 8 V R1 = 1 Ω
E2 = 4 V R2 = 2 Ω
E3 = 8 V R3 = 2 Ω
R4 = 6 Ω
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
RESOLUÇÃO
Este é um circuito CC ideal de duas malhas e um único nó independente de divisão de corrente elétrica, pois os nós
identificados nos pontos A e B são equivalentes — ambos lidam com as mesmas correntes nas mesmas orientações de
fluxo.
Agora, vamos aplicar as regras de Kirchhoff, dos nós e das malhas ao circuito.

Primeiro, é preciso escolher as orientações das correntes, como a figura exemplifica com as setas em vermelho
Depois, devemos identificar os nós independentes, como o ponto A, e obter a equação correspondente da regra dos nós.


Nos pontos A e B desse circuito, a regra dos nós resultará na mesma equação.
Após, para cada uma das duas malhas, aplicando a regra das malhas, obteremos uma equação algébrica independente.


A solução do sistema de três equações lineares acopladas nos dará as soluções das correntes elétricas buscadas.
O uso de sinais para os aumentos ou diminuições dos potenciais respeitará a seguinte convenção: à esquerda da igualdade,
são relacionados os aumentos de potenciais e, à direita da igualdade, são relacionadas as quedas de potenciais. A fonte de
tensão E3 está com orientação dos polos de potenciais no sentido contrário ao fluxo da corrente I1, assim será considerada
um consumidor de energia, como uma bateria sendo carregada, por exemplo.


A aplicação da regra das malhas deve seguir uma circulação fechada de corrente, em uma orientação de escolha. As
correntes em contrário a essa orientação terão sinal negativo na equação.
Vamos aos cálculos:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
⎧⎪
⎨
⎪⎩
I = I1 + I2
E1 + E2 = R1I + R2I + R3I1 + E3
E3 = −R3I1 + R4I2
⎧⎪
⎨
⎪⎩
I = I1 + I2
8 + 4 = 1I + 2I + 2I1 + 4
4 = −2I1 + 6I2
      ⟹         
⎧⎪
⎨
⎪⎩
I = I1 + I2
8 = 3I + 2I1
2 = −I1 + 3I2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ENTÃO, AS CORRENTES ELÉTRICAS SÃO I1 = 1A ; I2 = 1A ; I=2A.
Ainda nos falta calcular as potências fornecidas pelas fontes de tensão e as potências consumidas pelos resistores. Vejamos:
Potências fornecidas pelas fontes de tensão Potências consumidas pelos resistores
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
 ATENÇÃO
Considerando tais resultados das potências, chama-nos a atenção que a soma das potências fornecidas pelas fontes de
tensão (P = 28 W) não seja igual à soma das potências consumidas pelos resistores (PR = 20 W). Então, o que ocorreu? Na
verdade, uma das fontes de tensão estava consumindo energia, (PE3 = 4W). Assim, a potência fornecida pelas fontes que
alimentam o circuito resistivo é de Pfontes = 24W, e a potência consumida pelos resistores e pela fonte E3 é de Pconsumo =
24W, como esperávamos.
MÃO NA MASSA
1. NA ASSOCIAÇÃO DE RESISTORES DA FIGURA, A SEGUIR, CALCULE A RESISTÊNCIA
EQUIVALENTE DO SISTEMA. 
{
8 = 3(I1 + I2)+2I1
I1 = 3I2 − 2
              ⟹          { 8 = 5I1 + 3I2
I1 = 3I2 − 2
  
8 = 5(3I2 − 2)+3I2
8 = 15I2 − 10 + 3I2
18 = 18I2
         ⟹        
⎧⎪
⎨
⎪⎩
I2 = 1A
I1 = 3I2 − 2 = 1A
I = I1 + I2 = 2A
         
P = V I          PR1 = R1. I
2 = 1 ⋅ 22 = 4W
PE1 = E1 ⋅ I = 16W PR2 = R2 ⋅ I
2 = 2 ⋅ 22 = 8W
PE2 = E2 ⋅ I = 8W PR3 = R3 ⋅ I
2
1 = 2 ⋅ 1
2 = 2W
PE3 = E3 ⋅ I1 = 4W PR4 = R4 ⋅ I
2
2 = 6 ⋅ 1
2 = 6W
 ASSOCIAÇÃO DE RESISTORES
A) Req = 3,17 Ω
B) Req = 10 Ω
C) Req = 8,67 Ω
D) Req = 6,67 Ω
E) Req = 6 Ω
2. CONSIDERE A ASSOCIAÇÃO DE RESISTORES DA FIGURA, A SEGUIR, NA QUAL
IMPLEMENTAMOS UMA NOVA CONEXÃO, EM VERMELHO, NA ASSOCIAÇÃO DE RESISTORES
DO PROBLEMA ANTERIOR. REPARE QUE ESSA MODIFICAÇÃO ALTERA FORTEMENTE O
SISTEMA E SUA SOLUÇÃO. CALCULE A RESISTÊNCIA EQUIVALENTE DESSE SISTEMA. 
 ASSOCIAÇÃO DE RESISTORES
A) Req = 3,17 Ω
B) Req = 2,99 Ω
C) Req = 1,94 Ω
D) Req = 1,05 Ω
E) Req = 9 Ω
3. CONSIDEREMOS O CIRCUITO CC, A SEGUIR, COM TRÊS RESISTORES E DUAS FONTES DE
TENSÃO IDEAIS. CALCULE AS SOLUÇÕES DAS CORRENTES ELÉTRICAS I,I1 E I2,
CONHECENDO OS DADOS DAS FONTES DE TENSÃO E1,E2 E DOS RESISTORES R1,R2,R3, DE
ACORDO COM A TABELA E A FIGURA A SEGUIR. CONSIDERE AS ORIENTAÇÕES DAS
CORRENTES INDICADAS. 
 CIRCUITO CC RESISTIVO DE DUAS MALHAS
E (FONTES DE TENSÃO) R (RESISTORES)
E1 = 12 V R1 = 2 Ω
E2 = 2 V R2 = 2 Ω
R3 = 2 Ω
 ATENÇÃO! PARA VISUALIZAÇÃOCOMPLETA DA TABELA UTILIZE A ROLAGEM HORIZONTAL
A) ; ; 
B) ; ; 
C) ; ; 
D) ; ; 
E) ; ; 
4. NO CIRCUITO TRABALHADO NO PROBLEMA ANTERIOR E COM OS MESMOS DADOS,
CALCULE A ENERGIA CONSUMIDA, POR EFEITO JOULE, PELOS RESISTORES DO CIRCUITO E
I1 = 1 A  I2 = 1 A I = 2 A 
I1 = 2 A  I2 = 2 A I = 1 A 
I1 = 11 A  I2 = 7 A I = 2 A 
I1 =  A 
7
3
I2 =  A
4
3
I = 11 A 
I1 =  A 
4
3
I2 =  A
7
3
I =  A 11
3
A CONSEQUENTE GERAÇÃO DE CALOR, NO INTERVALO DE 60 SEGUNDOS.
A) 
B) 2.480 J
C) 1.240 J
D) 60 J
E) 2.640J
5. SEJA O CIRCUITO CC, ABAIXO, COM CINCO RESISTORES E TRÊS FONTES DE TENSÃO
IDEAIS. VAMOS CALCULAR AS SOLUÇÕES DAS CORRENTES ELÉTRICAS I,I1 E I2,
CONHECENDO OS DADOS DAS FONTES DE TENSÃO E1,E2 E E3 E DOS RESISTORES
R1,R2,R3,R4,R5, DE ACORDO COM A TABELA E A FIGURA A SEGUIR. CONSIDERE AS
ORIENTAÇÕES DAS CORRENTES INDICADAS. 
 CIRCUITO CC RESISTIVO DE DUAS MALHAS
 
E (FONTES DE TENSÃO) R (RESISTORES)
E1 = 2 V R1 = 1 Ω
E2 = 4 V R2 = 1 Ω
E3 = 2 V R3 = 1 Ω
R4 = 1 Ω
R5 = 4 Ω
 J
372
9
 ATENÇÃO! PARA VISUALIZAÇÃOCOMPLETA DA TABELA UTILIZE A ROLAGEM HORIZONTAL
A) ; ; 
B) ; ; 
C) ; ; 
D) ; ; 
E) ; ; 
6. NO MESMO CIRCUITO DO PROBLEMA ANTERIOR, VAMOS NOMEAR OS NÓS COMO PONTOS
A E B. AGORA, CALCULE A DIFERENÇA DE POTENCIAL ELÉTRICO ENTRE ESSES PONTOS A E
B, OU SEJA VA - VB.
 CIRCUITO CC RESISTIVO DE DUAS MALHAS
A) 
B) 
C) 
D) 
E) 
GABARITO
1. Na associação de resistores da figura, a seguir, calcule a resistência equivalente do sistema. 
I1 = 1 A  I2 = 1 A I = 2 A 
I1 = 2 A  I2 = 1 A I = −1 A 
I1 = 5 A  I2 = 7 A I = 2 A 
I1 =  A 
2
5
I2 =  A
1
5
I= −  A1
5
I1 =  A 
4
3
I2 =  A
7
3
I =  A 11
3
VA − VB =  V    
12
5
VA − VB = 4 V
VA − VB = 8 V
VA − VB = 0 V
VA − VB =  V
28
5
 Associação de resistores
A alternativa "A " está correta.
Veja a resolução da questão no vídeo a seguir:
2. Considere a associação de resistores da figura, a seguir, na qual implementamos uma nova conexão, em
vermelho, na associação de resistores do problema anterior. Repare que essa modificação altera fortemente o
sistema e sua solução. Calcule a resistência equivalente desse sistema. 
 Associação de resistores
A alternativa "B " está correta.
Neste problema, observe que a nova conexão, em vermelho, faz com que os três resistores à esquerda da linha em
vermelho estejam em paralelo (4 Ω, 5 Ω e 2 Ω). Os resistores à direita da linha em vermelho estão, agora, todos em paralelo
(10 Ω, 15 Ω, 10 Ω, 10 Ω, 20 Ω, 10 Ω). E esses dois blocos de resistores, à esquerda e à direita da conexão em vermelho,
estão em série. Então:
 
Req1 = ( + + )
−1
≡ 1,0526 Ω1
4
1
5
1
2
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
3. Consideremos o circuito CC, a seguir, com três resistores e duas fontes de tensão ideais. Calcule as soluções das
correntes elétricas I,I1 e I2, conhecendo os dados das fontes de tensão E1,E2 e dos resistores R1,R2,R3, de acordo
com a tabela e a figura a seguir. Considere as orientações das correntes indicadas. 
 Circuito CC resistivo de duas malhas
E (fontes de tensão) R (resistores)
E1 = 12 V R1 = 2 Ω
E2 = 2 V R2 = 2 Ω
R3 = 2 Ω
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
A alternativa "E " está correta.
Veja a resolução da questão no vídeo a seguir:
4. No circuito trabalhado no problema anterior e com os mesmos dados, calcule a energia consumida, por efeito
Joule, pelos resistores do circuito e a consequente geração de calor, no intervalo de 60 segundos.
A alternativa "B " está correta.
Req2 = ( + + + + + )
−1
1
10
1
15
1
10
1
10
1
20
1
10
= ( + + )
−1
= 1,935 Ω4
10
1
15
1
20
Req = 1,0526Ω + 1,935Ω⟹ 2,99 Ω
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Seja o circuito CC, abaixo, com cinco resistores e três fontes de tensão ideais. Vamos calcular as soluções das
correntes elétricas I,I1 e I2, conhecendo os dados das fontes de tensão E1,E2 e E3 e dos resistores R1,R2,R3,R4,R5, de
acordo com a tabela e a figura a seguir. Considere as orientações das correntes indicadas. 
 Circuito CC resistivo de duas malhas
 
E (fontes de tensão) R (resistores)
E1 = 2 V R1 = 1 Ω
E2 = 4 V R2 = 1 Ω
E3 = 2 V R3 = 1 Ω
R4 = 1 Ω
R5 = 4 Ω
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
A alternativa "D " está correta.
Vamos adotar uma escolha de orientação das correntes, como indicado nas setas em vermelho. Se, ao final, alguma corrente
tiver valor negativo, não será preciso alterar a solução, apenas deveremos interpretar que essa corrente terá sentido
contrário ao indicado. Entretanto, isso não altera os fenômenos elétricos dos circuitos.
Devemos aplicar as regras de Kirchhoff.
P1 = R1I
2 = 2Ω( A)
2
= watt
P2 = R2I
2
2 = 2Ω( A)
2
= watt
P3 = R3I
2
1 = 2Ω( A)
2
= watt
     ⟹       
W = Ptotal.Δt
W =(P1 + P2 + P3)⋅Δt
W = watt ⋅ 60s = 2.480J
  
11
3
242
9
7
3
98
9
4
3
32
9
372
9
Vamos escolher, para a regra dos nós, um dos dois nós indicados, que são equivalentes. Para a regra das malhas, vamos
adotar (1) a malha mais externa e (2) a malha à esquerda na figura. Como o circuito possui duas malhas, podemos
equacionar para quaisquer duas circulações fechadas de corrente no circuito.
Assim:
A alternativa "D " está correta.
 
 
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
6. No mesmo circuito do problema anterior, vamos nomear os nós como pontos A e B. Agora, calcule a diferença de
potencial elétrico entre esses pontos A e B, ou seja VA - VB.
 Circuito CC resistivo de duas malhas
A alternativa "A " está correta.
No trecho do circuito entre os pontos A e B, o resistor de 4 Ω consome energia fornecida pela f.e.m. de 4 V. Assim, como o
ponto A está conectado ao polo positivo da f.e.m., terá o mesmo potencial deste polo, pois será um trecho equipotencial.
Assim, para a diferença de potencial entre os nós A e B, devemos subtrair o potencial de queda do resistor de 4 Ω da
diferença de potencial fornecida pela f.e.m. Então, dos cálculos das correntes elétricas desse circuito no problema anterior,
temos:
 
⎧⎪
⎨
⎪⎩
I + I1 = I2
2 = 1I + 1I2 + 2 + 1I2 + 1I  
2 = 1I + 4 − 4I1 + 1I
     ⟹        
⎧⎪
⎨
⎪⎩
I + I1 = I2
2 = 2I + 2I2 + 2
2 = 2I + 4 − 4I1
⎧⎪
⎨
⎪⎩
I + I1 = I2
I + I2 = 0
I − 2I1 = −1
       ⟹       {
I +(I + I1)= 0
I −  2I1 = −1
         ⟹       {
2I + I1 = 0
I = 2I1 − 1
   
2(2I1 − 1)+I1 = 0
5I1 − 2 = 0
         ⟹       
⎧⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪⎩
I1 = A
I = − A
I2 = A
   
2
5
1
5
1
5
VA − VB =  E2 − 4I1    ⟹   
⎧⎪ ⎪
⎨
⎪ ⎪⎩
I1 = A
E2 = 4 V
2
5
VA − VB =(4  − 4.  )V      ⟹       VA − VB =  V25
12
5
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
TEORIA NA PRÁTICA
No circuito CC representado na figura, vamos obter as potências fornecidas pelas baterias do circuito, individualmente. Para
isso, precisamos calcular as correntes elétricas que circulam no circuito.
 
Fonte: O autor
 Circuito CC resistivo de duas malhas
RESOLUÇÃO
Vamos aplicar as regras de Kirchhoff de acordo com a orientação das correntes da figura. Usaremos o nó identificado pelo
ponto B. Logo
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Subtraindo as equações à direita, obtemos uma relação entre I1 como função de I3.
Aplicando essa relação na primeira equação das malhas, obtemos I2 como função de I3:
⎧⎪
⎨
⎪⎩
I2 = I1 + I3
12 = 4I1 + 6I2
12 = 3I3 + 6I2
       ⟹         {
12 = 4I1 + 6(I1 + I3)
12 = 3I3 + 6(I1 + I3)
⎧⎪ ⎪
⎨
⎪ ⎪⎩
 4I1 − 3I3 = 0
 I1 = I3
 I2 = I3 + I3 = I3
3
4
3
4
7
4
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, basta substituir essas relações em qualquer das equações das malhas e obter as correntes do circuito:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, . No entanto, o problema solicita o cálculo das potências fornecidas pelas baterias
do circuito. Então:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esse resultado nos mostra que fontes de tensão iguais podem nos fornecer potências diferentes, a depender da sua
demanda. Entretanto, são projetadas para uma potência nominal útil máxima que não devemos superar, com risco de danos
aos equipamentos.
Veja a seguir a solução desta questão:
VERIFICANDO O APRENDIZADO
1. CHAMAMOS DE CURTO-CIRCUITO CONTATOS OU CONEXÕES ELÉTRICAS QUE PERMITEM
QUE A CORRENTE ELÉTRICA SIGA UM PERCURSO ELÉTRICO COM O MENOR DISPÊNDIO DE
ENERGIA, PARA OS PORTADORES DE CARGAS. ENTÃO, CONSIDERE A ASSOCIAÇÃO DE
⎧⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪⎩
12 = 4( I3)+6( I3)
12 = 3I3 + I3
= I3 + I3
          ⟹              
I3 = = =    A
I1 = ⋅ = =    A
I2 = ⋅ =   A
3
4
7
4
42
4
48
4
12
4
42
4
48
54
24
27
8
9
3
4
8
9
24
36
2
3
7
4
8
9
 14
9
I3 = A;  I1 = A;  I2 = A
8
9
2
3
 14
9
P = V I
PE1 = E1 ⋅ I1 = 12V ⋅ A = 8 W
PE2 = E2 ⋅ I3 = 12V ⋅ A =  W
2
3
8
9
32
3
RESISTORES DA FIGURA A SEGUIR. OBSERVE QUE FOI CONECTADA UMA LINHA DE CURTO,
INDICADA EM VERMELHO. CALCULE A RESISTÊNCIA EQUIVALENTE DESSE SISTEMA. 
 ASSOCIAÇÃO DE RESISTORES
A) Req = 3,17 Ω
B) Req = 2,99 Ω
C) Req = 1,94 Ω
D) Req = 1,05 Ω
E) Req = 9 Ω
2. NO CIRCUITO CC, A SEGUIR, CALCULE A POTÊNCIA TOTAL CONSUMIDA PELOS TRÊS
RESISTORES DO CIRCUITO. 
 CIRCUITO CC RESISTIVO DE DUAS MALHAS
A) Peq = 2,37 W
B) Peq = 14,52 W
C) Peq = 1,78 W
D) Peq = 18,67 W
E) Peq = 24 W
GABARITO
1. Chamamos de curto-circuito contatos ou conexões elétricas que permitem que a corrente elétrica siga um
percurso elétrico com o menor dispêndiode energia, para os portadores de cargas. Então, considere a associação
de resistores da figura a seguir. Observe que foi conectada uma linha de curto, indicada em vermelho. Calcule a
resistência equivalente desse sistema. 
 Associação de resistores
A alternativa "C " está correta.
 
A linha de curto na associação de resistores da figura encurta o caminho que a corrente elétrica deve seguir, desde o ponto
onde o potencial elétrico é mais alto até o ponto onde o potencial elétrico é mais baixo. Perceba que a linha de curto, em
vermelho, permite a condução elétrica de tal maneira que os três resistores à esquerda foram tornados irrelevantes. A
corrente elétrica poderá seguir o caminho de menor dispêndio energético sem a necessidade de ser conduzida por esses
três resistores à esquerda. Assim, a associação de resistores resulta nos resistores à direita da linha vermelha vertical, que
estão todos em paralelo.
Desse modo:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. No circuito CC, a seguir, calcule a potência total consumida pelos três resistores do circuito. 
 
Req = ( + + + + + )
−1
= ( + + )
−1
= 1,935 Ω
 
        ⟹         Req ≃ 1,94 Ω
1
10
1
15
1
10
1
10
1
20
1
10
4
10
1
15
1
20
 Circuito CC resistivo de duas malhas
A alternativa "D " está correta.
 
Para o cálculo da potência elétrica de consumo dos resistores, precisamos previamente calcular as correntes elétricas que
circulam no circuito. Vamos aplicar as regras de Kirchhoff de acordo com a orientação das correntes da figura. Usaremos o
nó identificado pelo ponto B. (O cálculo das correntes elétricas desse circuito já foi efetuado no Teoria na Prática, de forma
que iremos recapitular e seguir para a potência de consumo dos resistores). Assim:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Subtraindo as equações à direita, obtemos uma relação entre I1 como função de I3. Aplicando essa relação na primeira
equação das malhas, obtemos I2 como função de I3:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, basta substituir essas relações em qualquer das equações das malhas e obter as correntes do circuito:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Assim, ; ; . Mas o problema solicita o cálculo da potência total de consumo dos resistores do
circuito. Então,
 
⎧⎪
⎨
⎪⎩
I2 = I1 + I3
12 = 4I1 + 6I2
12 = 3I3 + 6I2
       ⟹         {
12 = 4I1 + 6(I1 + I3)
12 = 3I3 + 6(I1 + I3)
⎧⎪ ⎪
⎨
⎪ ⎪⎩
 4I1 − 3I3 = 0
 I1 = I3
 I2 = I3 + I3 = I3
3
4
3
4
7
4
⎧⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪⎩
12 = 4( I3)+6( I3)
12 = 3I3 + I3
= I3 + I3
          ⟹              
I3 = = =    A
I1 = ⋅ = =    A
I2 = ⋅ =   A
3
4
7
4
42
4
48
4
12
4
42
4
48
54
24
27
8
9
3
4
8
9
24
36
2
3
7
4
8
9
 14
9
I3 = A
8
9
I1 = A
2
3
I2 = A
 14
9
PR1 = R1I
2
1 = 4Ω ⋅ ( A)
2
≅1,78 W2
3
PR2 = R2I
2
2 = 6Ω ⋅ ( A)
2
≅14,52 W14
9
PR3 = R3I
2
3 = 3Ω ⋅ ( A)
2
≅2,37 W8
9
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Com o tema da corrente elétrica e os circuitos elétricos C.C., iniciamos os estudos sobre os princípios dos fenômenos
elétricos dinâmicos e suas aplicações tecnológicas. É fundamental que você perceba que todos os itens de estudo da
eletrodinâmica clássica, mesmo aqueles aparentemente mais teóricos, têm aplicação tecnológica e fazem parte da nossa
sociedade tecnológica moderna.
Neste tema, você estudou a corrente elétrica, a resistência, a resistividade e a condutividade elétrica, a lei de Ohm e a
análise dos circuitos C.C. resistivos, por meio das regras de Kirchhoff. Não deixe de experimentar as indicações
complementares em Explore +.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
TIPLER, Paul A. Física para cientistas e engenheiros. 6. ed. Rio de Janeiro: LTC, 2011.
YOUNG, Hugh D.; FREEDMAN, Roger A. Física III – Sears & Zemansky. Vol. 3. 14. ed. São Paulo: Addison Wesley, 2015.
HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de física: eletromagnetismo. Vol. 3. 10. ed. Rio de
Janeiro: LTC, 2018.
GRIFFITHS, David J. Eletrodinâmica. 3. ed. São Paulo: Pearson, 2019.
NUSSENZVEIG, Herch Moysés. Curso de física básica: eletromagnetismo. 1 ed. São Paulo: Blucher, 2018.
BARROS, Luciane M. Física teórica experimental III. 1 ed. Rio de Janeiro: SESES, 2017. 
PR = PR1 + PR2 + PR3
PR = 18,67 W
EXPLORE+
Para saber mais sobre os assuntos tratados neste tema, leia:
Leia sobre o modelo clássico da condução elétrica e a correção ao modelo no livro Física para cientistas e
engenheiros, de Paul Tipler.
Leia sobre condutores, isolantes, semicondutores e transistores no livro Física para cientistas e engenheiros, de Paul
Tipler.
Leia sobre voltímetros, amperímetros, ohmímetros e potenciômetros em Sears & Zemansky , Física III:
eletromagnetismo, 2015.
Busque o simulador de resistores e resistência elétrica, do Projeto Phet, da Universidade do Colorado, Boulder.
CONTEUDISTA
Gentil Oliveira Pires
 CURRÍCULO LATTES
javascript:void(0);

Continue navegando